
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

 

Expectations, Index Qualities and Basis Risks in Explaining Famers’ Pessimism in 

Purchasing Weather Index Insurance 

Huang Chen 

University of California, Davis 

Abstract: 

This paper attempts to explain why famers exhibit pessimism in purchasing Weather Index 
Insurance (WII). Three sources of the pessimism are identified: a) if insurers overestimate or 
farmers underestimate the possibility of future risks, the farmers tend to buy less WII coverage; b) 
the lower the quality of the index is, the less coverage the famers will purchase; c) the more their 
productive characteristics deviate from population mean, the higher basis risk they will have, 
resulting less coverage to be chosen. The second half of this paper empirically compares three 
kinds of weather indices in measuring long-run yield variation in China’s 26 provinces during 
1951 – 2002, and justifies the theoretical findings from releasing the Quality Assumption by 
simulating hypothesized operations of WII in the last half century in China. The econometric and 
simulation results corroborate the critical role of the index quality in measuring yield variation 
and explain the pessimism.  
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1. Introduction 

The increasingly extreme weather events have imposed great threats on agricultural 

production and farmers’ welfare (Field et al., 2012). Especially for poor farmers, 

they are the most vulnerable group of people facing weather disasters and can be 

easily trapped in poverty, due to the lack of coping strategies and missing credit 

market (Carter et al., 2007). To mitigate the impact of weather variation on farmers’ 

welfare, agricultural insurance has been considered as an important adaptation to 

hedge against the meteorological risks (Hazell et al., 1986). However, crucial 

constraints in promoting conventional agricultural insurance have been argued, 

including moral hazard, adverse selection, and the massive cost of monitoring and 

measuring farmers’ agricultural outcomes (Chamber, 1989; Just et al, 1999; Skees 

and Barnett 2006). 

Recent research focuses on a new innovation -- the Weather Index Insurance (WII) 

(Barnett and Mahul, 2007; Wouter, 2008; Gine et al. 2008). The WII is constructed 

against specific perils (e.g., drought and flood) by setting certain thresholds in 

exploited weather indices to identify the occurrence of damages to production and 

trigger indemnifications. One critical principle in WII is that the index shall precisely 

capture the relationship between weather conditions and production levels; otherwise, 

it becomes more like a lottery, in which the payment is independent with agricultural 

performance (Clarke et. al., 2012; Carter et. al., 2014).  

WII has several advantages intrinsically, but it also faces challenges in practices. WII 

performs well in terms of avoiding adverse selection problems, moral hazard issues 

and lowering administrative cost (Stoppa and Hess, 2003; Vedenov and Barnett, 

2004; Skees and Collier, 2008). However, two empirical puzzles emerge recently 

(Clarke; 2011). First, demand for WII has been lower than expected, for example, the 

take-up rate ranges from 4% in 2004 in India (Gine et al., 2007) to 27% in the same 

region in 2006 (Cole et al., 2013). Second, “demand seems to be particularly low 

from the most risk averse” (Gine et al., 2008)  
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Many reasons can explain why farmers feel pessimistic in purchasing WII. First of 

all, wrong expectations for future weather conditions in either side of contracts may 

reduce the take-up rate. On the one hand, if insurers overestimate the future risk, 

they increase premium rates, which dampen farmers’ passion to participate the WII. 

Hill et al. (2013) find that farmers’ willingness to pay is decreasing when price of the 

contract is increasing, using data from Ethiopia. On the other side, if farmers 

underestimate the future risk, they also lose incentive to purchase insurance. 

However, given their expectations are correct, due to the existence of basis risk, 

famers may still exhibit the pessimism. Note that, usually only two states in the 

conventional insurance could happen, i.e. a good state (no disaster) without 

indemnifications and a bad state (disaster) with indemnifications.1 However in WII, 

additional two theoretically undesirable states may exist, i.e. a good state with 

indemnifications and a bad state without indemnifications. Clarke (2011) only 

defines the existence of the last state as the basis risk. While when considering utility 

loss, this paper adopts a more general definition of the basis risk, i.e. both of the two 

undesirable states are defined as the basis risk, since they all contradict with a 

risk-averse farmer’s purpose of income smoothing, resulting his/her distrust and 

pessimism in purchasing WII. Elabed et al (2013) clearly classifies risks under WII 

as Figure 1.2  

Two factors can cause the happening of the two extra states. One is the quality of 

indices used in WII. Low quality indices perform badly in predicting production 

reductions, resulting mismatch of the farmers’ losses and indemnification triggers. 

Cai et al. (2009) and Gine and Yang (2009) study the determinants of participation of 

WII and conclude that the higher the correlation between the index and the yield, the 

higher the take-up rate. Since a perfect index does not actually exist in real world, 

1 Assuming insurers strictly execute the conventional insurance contract, i.e. indemnifying farmers 
when they suffer losses. Otherwise, basis risks also exist in conventional insurance. 
2 If only considering yield reductions as disaster losses, Clarke’s definition can be applied to Figure 1. 
If considering utility losses as disaster losses, my general definition can be applied to Figure 1. 
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the basis risk of WII, called design risk, always exists due to the mismatch.  

The other factor originates from farmers’ heterogeneous abilities in resisting weather 

disasters, which amplify the individual basis risk in Figure 1. Empirical research has 

found that education and wealth play important roles in affecting farmers’ 

participation decision (Gaurav et al, 2011; Hill et al., 2013). Moreover, to answer the 

second empirical puzzle that “demand seems to be particularly low from the most 

risk averse”, Karman and Morduch (2009) suggest that the most vulnerable farmers, 

usually the most risk averse, feel hard to trust the product itself; Binswanger-Mkhize 

(2012) points out that the poor farmers’ credit constraint should be another cause of 

the empirical puzzle. One significant contribution of this paper is that, in third 

theoretical part, it provides an alternative explanation for the second puzzle, that the 

most vulnerable farmer has a different possibility distribution of the four outcome 

states under WII, and the distribution favors passive reactions to WII. 

Although some empirical studies, as list above, have been made to explain where the 

pessimism comes from, limited attentions have been located to the index quality. 

Furthermore, most of them focus on single reason, such as farmers’ personal 

characteristic, and luck of theoretical supports. Clarke (2011) provides rich 

theoretical analysis on rational demand for index insurance, but his analysis centre 

on the purchaser’s utility function form, ignoring the three points that I discussed 

above, which are farmers’ and insurers’ expectations, index qualities and farmers’ 

heterogeneous abilities. This paper consistently uses natural logarithm as utility 

function form and jointly analyzes how these factors affect farmers’ decisions. 

The purpose of this paper is to identify the source of farmers’ pessimistic behavior in 

purchasing WII. Specifically, I examine why farmers do not choose full insurance 

when premium rate is set at actuarially fair level by insurers. Three key assumptions 

imposed in an Ideal Situation will be released one by one to see how famers adjust 

the coverage. They are: 1) Expectation Assumption: both insurers’ prediction and 

farmers’ expectation on the possibility of the happening of an extreme weather event 
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in next year are correct. 2) Quality Assumption: the index can perfectly measure 

average agricultural productions. 3) Homogeneity Assumption: farmers are assumed 

to be homogenous in every aspect, i.e. no idiosyncratic risk, and the basis risk just 

comes from the index quality.  

The following sections are organized as: Section2 introduces the Ideal Situation, 

where all of three key assumptions hold, to prove that farmers will choose full 

insurance. Then, releasing the Expectation Assumption to see how incorrect 

predictions/expectations will cause the coverage changes. In Section3, I further 

release the Quality Assumption. The model evolves from two-outcome states to 

four-outcome states. Section4 breaks the Homogeneity Assumption by assuming, 

given the same possibility of a disaster happening for farmers, low skill (or poor 

endowment) farmers have higher possibilities to suffer losses than high skill (or rich 

endowment) farmers. Secion5 empirically tests the goodness of various indices in 

measuring agricultural productions. Section6 provides simulation results to show 

how index qualities affect farmer utilities gained from WII. Final section concludes. 

2. The Role of Correct Expectations  

2.1 Benefits of WII under Ideal Situation 

First, pessimism can be defined in many ways, such as low willingness to pay, low 

demand, low participation rate, etc. In theoretical part of this paper, I define the 

pessimism as the fact that the chosen insurance coverage is less than the full 

insurance level. 3 In the empirical part, where I compare different indices, the 

pessimism is defined as the utility loss due to choosing alternative indices. 

