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Assessing the impacts of temperature variations on rice yield in China 

 

 

Abstract: Using a unique county-level panel on single-season rice yield and daily weather 

outcomes from 1996 to 2009, we examined the impacts of temperature variations on rice yield in 

China. We have five key findings: (i) in contrast to nearly all previous studies focusing on rice 

production in tropical/subtropical regions, we discovered that higher daily minimum temperature 

during the vegetative stage increased rice yield; (ii) consistent with previous assessments, we 

found that increased daily maximum temperature during the vegetative and ripening stages 

reduced rice yield; (iii) the impacts of solar radiation and rainfall on rice yield differed across the 

plant’s growth stages; (iv) estimated weather effects on yield differed by rice variety; and (v) 

weather variations caused a net economic loss of $21.6-88.2 million during the sample period, 

depending on model specifications and econometric estimation strategies.  
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1. Introduction 

Most studies assessing the impacts of rising temperature on agriculture have focused on the 

developed world (Lobell and Asner 2003; McCarl et al. 2008; Mendelsohn et al. 1994; Olesen 

and Bindi 2002; Schlenker et al. 2006; Schlenker and Roberts 2009). With a few exceptions 

(Chen et al. 2015; Lobell et al. 2011a; Welch et al. 2010), there has been little research using 

high quality data to address similar issues in developing countries, which are home to over 70% 

of the world’s poor and heavily depend on agriculture. The objective of this article is to provide 

empirical evidence on the temperature effects on rice yield in China, using a unique county-level 

panel on rice yield and daily weather outcomes.  

Rice is the most important food crop in China’s agricultural economy. It accounts for about 

30% of the total grain area, nearly 50% of the total grain output, and roughly 35% of the nation’s 

annual grain consumption (NBS 1996-2009). China is also the world’s largest rice producer, 

accounting for 28% of the world’s rice production in 2012 (FAO 2012). Therefore, examining 

whether and the extent to which changing weather conditions have affected China’s rice sector is 

the important first step before efficient climate adaptation and mitigation strategies can be 

developed to combat climate change. 

Many studies have evaluated the impacts of variations in temperature and solar radiation on 

rice yield. According to the growth characteristics of the rice plant, agronomic studies usually 

divide the growing season of rice into three main stages, namely the vegetative stage from 

germination to panicle initiation, the reproductive stage from panicle initiation to flowering, and 

the ripening stage from flowering to mature grain. Early studies found that higher daily average 

temperature (Tave) and decreased solar radiation can reduce rice yield (Krishnan et al. 2007; 

Seshu and Cady 1984; Wassmann et al. 2009; Yoshida and Parao 1976), but the temperature and 
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radiation effects on yield varied across rice’s three growth stages. Recent studies discovered that 

rice yield responded differently to daily maximum temperature (Tmax) and daily minimum 

temperature (Tmin) (Peng et al. 2004; Welch et al. 2010; Ziska and Manalo 1996). For instance, 

using the data at the International Rice Research Institute farm, Peng et al. (2004) found that rice 

yield responded negatively to rising Tmin, while the effect of Tmax on yield was statistically 

insignificant. Welch et al. (2010) analyzed the data from farm-managed fields to estimate the 

effects of temperature and solar radiation on rice yield in tropical/subtropical Asia. Similar to 

Peng et al. (2004), they showed that rice yield was negatively affected by higher Tmin. Different 

from Peng et al. (2004), they found that higher Tmax had a positive impact on rice yield, while the 

radiation impacts on yield varied by growth stage. Despite these findings, in a review article, 

Wassmann et al. (2009) concluded that “research into the effect of high night temperature is not 

understood well and should be prioritized”. 

Crop simulation models have been the primary tool used to predict the changes in rice yield 

in China under different climate change scenarios (Chavas et al. 2009; Lin et al. 2005; Yang et al. 