Assume all of the three key assumptions hold, called it as Ideal Situation. To 

demonstrate the benefit of WII, using Uncertainty Theory (Mas-Colell et al. 1995), I 

assume the probability of an extreme weather event happening is 𝜋，and the 

corresponding agricultural production/income of a representative farmer without 

3 In real world practices, if the chosen coverage is too small, farmers will not participate in the WII, 
since transaction costs always exist. 
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buying WII is 𝜔1, call this bad state. Then, the probability of a good state is 

(1 − 𝜋)，and the farmer harvest 𝜔2, where 𝜔2 − 𝜔1 is the amount of the loss if it 

is positive.  

The insurer offers the WII contract with selectable coverage 𝛼𝛼. If over insurance is 

allowed, then 𝛼𝛼 can be larger than 𝜔2 − 𝜔1, otherwise, 𝛼𝛼 ∈ [0,𝜔2 − 𝜔1]. Full 

insurance means 𝛼𝛼 = 𝜔2 − 𝜔1. The contract offers a fixed premium rate 𝑞 for each 

unit of 𝛼𝛼, i.e., the total premium is 𝑞𝛼𝛼. For simplicity, through the whole paper, I 

assume that the insurer always sets the 𝑞 at the actuarially fair level, i.e. 𝑞 equals to 

the insurer’s predicted possibility of the weather event in next year, 𝑞 ≡ 𝜋.  

Note that, as long as all the farmers are homogenous (Homogeneity Assumption 

holds) in every aspect, the Quality Assumption implies that the loss and 

indemnification can be perfectly matched up by the index, so only two states can 

appear. I use (𝑥1, 𝑥2) to denote the final payoff set of the two states, and simply 

standardize the product price to 1. If the farmer does not buy any WII, his/her payoff 

is (𝑥1, 𝑥2) = (𝜔1,𝜔2); otherwise, the payoff in each state should be: 

 𝑥1 = 𝜔1 + 𝛼𝛼 − 𝑞𝛼𝛼 , a disaster happens, and the index reaches the threshold; 

  𝑥2 = 𝜔2 − 𝑞𝛼𝛼 , no disaster happens, and the index does not reach the threshold; 

Finally, I assume a representative farmer is strictly risk averse, with Von 

Neumann–Morgenstern twice differentiable utility function 𝑈(𝑥), which satisfies 

𝑈′(𝑥) > 0, 𝑈′′(𝑥) < 0. 4  The farmer’s Utility Maximization Problem with 2 

possible states (UMP2) is: 

 𝑀𝑎𝑥
𝛼

𝑈(𝑥1,𝑥2) = 𝜋𝑈(𝑥1) + (1 − 𝜋)𝑈(𝑥2) ( 1 ) 

                  Subject to: 𝑥1 ≤ 𝜔1 + 𝛼𝛼 − 𝑞𝛼𝛼 

                             𝑥2 ≤ 𝜔2 − 𝑞𝛼𝛼 

Rearranging the constraints, and drop the 𝛼𝛼: 

4 In next section, I will explicitly assume 𝑈(𝑥) = 𝐿𝑛(𝑥) 
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𝑞

1− 𝑞 𝑥1 + 𝑥2 ≤
𝑞

1 − 𝑞𝜔1 + 𝜔2 ( 2 ) 

The 𝑞
1−𝑞

 can be thought as the value of 𝑥1 in bad state, in term of 𝑥2 in good state. 

Treat q
1−q

 as the price of x1, so the price of x2 equal to 1, equation ( 2 ) becomes 

the traditional budget constraint (BC), and can be interpreted as how many goods at 

good state the farmer want to sacrifice to increase the consumption at the bad state. 

Also know that as premium rate (𝑞) increases, the price of consumptions in bad state 

increases. The interior solution to ( 1 ) must be located on the BC. 

Under differentiability assumption, the FOC of ( 1 ) for an interior maximum is: 

 
𝜋𝑈′(𝑥1)

[1− 𝜋]𝑈′(𝑥2) =
𝑞

1 − 𝑞 ( 3 ) 

Substitute with 𝑞 = 𝜋, we find that 𝑈′(𝑥1) = 𝑈′(𝑥2). Since the utility function is 

concave, the solution must satisfies that 𝑥1 = 𝑥2, which implies the 𝛼𝛼 = 𝜔2 − 𝜔1, 

i.e. a strictly risk averse decision maker facing actuarially fair insurance must 

choose to be fully insured. Solve out the UMP2:  𝑥�1 = 𝑥�2 = 𝑞𝜔1 + (1− 𝑞)𝜔2, 

where 𝑥�1 and 𝑥�2 are optimal solutions in this Ideal Situation. Denote 𝑈(𝑥�1,𝑥�2) =

𝑈𝑀, and 𝑈(𝜔1,𝜔2) = 𝑈𝑂. 𝑈𝑀 is maximized utility level, and 𝑈𝑂 is the original 

utility level. 

The “iso-expected-outcome” (IEO) lines of the farmer can be defined by this 

equation: 

 𝜋𝑥1 +  (1− 𝜋)𝑥2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ( 4 ) 

Given different constant values, they are a group of parallel lines, with slope 
𝑑𝑥2
𝑑𝑥1

= − 𝜋
1−𝜋

 in Figure 2. Note that, given any point at an IEO line, the 

corresponding utility level obviously cannot be higher than the point at the 

intersection with 45 degree line, because the farmers is assumed to be risk averse. 

The 45 degree line is also called “Certainty Line”. Under the Ideal Situation, Figure 

1 shows that the WII can provide a feasible transaction from original state A to the 

utility maximized state B. Note that ω2 − 𝑥�2 is the premium 𝛼𝛼𝑞, and 𝜔1 − 𝑥�1 is 

the chosen coverage minus premium 𝛼𝛼 − 𝛼𝛼𝑞. 
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2.2 Insurers Incorrectly Predict the Possibility 

To distinguish the Expectation Assumption and the Quality Assumption in predicting 

future risk, two important roles of the index used in WII are worth to be revealed and 

emphasized. On the one hand, the index is used to identify the triggers of the 

indemnification, using happened weather data in the end of a production circle. The 

Quality Assumption means that there is not mismatch between triggers and yield 

reductions, i.e. perfect identification. On the other hand, the insurer uses the index to 

predict the possibility of future disasters for pricing the contract (premium rate 𝑞). 

For the second role, the insurer has to use forecasted weather data to calculate the 

possibility.5 Note that, if the quality of the index is perfect, the prediction may still 

be wrong, because of using unreliable forecasted weather data. If the quality of the 

index is poor, there is no way to believe the prediction will be correct, even using a 

reliable forecasted future weather data.6 

Now loosen the Expectation Assumption for insurer side. Assume the insurer 

incorrectly predicts the possibility of future risks, because of using forecasted 

weather data. Denote 𝜋� = 𝜋 + 𝜀  as the insurer’s predicted probability of the 

extreme weather event, where 𝜋 is the true probability, and 𝜀 is the prediction 

error, which can be systematically positive, negative, or randomly disturbed. So by 

actuarially fair assumption, 𝑞� ≡ 𝜋� = 𝜋 + 𝜀.  

Farmers are still assumed to have correct expectations on future risks. As Figure 3 

shows, compared with the Ideal Situation (Figure 2), the IEO line of a farmer does 

not change at all, because the true disaster possibility (𝜋) does not change and the 

Quality Assumption still holds, i.e. the possibility of triggering the indemnification is 

still 𝜋, even the insurer’s prediction is 𝜋�. However, due to the change of 𝑞�, the 

5 If insurers use historical weather data to decide the future contract prices, they are implicitly 
treating current weather data as forecasted future weather data. 
6 In other word, if the Quality Assumption holds, the Expectation Assumption for insurer side may 
holds; reversely, if the Expectation Assumption for the insurer side holds, the Quality Assumption 
must hold. 
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farmer’s budget constraint changes.  

Assume the insurer overestimates the risk before production circle begins, i.e. 𝜀 > 0, 

𝑞� > 𝜋, then the BC line will be steeper than the IEO line, which will lead the farmer 

to choose point C to maximize his/her expected utility, so the pessimism happens due 

to the insurer’s overestimation on the future risk. The utility level declines from 𝑈𝑀 

to 𝑈1. 

On the contrary, assume the insurer neglects the potential weather risk 

(underestimate), i.e. 𝜀 < 0, 𝑞� < 𝜋, then the BC line would be flatter, i.e. segment 

AD in Figure 2. If the policy allows over-insurance (coverage > loss), the farmer will 

choose D. If over-insurance is banned, he/she will choose E. Although it seems that 

farmers reach a higher utility level, such famer-favoring situation may not lasts very 

long, because no insurer will run the business in negative net profit situation for 

long-run, except that the WII is subsidized for encouraging farmers to participate the 

project. Therefore, the result from Figure 3 shows how the subsidy (lowering the 

premium rate) works in WII. Since the point D and E both offer higher utility than 

point B, the subsidy spurs potential purchasers to increase the coverage. 

2.3 Farmers’ Wrong Expectations on Future Weather Risks 

This subsection assumes the Expectation Assumption does not hold for farmer side, 

i.e. farmers have wrong expectations on the possibility of future risks, while insurers 

are now assumed to be able to correctly predict the possibility. Usually farmers in 

developing country do not use any index to predict the future weather conditions, but 

they do have personal expectations based on their own agricultural experiences. The 

accuracy of such expectation depends on many things, such as years of growing 

crops, education level, local weather information accessibility or weather channels in 

TV. Denote 𝜋� = 𝜋 + 𝜇 as a farmer’s expectation about the disaster possibility for 

next year, where 𝜇 is the estimation error. Note that 𝑞 =  𝜋 in this case, since the 

insurer is assumed to correctly predict the possibility. 
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Figure 4 shows that the farmer who inclines to overestimate the weather risk (𝜇 > 0) 

will intend to be over insured. He/she attempts to maximize his/her own expected 

utility with wrong probability 𝜋�, which results in his/her imagined IEO line (𝐼𝐸𝑂 �) 

being steeper than the real one, but remember that the real IEO can only be affected 

by the true 𝜋. Correspondingly, his/her imagined utility curves rotate clockwise 

around the 45 degree line. Suppose the purchased coverage can be larger than loss 

(over-insurance), then he/she will choose point C in Figure 4, reaching imagined 

utility level 𝑈2. However, the contingent payoff is based on real 𝜋，which will give 

him/her a utility level of 𝑈𝑅 , which is substantially lower than the utility level 𝑈𝑀. 

The other direction is that the farmer underestimates the risk (𝜇 < 0). He/she uses 

𝜋� <  𝜋, resulting his/her imagined IEO line (𝐼𝐸𝑂 �) becomes flatter than the real one 

(Figure 5), and the imagined indifference curves rotate counterclockwise around 45 

degree line. He/she will choose point C in Figure 5, reaching imagined utility level 

𝑈2. But eventually he/she obtains the utility 𝑈𝑅 , which is lower than 𝑈𝑀. In this 

case, the pessimism happens again due to famers’ underestimating the future risks. 

One significant policy implication in practicing WII can be draw from the analysis in 

this scenario, which is the over-insurance should be ban. In Figure 4, banning the 

over-insurance will decrease the incentive for farmers to participate the WII, 

since 𝑈1 < 𝑈2, but the ban actually brings higher utility level for farmers. In Figure 

5, the ban does not have same practically effect on farmers’ behavior, since the 

over-insurance is not the optimal choice for them. One extreme example is that, in 

some WII pilots, people purchase coverage even they do not grow crops, then, the 

WII because a lottery for them, which is not the purpose of operating WII. 

3. The Index Quality 

In real world practices, the index used in WII certainly cannot fully capture the 

relationship between weather variation and yield variation, since agricultural outputs 

can be affected by many factors rather than precipitation and temperature. So it is 

undoubted that the perfect quality index does not exist in real world, even all farmers 
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are identical.  

In this section, I release the Quality Assumption, while still keep the Homogeneity 

Assumption holds. To be simple, the Expectation Assumption will be partially 

released. Specifically, because of the imperfect quality of the index, the insurer 

wrongly predicts the disaster possibility, however, for simplicity and focusing on the 

quality issue, the farmers are assumed to have right expectations. 

Denote 𝐷 as the event that a disaster happens, 𝐿 as the event that a farmer suffers 

a loss due to the disaster, and 𝑇 as the event that the indemnification is triggered. 

Since the Homogeneity Assumption holds, in this section, I assume 𝑃(𝐷) = 𝑃(𝐿) =

𝜋 without losing generality. To model the quality degree of the index, assume 

𝑃(𝑇|𝐷) = 𝜌, and 𝑃(𝑇�|𝐷�) = 𝛾, where 𝑇� and 𝐷� are opposite events of 𝑇 and 𝐷, 

and both 𝜌 & 𝛾 ∈ [0,1]. The intuition is that, if a disaster has happened in the past 

contract year (𝐷 is true), the imperfect quality index can only has possibility 𝜌 to 

trigger the indemnification, while when there was not disaster (𝐷� is true), there is 

still possibility 1 − 𝛾 to trigger the indemnification due to the imperfect quality of 

the index.  

The parameter 𝜌  and 𝛾  essentially capture the performance of the index in 

representing the weather conditions. If 𝜌 = 𝛾 = 1, the index is perfect, and there 

exist only two states (good and bad states) as defined in the Section 2 (under 

Homogeneity Assumption). If 𝜌 = 𝛾 = 0, the index is terribly bad. It oppositely 

reflects what happened in the past contract circle, since only two theoretically 

undesirable states appear: no disaster actually happened, but insured farmers receive 

indemnification, call this state as over-good; or a disaster happened, while insured 

farmers do not receive indemnification, call this state as over-bad. If both 𝜌 & 𝛾 do 

not take their polar values, four states coexist with all positive possibilities.7 Table 1 

shows the payoff distribution of WII in real world practices. Denote the payoff under 

over-good state as 𝑥2′, and payoff under over-bad state as 𝑥1′. 

7 Any of 𝜌 or 𝛾 takes the polar value will eliminate one of corresponding states. 
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This paper only analyzes the actuarially fair WII contracts, i.e. insurers set the 

premium rate 𝑞 equal to their predicted possibilities, even the predictions are wrong, 

and trigger the indemnification according to the imperfect indices. Therefore, 

𝑞 ≡ 𝑃(𝑇) = 𝑃(𝐵𝑎𝑑) + 𝑃(𝑂𝑣𝑒𝑟 − 𝑔𝑜𝑜𝑑). Using Possibility Theory, the 𝑃(𝐵𝑎𝑑) 

can be calculated: 𝑃(𝐵𝑎𝑑) = 𝑃(𝐿𝑇) = 𝑃(𝑇|𝐿)𝑃(𝐿) = 𝜌𝜋 . The possibility 

distribution for the rest of three states can be processed in the same way (see 

Appendix I). Table 2 shows the possibility distribution for WII when farmers are 

assumed to be homogenous.  

Know that, I decompose the performance of the index into two parts, using two 

parameters 𝜌 & 𝛾  to measure the performance under disaster and no disaster 

situations. However such decomposition seems give us unclear information about 

the general performance of the index. Two questions could be asked: does the index 

systematically tend to overestimate or underestimate the disaster possibility? If there 

is not systematical bias, whether the index carries estimation error with zero 

expected mean? Based on Table 2, answers to these questions can be achieved. Note 

that, 𝑃(𝑇) = 𝑃(𝑇𝐿) + 𝑃(𝑇𝐿�) = 𝜌𝜋 + (1−  𝛾)(1 − 𝜋). Compare 𝑃(𝑇) with 𝜋, the 

following conditions describe the general quality of the index. 

⎩
⎪⎪
⎨

⎪⎪
⎧

1 − 𝛾
1 − 𝜌 >

𝜋
1− 𝜋    The index systematically overestimates the disaster possibility        

1 − 𝛾
1 − 𝜌 =

𝜋
1 − 𝜋    The index has zero expected estimation error term                              

1 − 𝛾
1− 𝜌 <

𝜋
1 − 𝜋    The index systematically underestimates the disaster possibility  

� 

Figure 6 illustrates the relationships between ρ, γ and index quality, assuming 

𝜋 = 0.3. Perfect index point appears at the point 𝜌 = 𝛾 = 1 . If ρ & 𝛾  satisfy 

ρ = 7
3
γ − 4

3
, then the expectation of calculated disaster possibility, using the index, 

equal to real possibility, 𝐸[𝑃(𝑇)] = 𝜋 ≡ 0.3, but the measurement error exists. 