2014; Yao et al. 2007). While crop simulation models are useful for projecting the impacts of 

future climate change on crop yields, they do not consider the effects of economic factors (such 

as input prices) and human’s responses to changing climatic conditions on yields. Hence, they 

cannot represent real agricultural settings. A few studies have evaluated the temperature effects 

on rice yield in China, using statistical approaches and observed data based on either field trials 

or statistical yearbooks released by the National Bureau of Statistics of China (NBS) at the 

provincial scale (Chen et al. 2014; Tao et al. 2006; Zhang et al. 2010). However, due to the 

differences in the data utilized and research methods they yielded mixed results. For instance, 

using data from 20 experiment stations, Zhang et al. (2010) showed that rice yield was positively 
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correlated with Tmin,Tmax, and Tave. But, Tao et al. (2006) showed that higher Tmin reduced rice 

yield in Eastern and Southern China, which was also based on the data collected at experimental 

stations. Chen et al. (2014) analyzed province-level data from 1961 to 2010, and found that 

higher Tave raised single-cropping rice yield, but reduced the yield of double-cropping rice. Based 

on the province-level data from 1950 to 2002, Tao et al. (2009) found that rice yield was 

positively correlated with Tmax and Tmin in Northeast China.  

This article aims to evaluate the responses of rice yield to temperature variations in China, 

using a newly available county-level panel. The panel includes county-specific rice yield and 

daily weather outcomes that spanned most Chinese counties from 1996 to 2009. Here, we 

focused on single-season rice, which is widely produced across the nation and accounts for about 

50% of the total rice production in China. The weather data include daily Tmax, Tmin, Tave, rainfall, 

and solar radiation. The fine-scale weather data enabled us to construct county-specific weather 

variables across three growth stages of rice for all single-season rice-producing counties in China.  

We developed a fixed-effects spatial error model to estimate the link between rice yield and 

temperature variables. In addition to Tmin and Tmax, the model also included rainfall and solar 

radiation as weather variables, while controlling for county fixed effects to remove the effects of 

the time-invariant unobserved factors that are unique to each county (e.g. soil quality and 

tradition of agricultural production). The model also controlled for year fixed effects to remove 

the effects of the unobserved factors that are common to all counties in a given growing season 

(e.g. global CO2 concentrations). We also included economic variables in one model 

specification to examine the responses of rice yield to changes in rice price and prices of inputs 

used for rice production. Moreover, we controlled for the potential spatial correlations of the 

error terms. These estimation strategies are expected to increase the precision of coefficient 
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estimates of weather variables. Japonica rice and Indica rice are the two main rice varieties 

planted in China. To examine if estimated weather effects on yield differed by rice variety, we 

also estimated the spatial error model using Japonica rice-producing counties and Indica rice-

producing counties, respectively. Using estimated coefficients of weather variables, we 

quantified the net economic impact of weather variations on China’s rice sector over the sample 

period. Our results may generate important public policy implications for the formation of 

China’s future national and global climate strategies. 

 

2. Materials and Methods 

The spatial error model developed to estimate the relationship between weather variables and 

rice yield is shown in Eq. (1) and (2):  

, , , ,r t r t r t r t r tY Z E                (1) 

, , ' ', ,

'

r t r r r t r t

r

W             (2) 

where Yr,t  denotes county-average rice yield in county r and year t. Zr,t  represents weather 

variables, including the means of daily Tmax, Tmin, and solar radiation, and sums of rainfall for 

three rice growth stages (a total of twelve weather variables). Economic variables are denoted by 

Er,t, which includes several output-input price ratios in order to control for the effects of changes 

in input uses and rice price on rice yield. We also controlled for county-level fixed effects 

(represented by αr) and year fixed effects (denoted by λt ) to remove the effects of unobserved 

factors that are unique to each county and/or are common to all counties in a given year on yield. 

εr,t are the error terms.  𝛽 is the parameter vector that gives the responses of rice yield to weather 

variations.   
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When constructing output-input price ratios, we used lagged rice price in year t-1 as a proxy 

for expected rice price in year t, which is similar to Chen et al. (2015) and Braulke (1982). We 

included price indices for fertilizer, pesticides, and fuels, and wage as input prices and 

constructed rice-fertilizer, rice-pesticide, rice-fuel, and rice-labor price ratios. These price ratios 

may be endogenous, as argued by Roberts and Schlenker (2013). Drawing on their work, we 

used weather variables and crop inventories in the previous year as instruments to address this 

potential endogeneity issue.  

Several studies in the literature have used weather variables only as explanatory variables to 

examine the weather effects on crop yields (see McCarl et al. 2008; Schlenker and Roberts 2009; 

Welch et al. 2010). Estimated coefficients of weather variables in these studies are interpreted as 

the total marginal effects of weather on yields, which are the sum of the direct effects of weather 

on yields (through the effects on crop physiology) and the indirect effects of weather on yields 

(through the effects on farmers’ input use). Hence, if we include Er,t as explanatory variables in 

Eq. (1) in addition to weather variables, estimated 𝛽 should be considered as the partial effects of 

weather on rice yield, because controlling for Er,t might absorb some of the overall effects of 

weather on yield. In the empirical analysis, we considered one model specification with Er,t as 

explanatory variables to examine whether rice yield reponded to changes in rice and input prices, 

and to examine if our coefficient estimates of weather variables are sensitive to the inclusion of 

economic variables. 

As shown in Eq. (2), we allowed the error terms εr,t to be spatially correlated across counties. 

,r t are the error terms that are independently normally distributed with
,[ ] 0r tE   and

2

,var[ ]r t  , ρ is the parameter of spatial correlation, and 
, 'r rW is a pre-specified spatial 

weighting matrix that describes the spatial dependence of counties with their neighbors. We used 
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three different spatial weighting matrices to examine the robustness of our coefficient estimates 

of weather variables. In the baseline, we used a spatial contiguity matrix because crop production 

in a county is more likely to be influenced by its neighboring counties that share the same 

boundary. We also considered two alternative inverse distance weighting matrices that weigh the 

six and four nearest counties relative to county r, respectively, according to their physical 

distance, and assign zero weights to other counties. The relative weights in each of the two 

distance weighting matrices are determined based on their distances to the centroid of county r.  

 

3. Data 

County-specific total rice production and planted acres were obtained from the NBS for years 

1996-2009. Rice yield was computed as the total rice production in a county divided by the total 

rice-planted acres in that county. Several rice cropping systems are practiced in China, including 

single-season rice, double cropped rice (a combination of early and late rice production 

technology), and multiple cropped rice. The dataset only reports total rice production and total 

rice planted acres for rice-producing counties, and does not contain details on yields for early 

rice and late rice in regions with double or multiple rice cropping systems. Therefore, to 

accurately match yield data with our weather data, we selected counties with single-season rice 

production only. Fig.1 shows that single-season rice is primarily produced in the Three Northeast 

provinces (Heilongjiang, Jilin, and Liaoning) and Southwest mountainous areas. Central China, 

the Huang-Huai plain area, and Northwest inland area also produce a small amount of sing-

season rice. This gave us 10,794 observations with 771 counties, representing about 50% of the 

total rice production in China. Rice yield varied substantially in the sample, ranging between 
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1,788-14,240 kg
.
ha

-1
 with an average of 7,125 kg

.
ha

-1
 (see Tables S-1, S-2 in the appendix). Rice 

growing seasons in different areas were obtained from the Department of Agriculture of China
1
.  

Weather data were obtained from the China Meteorological Data Sharing Service System 

(CMDSSS), which records daily Tmin, Tmax, Tave, rainfall, and solar radiation for 820 weather 

stations in China. The dataset also contains exact coordinates of each weather station, enabling 

them to be merged with our county-level yield data. Fig. 1 displays the spatial distribution of 

single-season rice-producing counties and weather stations included in our sample. Of the 771 

counties, about 566 counties have at least one weather station. For counties with several weather 

stations, we constructed weather variables by taking a simple average of these weather variables 

across these stations. We imputed the weather information from the nearest adjacent counties for 

counties without a weather station. Trends for Tmin, Tmax, Tave, and solar radiation during the three 

rice-growth stages are shown in Fig. S-1 in the appendix. On average, the observed Tmin and Tmax 

increased by 0.217°C and 0.094°C per decade, respectively, during the period 1950-2010. 