Otherwise, the index biases.  
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The inaccurate estimation of the index for a happened disaster gives positive values 

to the possibilities of the two theoretically undesirable states, and results the famers 

decrease the coverage for globally increase their expected utilities. To see how this 

happens, set up the new farmer Utility Maximization Problem with 4 possible states 

(UMP4) : 

 𝑀𝑎𝑥
𝛼

𝑈(𝑥1,𝑥2′, 𝑥1′,𝑥2) = 𝑃(𝐵𝑎𝑑)𝑈(𝑥1) +  𝑃(𝑂𝑣𝑒𝑟 − 𝑔𝑜𝑜𝑑)𝑈(𝑥2′)
                                 +𝑃(𝑂𝑣𝑒𝑟 − 𝑏𝑎𝑑)𝑈(𝑥1′) +  𝑃(𝐺𝑜𝑜𝑑)𝑈(𝑥2)  ( 5 ) 

                  Subject to: 𝑥1 ≤ 𝜔1 + 𝛼𝛼 − 𝑞𝛼𝛼 

  𝑥2′ ≤ 𝜔2 + 𝛼𝛼 − 𝑞𝛼𝛼 

𝑥1′ ≤ 𝜔1 − 𝑞𝛼𝛼 

                              𝑥2 ≤ 𝜔2 − 𝑞𝛼𝛼 

Where the payoffs are shown in Table 1 and possibilities are shown in Table 2. The 

FOC of (5) for an interior maximum is: 

 
𝑃(𝐵𝑎𝑑)𝑈′(𝑥1) +  𝑃(𝑂𝑣𝑒𝑟 − 𝑔𝑜𝑜𝑑)𝑈(𝑥2′)
𝑃(𝑂𝑣𝑒𝑟 − 𝑏𝑎𝑑)𝑈′(𝑥1′) +  𝑃(𝐺𝑜𝑜𝑑)𝑈′(𝑥2) =

𝑞
1 − 𝑞 ( 6 ) 

The two states in the numerator (Bad and Over-good) both refer to the states that the 

insurer indemnifies the farmer whatever there was a disaster or not; the states in the 

denominator ( 𝑂𝑣𝑒𝑟 − 𝑏𝑎𝑑  and 𝐺𝑜𝑜𝑑 ) stand for the situations that no 

indemnifications are triggered whatever the disaster happened or not. Therefore the 

right-hand-side of ( 6 ) is the marginal substitution rate (MRS) of consuming one 

goods between the states where the insurer pays the indemnification and the states 

where the insurer does not pay the indemnification. The equation ( 6 ) essentially 

expresses the same idea as equation ( 3 ): the farmer chooses a coverage that 

guarantees the marginal substitution rate (MRS) equal to the “price ratio” ( 𝑞
1−𝑞

/

1) between two kinds of states of the insurer’s behaviors (“price” at the states where 

insurers do not pay is 1, as I discussed for equation ( 2 )). 

However, the equation (6) cannot be solved mathematically. To see how the quality 

of index affects the farmer’ choice, I use numerical method to find the optimal 
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solutions of the coverage 𝑎∗ , letting 𝜌 and 𝛾 vary. Define 𝑈(𝑥) = 𝐿𝑛(𝑥). The 

simulated parameter set is: ω1 = 300, ω2 = 800, π = 0.3, so the full insurance 

coverage is ω2 − ω1 = 500. 8  Remember that the actuarially fair premium rate (𝑞) 

is set to be equal with 𝑃(𝑇). Figure 7 shows the numerical simulation results. 

One important finding of this paper is shown in the Panel A in Figure 7: farmers 

decrease the coverage as long as the quality of the index decrease, i.e. low quality 

index explains the farmers’ pessimistic behavior. Note that, in Panel A, the highest 

value of 𝛼𝛼∗ (full insurance) appeals when 𝜌 & 𝛾 both equal to 1 (perfect index). 

Then, whatever 𝜌 or  𝛾 goes down, the optimal 𝛼𝛼∗ decreases.  

When both 𝜌 and  𝛾 fall below 0.5, the possibilities of the Over-good state and the 

Over-bad state dominate the possibilities of the Good state and the Bad state, 

respectively (see Table 2). Therefore, a risk-averse farmer will not purchase any WII 

for avoiding exacerbating the differences between two polarized states and the 

middle states, since the polarized states already obtain too much weights in 

possibilities. That explains why the 𝛼𝛼∗ in the left-down corner are all zero-value.9 

Panel B in Figure 6 shows the farmer’s utility changes when the index quality is 

getting worse. The result is very similar with the coverage change: the maximized 

utility is a decreasing function of 𝜌 or 𝛾. When the farmer does not purchase any 

coverage, the changes of the quality parameters do not affect the utility anymore.  

4. Farmers’ Basis Risks 

Knowing the wrong expectations and the low index quality can explain farmers’ 

pessimistic behavior is still not enough. The conceptual framework in this paper 

provides us an approach to investigate how farmers’ basis risks affect their index 

insurance choices. This section also provides an alternative explanation to the second 

8 Roughly speaking, Chinese farmers’ rice/corn/wheat yield is about 800-1000 Jin/mu (2 Jin = 1 Kg, 
15 mu=1 hectare).  
9 Actually, as long as 𝜌 +  𝛾 ≤ 1, 𝛼𝛼∗ = 0.  
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empirical puzzle that most vulnerable farmers tend to passively response to WII 

contract. 

Before moving on, it is worth to clear the relationships between the second and the 

third key assumptions with the risk classification in the Figure 1. First, if the Quality 

Assumption holds, there is not “Design Risk” in Figure 1. Furthermore, if all the 

farmers are homogenous, there is not “idiosyncratic Risk”. Hence, if both the second 

and third key assumptions hold, all farmers share the same risk, which is the 

“Correlated Risk” in Figure 1, and it is also equal to the “Insured Risk”. For 

investigating the farmers’ basis risk, I release all of the three key assumptions, except 

partially keeping the Expectation Assumption, as the last section did, i.e. farmers’ 

expectations on disaster possibility in next year are correct. Now, farmers’ basis risks 

are jointly determined by index qualities and their own disaster-resisting abilities. 

For being simple but without losing generality, I assume there are three types of 

farmers: high skill or rich endowment farmers, called Strong Farmer; low still or 

poor endowment farmers, called Weak Farmer; and normal skill or modest 

endowment farmers are called Normal Farmer. Also assume learning effect for 

realizing their abilities exists, i.e. after years of agricultural activities, farmers know 

their own types. First, I introduce the baseline possibility assumption for the Normal 

Farmer: �𝑃
(𝐿𝑁|𝐷) = 1

𝑃(𝐿𝑁|𝐷�) = 0
� , where 𝐿𝑁 stands for the event that the Normal Farmer 

suffers a loss. It is obvious that the Normal Farmer’s possibility distribution is 

exactly identical to the representative farmer in the Section 3 (Table2). The 

following analysis will focus on the Strong Farmer and the Weak Farmer. 

As I release the Homogeneity Assumption, farmers have different possibilities of 

suffering losses given the same exogenous possibility of a weather disaster 

happening. Assuming Strong Farmer:   �𝑃
(𝐿𝑆|𝐷) = 𝑆

𝑃(𝐿𝑆|𝐷�) = 0
� , 𝑆 ∈ [0,1]. 

Where 𝐿𝑆 stands for the event that the Strong Farmer suffers a loss. Therefore: 
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𝑃(𝐿𝑆) = 𝑆𝜋; 𝑃�𝐿𝑆� � = 1− 𝑆𝜋. This setting means, even a disaster happens, the 

Strong Farmer does not necessarily suffer a loss. After conditioning on a disaster 

happens, the possibility of the Strong Farmer suffering a loss is 𝑆, 0 ≤ 𝑆 ≤ 1. The 

less the 𝑆 is, the stronger the Strong Farmer will be. 

Assuming Weak Farmer:   � 𝑃
(𝐿𝑊|𝐷) = 1

𝑃(𝐿𝑊|𝐷�) = 𝑊
� , 𝑊 ∈ [0,1]. 

Where 𝐿𝑊 stands for the event that the Weak Farmer suffers a loss. Therefore: 

𝑃(𝐿𝑊) = 𝜋 + 𝑊(1− 𝜋 ); 𝑃�𝐿𝑆� � = (1 −𝑊)(1− 𝜋). This setting means even there 

is not disaster, the Weak Farmer still may suffer a loss due to misoperations. The 

possibility of suffering a loss condition on no disaster happens is 𝑊, 0 ≤ 𝑊 ≤ 1. 

The bigger the 𝑊 is, the weaker the Weak Farmer will be. 

The Strong Farmers always can adopt better methods to fight disasters, such as 

having money/loan to install bumps for underground water, or their plots may locate 

closer to rivers than others, so they have better resisting ability for fighting a drought. 

The logic for the Weak Farmer is similar, but in a reverse direction. Since the Weak 

Farmers is vulnerable to any shock, when disaster happens, they certainly suffer 

losses, but when there is not disaster, they may also have production declines due to 

their constrained budgets, low operation skills (mistakes), so 𝑊 can be bigger than 

0.  