Average daily solar radiation decreased by 0.161 hours per decade over the same period. 

  Because county-level data on rice price and input prices are not available in public data 

sources, we constructed the price ratios at the provincial scale. We obtained province-level rice 

price from the China Yearbook of Agricultural Price Surveys (NBS 2012). Price indices for 

fertilizer, pesticides, and fuels, and labor costs measured using average wage for farm labor were 

obtained from the NBS
2
.  

 

 

                                                           
1
 Available at: http://zzys.agri.gov.cn/nongshi.aspx 

2 The Chinese-language version of the webpage is available at: 
http://data.stats.gov.cn/workspace/index;jsessionid=0921DCCDD689B3EDA1BC074063BEAAD1?m=fsnd. 

http://data.stats.gov.cn/workspace/index;jsessionid=0921DCCDD689B3EDA1BC074063BEAAD1?m=fsnd
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4. Empirical Results 

4.1. Data Correlations 

We performed several tests to examine the presence of spatial correlations of the error terms 

in the regression model for each of our three spatial weighting matrices, including Moran’s I test 

(Anselin 1988), the Lagrange Multiplier (LM) ERR test, the Likelihood Ratio (LR) test and the 

Wald test. We conducted these tests using weather and economic variables as explanatory 

variables. These test results indicate that spatial correlations of the error terms in the regression 

model are quite large (Table S-3). The parameters of spatial correlations are 0.71 and 0.69, 

respectively, under the contiguity matrix and the distance matrix that weighs the six nearest 

neighbors, and become smaller (0.63) under the distance matrix that weighs the four nearest 

neighbors. These test statistics indicate that omitting the spatial correlations can lead to a 

significant overestimate of the true t-statistics (Schlenker et al. 2006). In the baseline analysis 

presented below, we employed the contiguity matrix as our spatial weighting matrix. We 

examined the robustness of our results using other spatial weighting matrices. 

We also found that weather variables were correlated during the sample period (Table S-4). 

Specifically, we found that: (i) Tmin and radiation were moderately (and positively) correlated 

during the vegetative and reproductive stages, but the correlation of the two variables became 

negative during the ripening stage; (ii) Tmin and radiation were positively correlated with Tmax 

during the three growth stages; and (iii) Tmax, Tmin and solar radiation were negatively correlated 

with rainfall. These test results suggest that all weather variables should be incorporated in the 

regression analysis to obtain consistent estimates of the weather effects on rice yield. 
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4.2. Regression Results: Sample with all single-season rice-producing counties 

We conducted the spatial error analysis using two different model specifications. In model 

(1), we included weather variables, namely Tmin, Tmax, radiation, and rainfall as explanatory 

variables to examine the variations in rice yield during the sample period. In model (2), we added 

the price ratios and examined whether the inclusion of these variables affects our coefficient 

estimates of weather variables. The two model specifications included time-invariant county 

fixed effects and year fixed effects, and controlled for the spatial correlations of the error terms. 

Table 1 shows parameter estimates of weather variables for the two model specifications 

considered here. We found that the responses of rice yield to temperature and radiation variables 

varied by growth stage. Tmin, Tmax, and radiation had statistically significant impacts on rice yield 

during the vegetative stage. Tmax and radiation also had significant impacts on rice yield during 

the ripening stage. Rice yield was not significantly affected by the temperature and radiation 

variables during the reproductive stage.  

In contrast to nearly all previous studies focusing on rice production in tropical and 

subtropical regions (Mohammed and Tarpley 2009b; Peng et al. 2004; Seshu and Cady 1984; 

Welch et al. 2010; Yoshida and Parao 1976; Ziska and Manalo 1996), we found that higher Tmin 

during the vegetative stage had a positive impact on rice yield in China. For instance, in model (1) 

with weather variables only, a 1°C increase in Tmin during the vegetative stage increased rice 

yield by 44.2 kg
.
ha

-1
 (p<0.10). Existing studies emphasize that increased Tmin can damage rice 

yield because it can increase respiration losses during the vegetative stage (Mohammed and 

Tarpley 2009b; Peng et al. 2004), and hasten crop maturity during the ripening stage 

(Mohammed and Tarpley 2009a). Agronomic studies suggest that if Tmin is above 25°C during 

the vegetative stage, it can lead to significant damage to rice yield by reducing plant height, tiller 
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number, and total dry weight (Yoshida et al. 1981). However, less than 1% of the observations of 

Tmin during the vegetative stage in our sample were greater than 25°C. We also found that 

average daily Tmin during the vegetative stage in our sample were 6.6-9.5°C lower than that in 

tropical and subtropical Asia (see table S2 in Welch et al. 2010). Therefore, the difference in the 

data analyzed between this article and the previous studies might explain the differences in the 

estimated effects of Tmin on rice yield. Greenhouse experiments for rice showed a positive impact 

of elevated Tmin on rice yield during the vegetative stage (Kanno et al. 2009).  

  Coefficient estimates of other weather variables have expected signs. Higher Tmax had 

negative impacts on rice yield during the vegetative and ripening stages (p<0.05), which is in 

agreement with well-established previous assessments (Lobell and Field 2007; Wassmann et al. 

2009). The radiation impacts on yield differed by growth stage. Estimated effect of radiation on 

rice yield was negative during the vegetative stage (p<0.01) and was positive during the ripening 

stage (p<0.05), which is similar to the findings in other regions (for example, see Welch et al. 

2010). Rainfall had small but negative impact on rice yield during the reproductive stage 

(p<0.05). Prior studies found that variations in rainfall in the past several decades have depressed 

rice yield in many regions of the world (Auffhammer et al. 2012; Lobell et al. 2011b).  

Statistical significance, signs, and magnitudes of weather variables changed modestly with 

the inclusion of economic variables in model (2), which shows the robustness of our results. 

Coefficients of rice-fertilizer, rice-labor, and rice-fuel price ratios are positive and statistically 

significant, which indicates that the increases in prices of fertilizer, labor and fuels might have 

resulted in reduced use of these inputs and might have had detrimental effects on county-average 

rice yield. Coefficient estimate of rice-pesticide price ratio has expected sign, but is not 

statistically significant.  
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4.3. Regression Results: Japonica rice vs. Indica rice  

Japonica rice and Indica rice are the two main rice varieties planted in China. They differ 

substantially in their physicochemical properties (Kang et al. 2006), and genetic traits (Huang et 

al. 2012). To examine if the weather effects on yield estimated above differed by rice variety, we 

divided our sample into two subsamples: Japonica rice-producing counties and Indica rice-

producing counties
3
, and then replicated the above analysis.  

As shown in the last four columns of Table 1, the temperature effects on yield differed 

substantially between Japonica rice and Indica rice. Specifically, the effect of higher Tmin on 

Indica rice yield was positive and statistically significant during the vegetative stage (p<0.01), 

which is similar to the finding presented above, but the effect of higher Tmin on Japonica rice 

yield was found to be insignificant. Elevated Tmax still had negative effects on yields for the two 

types of rice, but the negative temperature effects occurred during different growth stages. We 

found that higher Tmax negatively affected Japonica rice yield during the ripening stage (p<0.10), 

and that the negative effects of elevated Tmax on Indica rice yield occurred during the vegetative 

stage (p<0.01) and the reproductive stage (p<0.10).  

Radiation and rainfall impacts on yield also differed considerably by rice variety. We found 

that signs and statistical significance of coefficient estimates of radiation and rainfall variables 

for Japonica rice are quite close to the findings without separating the sample into subsamples by 

rice variety. Radiation had a positive effect on Indica rice yield during the reproductive stage 

(p<0.05), while the effect of rainfall on Indica rice yield was not significant.  

Parameter estimates of rice-fertilizer, rice-labor, and rice-fuel price ratios are positive and 

statistically significant for Japonica rice (p<0.01), while coefficient estimate of rice-pesticide 

                                                           
3
 We obtained information on rice varieties planted in different regions from China Rice Data Center, see 

http://www.ricedata.cn/variety/ 

http://www.ricedata.cn/variety/
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price ratio is not significant. Coefficient estimates of these economic variables are not 

statistically significant for Indica rice, which might stem from the use of province-level price 

data. The inclusion of economic variables does not affect coefficient estimates of weather 

variables in both cases. 