For calculating their possibility distribution of the four states under WII, one critical 

assumption has to be imposed here, which is Conditional Independent Assumption: 

assume that, given the disaster has happened, the possibility of a farmer suffers a 

loss is independent with the possibility of the index triggers the indemnification. In 

mathematical expression: (𝐿𝑀 ,𝐿𝑆,𝐿𝑊) ⊥ 𝑇|𝐷. This assumption is understandable, 

since it is the main logic that explains how WII avoids the moral hazard and the 

adverse selection problems.  
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Given the conditional possibility setting, their possibility distribution of the four 

states in WII can be calculated. As I still assume the index quality is not perfect, the 

final possibilities are affected by many factors (𝜌,𝛾,𝜋, 𝑆,𝑊). For tractability but 

without losing generality, I assume 𝜌 =  𝛾 for the rest analysis. Table 3 shows the 

possibility distributions. See the Appendix II for the detailed process of calculations.  

The intuition from Table 3 is quite simple. Compare with Table 2, which turns out to 

be the possibility distribution of the Normal Farmer, the Strong Farmers definitely 

are getting better off, since they get more possibility weights in the Over-good and 

Good states, while the Weak Farmers are absolutely getting worse off after 

introducing the heterogeneous setting. However the payoff distributions for the all 

three types of farmers remain unchanged (Table 1). 

The structure of the Strong Farmer’s Utility Maximization Problem is some as the 

Weak Farmer, just substituting the possibility distributions in Table 3 to the equation 

( 5 ). Nevertheless, there is no close form solution, so I apply the numerical method 

again. The parameter set and the utility function form are same as in the Section 4. 

Figure 8 shows the optimal solutions of the Strong Farmers and corresponding utility 

change, allowing the index quality (𝜌) and Strong Farmers’ individual basis risk 

parameter (𝑆) change simultaneously in Figure 8.  

The results from Figure 8 are also simple and consistent with our expectation. 

According to the Panel A in Figure 8, as the index quality decreases, the Strong 

Farmer tends to choose less coverage, and as his/her individual basis risk decreases 

(𝑆 → 0), he/she also presents more pessimistic on purchasing WII. Panel B shows 

that as his/her operation ability or available resource increases, i.e. 𝑆 decreases, 

he/she reaches higher utility level.  

The Weak Farmer’s results are presented in Figure 9. Remember that, since I set 

𝑃(𝐿𝑊|𝐷�) = 𝑊, the bigger the 𝑊 is, the weaker the Weak Farmer will be. First, I 
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focus on a more intuitive result in the Panel B of the Figure 9, that as the farmer 

becomes more and more vulnerable, i.e. individual basis risk parameter 𝑊 

increases, his/her utility level decreases.   

Second, the result from Panel A in Figure 9 is worth to be discussed in more details. 

What the result tells us is that as the Weak Farmer becomes weaker, he/she shows 

more pessimistic on purchasing WII, which explains why most vulnerable farmers 

have particularly low demand for WII (the second empirical puzzle). First to check 

the extreme case, when 𝑊 = 1, 𝑃(𝑂𝑣𝑒𝑟 − 𝑔𝑜𝑜𝑑) = 𝑃(𝐺𝑜𝑜𝑑) = 0, i.e. the farmer 

has no way to conduct a successful agricultural operation, he/she “unfortunately” 

only has two possible payoff states, which are Over-bad and Bad. Given these two 

outcomes, the farmer definitely has no incentive to purchases any coverage, since 

payoff in Bad states (𝑥1 = 𝜔1 + 𝛼𝛼 − 𝑞𝛼𝛼) is already larger than payoff in Over-bad 

states (𝑥1′ = 𝜔1 − 𝑞𝛼𝛼). Purchasing more coverage will decreases the payoff 𝑥1′ in 

the worst state, and increase payoff 𝑥1 in the relatively better state. Such transaction 

is not a risk-averse farmer’s reasonable choice.  

Second, a common sense that “a vulnerable person should buy more insurance to 

prevent being stroked by bad things” is not right in WII, since the possibility of 

getting indemnification from insurers has nothing to do with farmer’s individual 

basis risks (given the natural disaster is exogenous). Note that, according to Table 3, 

𝑃(𝑇) = 𝜌𝜋 + (1 − 𝜌)(1− 𝜋) for both Strong Farmers and Weak Farmers, and the 

formula does not include the individual basis risk parameters 𝑆  and 𝑊 . 10 

Furthermore, the statement doesn’t consider the cost of purchasing insurance. Not 

only because the strict budget constraint or credit constraint, but because the fact that  

purchasing more coverage will further misbalance the possibility weighted payoffs 

from different states, resulting expected utility decreasing.  

10 It is not saying that the trigger is independent with the loss, since the P(T) and 𝑃(𝐿𝑆)( 𝑃(𝐿𝑊)) still 
share the parameter 𝜌 and 𝜋. Trigger and loss are connected by weather conditions. 
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Combining the results from Figure 8 and Figure 9, one interesting result can be 

found: the more the farmer’ ability or endowment deviates from population mean 

(e.g. the Normal Farmer), the less coverage he/she will purchase. The economic 

explanation for this finding is that the individual deviation changes the possibility 

distribution among four possible WII payoff states, resulting optimal coverage 

changes. 

5. Empirically Compare Index Qualities in Measuring Yield Variations 

As I showed in theoretical part, the quality of the underlying weather index in WII 

plays a critical role in determining farmers’ purchasing behavior. In the following 

two empirical sections, I first provide evidence that several weather indices can be 

used to measure yield variations, using historical weather data. Then, I simulate the 

impact WII would have had on farmers’ utilities in China over the past half century. 

Using these simulations, I attempt to explain why farmers exhibit pessimism to WII. 

The simulations verify the finding from the Section 2 and 3.  

5.1. Three Indices 

There are many factors to consider when choosing an index and assessing index 

quality. Basic questions are that which index works better or what the threshold of 

triggers should be chosen? Is using one single parameter in the index enough or 

should more weather variables should be exploited? This paper examines three 

different types of weather indices: Precipitation Percentiles Index (PPI) (Klein Tank 

and Konnen, 2003), Precipitation Anomalies Index (PAI) (Barring and Hulme, 1991) 

and Ped Drought Index (PDI) (Ped, 1975; Mason and Goddard 2001). 

The PPI is the simplest among them. It is a binary dummy variable in which critical 

values set at certain percentiles of long historical weather data, for example 5%, if 

the precipitation in a certain year is lower than this value, then PPI is set to 1, 

otherwise the PPI is set to 0. 

PAI is another commonly used weather index to measure rainfall. It also only 
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requires precipitation data. The formula is: 

𝑃𝐴𝐼 =
𝐷𝑝
𝑀𝑝

=
𝑃 −𝑀𝑝

𝑀𝑝
 

where 𝐷𝑝 is precipitation deviation, 𝑀𝑝 is the average precipitation in a long period 

in history, and 𝑃 is precipitation in one year. 

PDI is first constructed by Ped in 1975, and has been used by many researchers and 

turns out to be a relatively simple and useful drought index (Shame 1997; Breustedt 

et al. 2008). It requires two weather indicators, precipitation and temperature. It is 

formulated as: 

𝑃𝐷𝐼 =
𝐷𝑇
𝑆𝐷𝑇

−
𝐷𝑝
𝑆𝐷𝑝

 

where 𝐷𝑇  is the temperature deviation, 𝑆𝐷𝑇 is the standard variation of temperature 

and 𝑆𝐷𝑝 is the standard variation of precipitation in long historical data.  

5.2. Data 

The weather data come from the Chinese National Meteorological Bureau stations, 

and are reported monthly from 1951 to 2002. The agricultural data come from the 

Chinese National Statistics Bureau, covering 26 provinces yearly from 1949-2012. 

In order to match the weather data, only 1951-2002 production data are used. 

Since the agricultural data is collected at province level year by year, the weather 

data is also processed at the same dimensions (i.e. yearly at province level), and thus 

the sample size is 1352. See Appendix III for summary statistics of the data.   

5.3. Model  

Using the weather data, I construct the three indices. Appendix IV shows the Kernel 

density distribution of precipitation (used for constructing PPI), PAI and PDI. Since 

too little or too much rainfall for crop could be both bad shocks, the relationship 

between the indices and the agricultural production may not be linear.11 When using 

11 Directly using PAI and PDI to run regression does not give us many significant results.  
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PPI to fit the variation of agricultural production, one question is how to set the 

thresholds. This paper explores several trials. Denote PPIs5 as setting the threshold 

in single side -- 5th percentile. Denote PPId10 as setting the threshold in double sides 

– 5th and 95th percentiles, i.e. if precipitation is less then 5th or more then 95th, 

PPId10=1; otherwise is 0. Denote PPId20 as setting the threshold in double sides – 

10th and 90th percentiles.  