 

4.4. Sensitivity Analysis 

We examined the robustness of estimated coefficients of weather variables across different 

spatial weighting matrices, variables, and data. Specifically, in Scenarios (1)-(2), we used two 

distance matrices that assign weights to the six and four nearest neighboring counties, 

respectively, and zero to other counties, as our spatial weighting matrices. In Scenario (3), we 

replicated the above analysis using Tave instead of Tmin and Tmax as temperature variables to 

examine the temperature effects on rice yield. In the sample, about 205 rice-producing counties 

do not have weather stations. When constructing weather variables for these counties, we used 

the weather information from their neighboring counties. To examine if our results are sensitive 

to this, we eliminated counties without weather stations in the sample and replicated the above 

analysis in Scenario (4). In all scenarios considered here, we used model specification (2) with 

weather and economic variables as explanatory variables. We conducted the sensitivity analyses 

using the entire sample with all single-season rice-producing counties, and subsamples with 

Japonica and Indica rice-producing counties, respectively. Results are presented in Fig. 2. 

In Scenarios (1)-(2), signs, statistical significance, and magnitudes of parameter estimates of 

weather variables are only modestly different from the baseline estimates. That indicates that our 

results are generally insensitive to the chosen spatial weighting matrix. In Scenario (3), we used 

Tave as temperature variables rather than Tmin and Tmax. Consistent with the previous assessments 
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(for example, see Chen et al. 2014), we found negative effects of higher Tave on rice yield during 

the vegetative stage (p<0.10) in the sample with all single-season rice-producing counties. 

Higher Tave also negatively affected Indica rice yield during the reproductive stage (p<0.05). 

Estimated weather effects on rice yields in Scenario (4) are similar to our baseline findings. 

 

4.5. Economic Impact of Weather Variations on China’s Rice Sector 

We used estimated parameters of the weather variables to investigate the net economic 

impact on China’s rice sector stemming from variations in weather conditions. To do so, we first 

used these coefficient estimates to measure the change in rice yields for years 1996-2009 that 

have resulted from the changes in weather conditions relative to year 1996: 

1996( | , ) ( | , )t t t tE Y Z E E Y Z E          (3) 

where 1996( | , )tE Y Z E denotes the expected rice yield with the 1996 levels of weather outcomes 

and economic variables in year t= 1996-2009, and ( | , )t tE Y Z E represents the expected rice yield 

with all variables in year t = 1996-2009. Therefore, t  measures the change in rice yield because 

of weather variations. Using Eq. (1), we can rewrite Eq. (3) as: 

1996( )t tZ Z            (4)  

where   is the coefficient vector of the relationship between weather and rice yield. Replacing 

with its estimated coefficients provides an estimate of t .  

We then multiplied the yield change in each county by county-level rice-planted acres in 

2009, summed over all rice-producing counties and all years (from 1996-2009), to get a rough 

estimate of the change in total rice production in China during the sample period due to weather 

variations. We multiplied the change in total rice production by its market price in 2009 and then 
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subtracted associated production costs, to get an estimate of the net economic impact of weather 

variations on China’s rice sector
4
. 

As shown in Fig. 3, the most noticeable result is that variations in weather conditions during 

the sample period had a positive economic impact on Indica rice, whereas the economic impact 

of weather variations on Japonica rice was negative. The absolute value of the positive economic 

impact on Indica rice was smaller than the absolute value of the negative economic impact on 

Japonica rice. Combined, these results indicate that changing weather conditions resulted in a net 

economic loss of approximately $21.6-49.2 million in China’s rice sector over the sample period, 

depending on scenarios. The negative economic impacts associated with weather variations were 

larger in the sample with all single-season rice-producing counties, ranging between $29.1 

million and $88.2 million. 