For PAI and PDI, the more deviation from the mean of the indices, the higher the 

weather risk will be imposed to agricultural production. I first consider using the 

squared PAI and PDI to run econometric models (denoted as SqPAI and SqPDI). 

Second, because both of the two indices have zero means (distributions are almost 

symmetric), I also use absolute values of PAI and PDI to estimate the effect of 

weather condition on agricultural production (denoted as AsPAI and AsPDI). 

The regression model is: 

𝑌𝑖𝑡 = 𝛼𝛼 + 𝛽 ∙ 𝐼𝑛𝑑𝑒𝑥𝑖𝑡 + 𝛾 ∙ 𝑦𝑒𝑎𝑟𝑡 + 𝛿 ∙ 𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑖 + 𝜀𝑖𝑡     

𝑖 = 1, … , 26;    𝑡 = 1951, … ,2002 

𝑌𝑖𝑡 is the annual grain yield per unit (Kg/mu) in province 𝑖 , year 𝑡. Logarithm 

form of yields will also be tried. 

𝐼𝑛𝑑𝑒𝑥𝑖𝑡 is a weather index, it could be one of PPIs5, PPId10, PPd20, SqPAI, SqPDI, 

AsPAI, and AsPDI.  

𝑦𝑒𝑎𝑟𝑡 is the time control. Three forms of time variables are applied. First, directly 

using actual year number (1951-2002) in the regression, i.e. it is assuming that there 

is linear technical progress effect (the corresponding model results are marked as 

“Linear”). Second, using 51 yearly dummies (results are marked as “Dummy”); 

Third, four dummies that respectively represent four periods: 1951-1979, 1980-1989, 

1990-1999, 2000-2002 (marked as “Period”)12. A figure in Appendix V shows the 

production increase trends over the last half century in China across all 26 provinces.  

12 Since China started the Economic Reform and Open Policy in 1978-1979, agricultural productivity 
sharply increased after the reform. 
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𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑖 is regional dummies, used to control other unobserved potential effects 

on yields, like terrain (plain area or high altitude area), water resources, soil types, 

etc.  

For concerns about bias of the estimations of the index coefficients, one thing we 

should know that, although the agricultural yield depends on lots of factors, such as 

inputs and farmer characteristics, the 𝛽 in my regressions can still be consistently 

estimated, since the 𝐼𝑛𝑑𝑒𝑥𝑖𝑡, using weather data, is independent with the error term 

𝜀𝑖𝑡. Know that, the weather condition is highly exogenous to any other unobservable 

factors that can affect the agricultural yield. Only time and space may have some 

correlations with the weather, but I have controlled years and provinces in the 

model.13  

5.4. Regression Result 

The OLS regression results show weather indices can be significantly correlated with 

the production variations, but the strengths of the correlations depend on the design 

(quality) of the indices and the thresholds chosen. Table 4 shows that even the 

simplest weather index may have significant correlations with agricultural outcomes, 

but it still requires careful inspection of the thresholds. The interpretation of the 

estimated coefficients of PPId10 is that, given other conditions unchanged, if the 

precipitation in a certain year is less than 5th percentile or higher than 95th percentile 

of historical precipitation records, then the average production at province level in 

this year will decrease by approximately 68 to 105 Kg per Hectare, or about 2%-4% 

of total yield. The PPId10 performs better than PPIs5 and PPId20, since the 

estimated coefficients on PPId10 are statistically significant for regression (2) – (5), 

while most of the estimation on PPIs5 and PPId20 fail to past t-test. 

Both of PAI and PDI are good indices in capturing the relationship between weather 

13 The estimated coefficients should be interpreted as overall “effect” of the indices on production. 
Inputs may interact with weather conditions, but the interactions are single direction, i.e. inputs 
cannot affect weather, but weather may affect the productivities of the inputs. 
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conditions and agricultural yields (Table 5). Most of the estimated coefficients of 

squared and absolute PAI or PDI are significantly different from zero. The  

interpretations are follows: take regression (10) – (12) with absolute PAI and PDI as 

examples, if the AsPAI increases by 1 unit, the agricultural production will decrease 

by 10.6% - 20.2% (Note that, Mean of PAI is 0, with Standard Deviation 0.17; Mean 

of AsPAI is 0.13, with Standard Deviation 0.11); for PDI, if the absolute value of 

PDI increases by 1 unit, the agricultural production will decrease by 1.4% - 2.1% 

(Note that, Mean of PDI is 0, with Standard Variance 1.46; Mean of AsPDI is 1.16, 

with Standard Deviation 0.88).  

6. Empirical Evidences of Pessimism from Using Low Quality Indices 

This section provides empirical evidences to confirm the findings from the Section 2 

and Section 3. If an index performs well in identifying the loss of the yield, using 

this index in WII should be able to smooth the outcome variation. As Section 2 

theoretically promised, given insurance premium is set at actuarial fair level, WII 

can increase the expected risk-averse utility by smoothing the outcome variation. For 

Section 3, if more than one kind of indices exists, the higher quality index can bring 

more utility gain for farmers than lower quality index (Panel B in Figure 7), which 

provides evidences for explaining farmers’ pessimism in facing low quality index 

WII.14  

I treat each province data as the representative farmer’s yield data in past 1951-2002 

from the province. The top blue fine in Figure 10 shows the national average yield 

trend (original outcome, not simulated by WII). The logic of six simulations are that 

assuming there were WII programs in China during the 52 years, subtracting a fixed 

amount of yields as premium from every observation, then compensating the “bad” 

years with insurance indemnifications, where the “bad” years are identified by the 

index triggering the specified thresholds. 

14 Due to lack of household production and WII coverage data, I cannot justify the findings from 
Section 4. But by using weather data to construct weather indices, parts of findings about index 
qualities can be justified. 
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There are two critical steps in running simulations. One is how to specify the 

coverage that farmers purchase, the other one is how to specify the threshold for 

indices to trigger the indemnification. For first step, I impose a full-insurance 

restriction in my simulations, which mean the coverage is set to be equal to the loss. 

Since China has experienced a great advance of productive in the data period, yield 

reductions caused by weather disasters were compromised by the production 

increasing trend. Moreover, since the agricultural data is at province level, the 

variation is much smaller than individual household level data. Both of the two 

reasons lead to difficulties in calibrating the loss of disasters.15 

To conquer the difficulty, I use a double detrend method to find the conservative 

measurement of losses. Recall that 𝑌𝑖𝑡 is the yield of province 𝑖 in year 𝑡. First I 

detrend the time trend using national average yields: define 𝑌𝑖𝑡𝐷𝑒𝑇𝑖𝑚𝑒 = 𝑌𝑖𝑡 − ∑ 𝑌𝑖𝑡26
𝑖=1 , 

so 𝑌𝑖𝑡𝐷𝑒𝑇𝑖𝑚𝑒 is province idiosyncratic production variation (technical progress effect 

is sweep out). However, the negative values of 𝑌𝑖𝑡𝐷𝑒𝑇𝑖𝑚𝑒  cannot be directly 

considered as losses, since some provinces are systematically less productive than 

other provinces. So define 𝑌𝑖𝑡𝐷𝑜𝑢𝑏𝑙𝑒 = 𝑌𝑖𝑡𝐷𝑒𝑇𝑖𝑚𝑒 − ∑ 𝑌𝑖𝑡𝐷𝑒𝑇𝑖𝑚𝑒52
𝑡=1 , where 𝑌𝑖𝑡𝐷𝑜𝑢𝑏𝑙𝑒  is 

the double detrend yield variation, which further excludes the provincial fixed effect. 

The negative values of 𝑌𝑖𝑡𝐷𝑜𝑢𝑏𝑙𝑒  can be considered as conservative losses result from 

negative weather shocks, since it is the negative yield variation compared with its 

historical level, precluding the national technical progress effect. The reason to call it 

“conservative” measurement of losses is because for sweeping out the technical 

progress effect, the first step of the detrend (obtaining 𝑌𝑖𝑡𝐷𝑒𝑇𝑖𝑚𝑒) also eliminates the 

national weather covariation shock, so the loss is underestimated. The sample mean 

(n=1352) of negative 𝑌𝑖𝑡𝐷𝑜𝑢𝑏𝑙𝑒 = −333, since it’s the conservative measurement, I 

define the loss as 𝑚𝑌𝑖𝑡𝐷𝑜𝑢𝑏𝑙𝑒 , 𝑚 is a multiplier, 𝑚 ≥ 1. In my reported simulation 

results (Figure 10 and Table 6), I use 𝑚 = 3, which mean the Coverage ≡ | Loss | 

15 In real world, the coverage is a variable as I discussed throughout Section2-4. In simulations, for 
simplicity, I directly compare the utility change for using different indices, assuming the coverage is 
fixed for all provinces. 
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≡ 1000. I also try other values of 𝑚, from 1 to 10, the findings do not change as 

long as 𝑚 ≤ 6, i.e. Coverage = Loss ≤ 2000; if coverage is set to be too large, the 

findings may change, because by indemnifying observations with a too large 

coverage, it is actually introducing more outcome variations. 

The second step is to identify the triggered years. I continue using PPId10 and 

PPId20 from Section 5 as two indices in first two simulations, e.g. PPId10=1 means 

if the precipitation in a certain year and province is less than 5% percentile or higher 

than 95% percentile, than province in this year obtain indemnification, which is 1000 

unit. For PAI and PDI, I directly specify the thresholds in their original values to 

identify the trigger years, instead of the squared or the absolute values. For 3rd and 

4th simulations, I use PAId10 and PAId20 (notations “d10” and “d20” follow the rule 

of PPId10 and PPId20); for 5th and 6th simulations, I use PDId10 and PDId20. 

Figure 10 shows the simulation results of assuming there are six kinds of WII that 

run in China in the last half century. Because the magnitude of the production change 

is largely dominated by technical progress, the effect of WII is not obvious. So I 

present the quantitative results of the simulations in Table 6. 

Because the premium is set at actuarial fair level, the expected outcomes (yields) 

shall be same whatever purchasing WII or not (see Column 2 in Table 6). As I have 

shown in Section 5, all of three indices can be used to capture the variation of yields, 

so they supposedly can be used in WII to smooth the production variation, i.e. 

standard deviations should be smaller (see Column 3 in Table, all of simulated 

results have smaller SD than the original yield). The last column in Table 6 

calculates the utility gain from participating in the WII, using 𝐿𝑛(. ) as utility 

function form, and normalizes the utility of original yield as zero and multiplies 

105.16  

First finding from Table6 is that it verifies the conclusion from Subsection 2.1 that 

16 Signs and orders of the utility gains are much more meaningful than their magnitudes. 
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the WII can increase risk-averse farmers’ utility level, since all the values in Column 

4 are non-negative. The second important finding from the simulation is that it 

confirms the results from Section 3. Focusing on the 1st and 2nd simulations, utility 

gain from PPId10 is higher than utility gain from PPId20. Recall that, in Table 4, 

when using PPId10 and PPId20 to measure the production variation, the former 

performs better than the later, since the significant levels of the former are much 

bigger than the later. Therefore, the result of Section 3 is justified, that higher index 

quality will do better in motivating farmers to participate in WII, since higher quality 

brings more utility gain than the relatively poorer quality index.  

Results from PAI and PDI are not exactly comparable with PPI, since the regressions 

in Section5 do not use dummy variable forms of PAI or PDI. But, general conclusion 

can be deduced, that better indices generally perform better in increasing insured 

representative farmers’ utilities, especially for the last simulation (PDId20), but how 

to specify the threshold points for triggers remains an open question, which is worth 

to be investigated furthermore. 

7. Conclusion 

This paper theoretically identifies three factors that can discourage farmers to 

purchase WII. In details, first, the insurers’ overestimation and farmers’ 

underestimation will result farmers to choose less insurance coverage; second, the 

lower the index quality is, the less coverage the farmers will purchase; last, despite 

of index quality, the more the farmers’ individual basis risks deviate from population 

mean, the less coverage the they will choose. The possibility distribution of the four 

possible payoff states plays a very important role in farmers’ decisions, which 

explains why most vulnerable farmers shows little incentive to participate in WII. 

Empirical sections verify parts of theoretical findings. First, three kinds of indices 

are econometrically tested to be capable of capturing the relationship between 

weather conditions and yield variations, using  grain yield data and weather station 

data from 26 provinces in China during 1951- 2002. Second, by simulating WII to be 
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applied in the data period, the paper shows that the WII can smooth the outcome 

series, and the higher the index quality is, the better performance for the index to 

connect the loss and the indemnification, so the higher utility level can be achieved, 

which explains why low index quality can be a reason for farmers’ pessimism.   
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Table 1. The Payoff Distribution of Weather Index Insurance 

  
Farmer Side 

    Loss (𝐿) No Loss  (𝐿�) 

Insurer 
Side 

Trigger 
(𝑇)  

Bad: 
𝑥1 = 𝜔1 + 𝛼𝛼 − 𝑞𝛼𝛼 

Over-good: 
𝑥2′ = 𝜔2 + 𝛼𝛼 − 𝑞𝛼𝛼 

No Trigger 
(𝑇�) 

Over-bad: 
𝑥1′ = 𝜔1 − 𝑞𝛼𝛼 

Good: 
𝑥2 = 𝜔2 − 𝑞𝛼𝛼 

 

 

 

 
Table 2. The Possibility Distribution of WII When Farmers are Homogenous 

  
Farmer Side 

    Loss (𝐿) No Loss  (𝐿�) 

Insurer 
Side 

Trigger 
(𝑇)  

𝑃(𝐵𝑎𝑑) 
= 𝜌𝜋 

𝑃(𝑂𝑣𝑒𝑟 − 𝑔𝑜𝑜𝑑) 
= (1 −  𝛾)(1− 𝜋) 

No Trigger 
(𝑇�) 

𝑃(𝑂𝑣𝑒𝑟 − 𝑏𝑎𝑑) 
= (1 − 𝜌)𝜋 

𝑃(𝐺𝑜𝑜𝑑) 
=  𝛾(1 − 𝜋) 

 

 

 

 
Table 3. Possibility Distributions for Strong and Weak Farmers with Imperfect Index 
Panel A: Strong Farmer 
    Loss (𝐿𝑆) No Loss  (𝐿𝑆���) 

Insurer 
Side 

Trigger 
(𝑇)  

𝑃(𝐵𝑎𝑑) 
= 𝜌𝑆𝜋 

𝑃(𝑂𝑣𝑒𝑟 − 𝑔𝑜𝑜𝑑) 
= 𝜌(1− 𝑆)𝜋 + (1 −  𝜌)(1− 𝜋) 

No Trigger 
(𝑇�) 

𝑃(𝑂𝑣𝑒𝑟 − 𝑏𝑎𝑑) 
= (1− 𝜌)𝑆𝜋 

𝑃(𝐺𝑜𝑜𝑑) 
= (1 − 𝜌)(1− 𝑆)𝜋 + 𝜌(1 − 𝜋) 

 
Panel B: Weak Farmer 
    Loss (𝐿𝑊) No Loss  (𝐿𝑊����) 

Insurer 
Side 

Trigger 
(𝑇)  

𝑃(𝐵𝑎𝑑) 
= 𝜌𝜋 + (1− 𝜌)(1− 𝜋)𝑊 

𝑃(𝑂𝑣𝑒𝑟 − 𝑔𝑜𝑜𝑑) 
= (1 −𝑊)(1−  𝜌)(1− 𝜋) 

No Trigger 
(𝑇�) 

𝑃(𝑂𝑣𝑒𝑟 − 𝑏𝑎𝑑) 
= (1− 𝜌)𝜋 + 𝜌(1−𝜋)𝑊 

𝑃(𝐺𝑜𝑜𝑑) 
= (1−𝑊)(1 − 𝜋)𝜌 
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Table 4  Regression Results of Precipitation Percentage Index (PPI) in Measuring Production Variation 

Models (1) (2) (3) (4) (5) (6) 
Dependent Variable Y Y Y LnY LnY LnY 

PPIs5 -99.54* -59.84 3.663 -0.00564 0.0111 0.0378 

 
(51.69) (47.87) (63.56) (0.0163) (0.0168) (0.0256) 

Adj-R2 0.874 0.903 0.839 0.894 0.921 0.815 

PPId10 -57.75 -67.98* -105.3** -0.0279* -0.0234* -0.0441** 

 
(39.02) (37.34) (47.51) (0.0150) (0.0140) (0.0211) 

Adj-R2 0.874 0.903 0.839 0.895 0.921 0.815 

PPId20 -19.98 -31.91 -28.45 -0.0143 -0.0107 -0.0138 

 
(32.24) (29.42) (37.90) (0.0115) (0.0104) (0.0158) 