 

5. Conclusions 

Using a unique county-level panel on rice yield and daily weather outcomes in China, we 

examined the impacts of changing weather conditions on rice yield, and estimated the net 

economic impact on China’s rice sector stemming from weather variations. The most surprising 

finding is that Tmin had a large and positive impact on rice yield during the vegetative stage. The 

difference in the estimated effects of Tmin on rice yield between this article and the previous 

studies focusing on rice production in tropical/subtropical regions is primarily driven by the 

differences in the data analyzed. Our findings of a negative impact on rice yield of higher Tmax 

during the vegetative and ripening stages, a negative impact of increased radiation during the 

vegetative stage, a positive impact of increased radiation during the ripening stage, and a 

                                                           
4
 We thank one referee for pointing this issue out. Here, we can only measure the direct impact of weather 

variations on rice production and cannot measure the indirect impact of weather shocks to market prices of rice.  
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negative impact of rainfall during the reproductive stage, are consistent with the existing 

literature. 

Our further analysis showed that the weather effects on yield differed by rice variety. The 

finding of the positive effect of higher Tmin on yield only holds for Indica rice, while Japonica 

rice yield did not respond to the variations in daily Tmin. Higher Tmax negatively affected Japonica 

and Indica rice yields, with the negative temperature effects varying by growth stage. Responses 

of Japonica rice to changes in radiation and rainfall were found to be quite close to that when all 

single-season rice-producing counties were included in the empirical analysis. Radiation had a 

positive effect on Indica rice yield during the reproductive stage, while the effect of rainfall on 

Indica rice yield was found to be insignificant. Coefficient estimates of weather variables remain 

robust across various model specifications, estimation strategies, and data. Weather variations 

caused a net economic loss of $21.6-88.2 million during the sample period, depending on 

scenarios. 

Three caveats apply. First, our parameter estimates were based on single-season rice in China. 

Chen et al. (2014) found that yield responses of double- and multi-cropped rice to weather 

variables were different from those of single-season rice. Therefore, caution should be made 

when using the results presented in this article to explain the responses of double- and multi-

cropped rice to weather shocks. Second, due to the lack of county-level economic data, we used 

province-level price data and constructed the economic variables, which might cause 

insignificant coefficient estimates of the price ratios in some scenarios. Third, our analysis 

focused on the temperature, radiation, and rainfall effects on rice yield, but did not consider the 

impacts of CO2 fertilization on yield. Laboratory studies have found that higher CO2 fertilization 

may offset yield reductions due to warmer climate (Long et al. 2006). 
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Table 1 Regression Results: Impacts of Weather and Economic Variables on Rice Yield (kg
.
ha

-1
) 

 All single-season rice Japonica rice Indica rice 

Model specification (1)  (2)  (1) (2) (1)  (2) 

Tmin: vegetative 44.17
*
 44.50

*
 -14.82 -13.65 134.28

***
 134.13

***
 

 (1.65) (1.66) (-0.35) (-0.33) (3.98) (3.96) 

Tmin: reproductive 19.63 14.76 7.10 2.98 41.50 38.81 

 (1.02) (0.77) (0.25) (0.10) (1.50) (1.39) 

Tmin: ripening 13.04 10.48 38.48 35.05 20.22 24.75 

 (0.62) (0.49) (1.18) (1.07) (0.70) (0.85) 

Tmax: vegetative -73.11
***

 -76.61
***

 -20.87 -29.93 -100.33
***

 -97.51
***

 

 (-3.35) (-3.49) (-0.59) (-0.84) (-3.84) (-3.72) 

Tmax: reproductive -13.67 -14.36 11.00 5.21 -40.65
*
 -41.36

*
 

 (-0.75) (-0.79) (0.38) (0.18) (-1.85) (-1.86) 

Tmax: ripening -45.28
**

 -43.91
**

 -54.57
*
 -62.89

*
 -31.02 -34.31 

 (-2.25) (-2.18) (-1.68) (-1.94) (-1.29) (-1.41) 

Radiation: vegetative -86.95
***

 -91.23
***

 -94.57
***

 -101.02
***

 -6.48 -0.90 

 (-4.25) (-4.45) (-3.05) (-3.24) (-0.25) (-0.03) 

Radiation: reproductive 12.75 14.10 -16.57 -11.11 33.52
**

 34.30
**

 

 (0.97) (1.07) (-0.83) (-0.55) (2.04) (2.06) 

Radiation: ripening 42.65
**

 41.95
**

 66.06
**

 67.91
**

 -3.59 -6.12 

 (2.27) (2.23) (2.26) (2.31) (-0.16) (-0.28) 

Rainfall: vegetative -0.52 -0.76 -0.33 -1.19 -0.67 -0.44 

 (-0.47) (-0.69) (-0.16) (-0.57) (-0.67) (-0.44) 

Rainfall: reproductive -2.80
**

 -3.07
**

 -5.86
**

 -6.59
***

 1.45 1.49 

 (-2.01) (-2.21) (-2.47) (-2.78) (1.05) (1.07) 

Rainfall: ripening 0.18 0.43 1.21 1.73 -1.55 -1.73 

 (0.12) (0.27) (0.39) (0.56) (-1.12) (-1.25) 

Price ratio       

rice/labor  111.63
***

  162.52
***

  -22.97 

  (3.54)  (3.35)  (-0.54) 

rice/fertilizer  483.63
***

  572.41
**

  116.97 

  (2.79)  (2.26)  (0.43) 

rice/pesticide  171.29  65.78  116.02 

  (1.03)  (0.27)  (0.41) 

rice/fuel  283.06
**

  561.84
***

  -315.20 

  (2.25)  (2.78)  (-1.50) 

N 10,794 10,794 5,166 5,166 5,628 5,628 
Note: Results presented in the first two columns are based on the entire sample with all single-season rice-

producing counties. Results presented in the third and fourth columns are based on the subsample with 

Japonica rice-producing counties only, while results presented in the last two columns are based on the 

subsample with Indica rice-producing counties only. All model specifications considered the spatial 

correlations of the error terms, and included fixed effects for counties and years in addition to the variables 

shown above. Units for explanatory variables: °C for Tmin and Tmax, hours for radiation, and cm for rainfall. 

Asymptotic t-statistics are shown in parentheses. 
*
 p < 0.10, 

**
 p < 0.05, 

***
 p < 0.01. 
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Fig. 1 Spatial distribution of single-season rice production and weather Stations in China 
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(a) All single-season rice  

 

 

 
(b) Japonica rice 
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(c) Indica rice 

 

Fig. 2 Impacts of weather on rice yields 
Note: Results presented in panel (a) are based on the entire sample with all single-season rice-producing 

counties. Results presented in panels (b) and (c) are based on the subsample with Japonica rice and Indica 

rice-producing counties, respectively. We considered four scenarios in the sensitivity analysis. In 

Scenarios (1) and (2), we used two distance matrices that assign weights to the six and four nearest 

neighboring counties, respectively, and zero to other counties, as our spatial weighting matrices. Scenario 

(3) used Tave instead of Tmin and Tmax as temperature variables. In Scenarios (4), we conducted the spatial 

error analysis by excluding counties without weather stations from the sample. Parameter estimates are 

interpreted as the marginal effects of per-unit change in the temperature (°C), radiation (hour), and 

precipitation (10cm) variables on rice yields. Each cluster shows the impacts of a given variable on rice 

yields, varied by rice-growth phase (vegetative, reproductive, and ripening). Bars show 95% confidence 

bands. 
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Fig. 3 Economic impacts of weather variations on China’s rice sector under alternative scenarios 

($ million) 
Note: To compute the economic impact on China’s rice sector resulting from the changes in weather 

conditions, we first calculated the change in rice yield for years 1996-2009 if weather conditions were 

maintained at the 1996 levels. We then multiplied the rice yield change by county-specific planted acres 

in 2009 to estimate county-level production change, and summed across all counties and all years in the 

sample to get the total rice production loss. We multiplied the total rice production loss by its price in 

2009 and subtracted the associated production costs to obtain the net economic loss due to weather 

variations. National average rice price in China was RMB 2.1 per kg. The average exchange rate assumed 

here is RMB6.8 per US$. Different colors represent the economic impacts of different weather variables. 

Bars show 95% confidence bands. 
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