Adj-R2 0.874 0.902 0.839 0.895 0.921 0.815 

Type of Year Variable Linear Dummy Period Linear Dummy Period 

Note:1)Robust standard errors in parentheses; 2)*** p<0.01, ** p<0.05, * p<0.1 
3)Coefficients of constant term, year, and province variables are not reported; 4)Simple Size 1352 

 

 
Table 5 Regression Results of Using PAI and PDI in Measuring Production Variation 
Models (7) (8) (9) (10) (11) (12) 

Dependent Variable Y Y Y LnY LnY LnY 
SqPAI -409.2*** -556.5*** -817.7*** -0.269*** -0.296*** -0.425*** 

 
(152.8) (162.6) (205.1) (0.077) (0.077) (0.114) 

Adj-R2 0.875 0.903 0.840 0.895 0.922 0.817 
AsPAI -75.93 -199.1 -349.6** -0.106** -0.125** -0.202*** 

 
(133.1) (131.4) (163.2) (0.053) (0.050) (0.072) 

Adj-R2 0.874 0.903 0.839 0.895 0.922 0.816 

       SqPDI -4.031 -13.91*** -15.36*** -0.004** -0.005*** -0.008*** 

 
(5.249) (5.341) (5.731) (0.002) (0.002) (0.002) 

Adj-R2 0.874 0.903 0.840 0.895 0.922 0.816 
AsPDI -16.63 -47.25*** -45.57** -0.014** -0.017*** -0.021*** 

 
(16.74) (16.30) (18.69) (0.006) (0.006) (0.008) 

Adj-R2 0.874 0.903 0.840 0.895 0.922 0.816 
Type of Year 

Variable 
Linear Dummy Period Linear Dummy Period 

Note:1)Robust standard errors in parentheses; 2)*** p<0.01, ** p<0.05, * p<0.1 
3)Coefficients of constant term, year, and province variables are not reported; 4)Simple Size 
1352 
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Table 6. Simulation Results of Outcome Smoothing 

WII Simulation Obs1) Mean2) Std. Dev.3) Utility Gain4) 
Original Yield (No WII) 52 2736.33  1148.62  0 

Simulations: 
    Simulated with PPId105) 52 2736.33  1137.50  244  

Simulated with PPId20 52 2736.33  1142.56  196  

     Simulated with PAId10 52 2736.33  1141.88  213  
Simulated with PAId20 52 2736.33  1141.42  227  

     Simulated with PDId10 52 2736.33  1141.91  184  
Simulated with PDId20 52 2736.33  1125.32  409  
Notes: 1) Calculated for nationally annual yields, averaging province data. 
2) Premium is set at actuarial fair level, i.e. premium=coverage * possibility of triggering the 
indemnification.  
3) SD here is less than the "SD" in Appendix III, since there are only 52 yearly observations. 
4) Utility function is Ln(.), and normalized by the first row in this table. 
5) "d10" stands for setting the thresholds of triggering at "<5% or >95%", i.e. the 10% possibility of 
getting indemnification if 0.1; "d20" stands for setting the thresholds of triggering at "<10% or >90%" 
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Figure 2. Utility Improvement of WII under the Ideal Situation 
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Figure 1.  Classification of Risk under WII 
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Figure 4. Overestimating Future Risks by Farmers 
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Figure 3. Insurers Incorrectly Predict the Disaster Possibility 
 

BC slope = −  𝑞�
1−𝑞�

 

𝑈1 

𝑈2 

C 

D 
E 

34 



 

 

 

 

 

 

 

 

 

𝜌 

Figure 6. General Quality of the Index (Given 𝜋 = 0.3) 
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Figure 5.  Underestimating Future Risks by Farmers 
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Figure 7. Farmers’ Pessimistic Choice When Indices are Imperfect 

 

 

 

 

 

 

 

0 

0.3 

0.6 

0.9 

0 

100 

200 

300 

400 

500 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Panel A: Optimal Solutions of the Coverage   

𝛼𝛼∗   

Rho 

Gamma 

0 

0.3 

0.6 

0.9 

6.385 

6.405 

6.425 

6.445 

6.465 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Panel B: Maiximized Utility Levels  
Gamma 

Rho 

U* 

36 



 

 

 

 

Figure 8. Strong Farmers’ Pessimistic Choice When Indices are Imperfect 
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Figure 9. Weak Farmers’ Pessimistic Choice When Indices are Imperfect 
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Note: “-400” stands for subtracting 400 units from simulated results for distinguishing the 2nd 

simulation from others. Other numbers in the legend have similar means. 

Figure 10. Smoothing Outcomes Using WII in the Last Half Century in China 
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Appendix I Calculation of Possibility Distribution under Homogeneity Assumption 

Used Assumptions:  

𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑓𝑎𝑟𝑚𝑒𝑟𝑠, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑓𝑜𝑟 𝑖𝑛𝑠𝑢𝑟𝑒𝑟𝑠; 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑:  𝑃(𝑇|𝐷) = 𝜌;  𝑃(𝑇�|𝐷�) = 𝛾; 

 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑: 𝑃(𝐿|𝐷) = 1, 𝑎𝑛𝑑 𝑃(𝐷) = 𝜋, 𝑠𝑜 𝑃(𝐿) = 𝜋.  

Therefore: 𝑃(𝑇|𝐷) = 𝑃(𝑇|𝐿) = 𝜌;  𝑃(𝑇�|𝐷�) =  𝑃(𝑇�|𝐿�) = 𝛾 

 

Calculations: 

𝑃(𝐵𝑎𝑑) = 𝑃(𝐿𝑇) = 𝑃(𝑇|𝐿)𝑃(𝐿) = 𝜌𝜋  

𝑃(𝑂𝑣𝑒𝑟 − 𝑔𝑜𝑜𝑑) = 𝑃(𝐿�𝑇) = 𝑃(𝑇|𝐿�)𝑃(𝐿�) = [1 − 𝑃(𝑇�|𝐿�)]𝑃(𝐿�) = (1 − 𝛾)(1− 𝜋)  

𝑃(𝑂𝑣𝑒𝑟 − 𝑏𝑎𝑑) = 𝑃(𝐿𝑇�) = 𝑃(𝑇�|𝐿)𝑃(𝐿) = (1 − 𝜌)𝜋  

𝑃(𝐺𝑜𝑜𝑑) = 𝑃(𝐿�𝑇�) = 𝑃(𝑇�|𝐿�)𝑃(𝐿�) = 𝛾(1− 𝜋)  
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Appendix II. Calculation of Possibility Distribution for Heterogeneous Farmers 

Used Assumptions:  

𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑓𝑎𝑟𝑚𝑒𝑟𝑠, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑓𝑜𝑟 𝑖𝑛𝑠𝑢𝑟𝑒𝑟𝑠; 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑:  𝑃(𝑇|𝐷) = 𝜌;  𝑃(𝑇�|𝐷�) = 𝛾;  𝐿𝑒𝑡 𝜌 ≡ 𝛾 ; 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑:  𝑃(𝐿|𝐷) ≠ 1,𝑃(𝐷) = 𝜋 , 𝑎𝑛𝑑 

Strong Farmer: �𝑃
(𝐿𝑆|𝐷) = 𝑆

𝑃(𝐿𝑆|𝐷�) = 0
�,𝑆 ∈ [0,1]; Weak Farmer: � 𝑃

(𝐿𝑊|𝐷) = 1
𝑃(𝐿𝑊|𝐷�) = 𝑊

�,𝑊 ∈ [0,1]. 

Conditional Independent Assumption: (𝐿𝑀 ,𝐿𝑆, 𝐿𝑊) ⊥ 𝑇|𝐷 

Calculations: 

For Strong Farmer 

𝑷(𝑩𝒂𝒅) = 𝑃(𝐿𝑆𝑇) = 𝑃(𝐿𝑆𝑇|𝐷)𝑃(𝐷) + 𝑃(𝐿𝑆𝑇|𝐷�)𝑃(𝐷�) = 𝑃(𝐿𝑆|𝐷)𝑃(𝑇|𝐷)𝑃(𝐷) +

𝑃(𝐿𝑆|𝐷�)𝑃(𝑇|𝐷�)𝑃(𝐷�) = 𝑺𝝆𝝅  

𝑷(𝑶𝒗𝒆𝒓 − 𝒈𝒐𝒐𝒅) = 𝑃(𝐿�𝑆𝑇) = 𝑃(𝐿�𝑆𝑇|𝐷)𝑃(𝐷) + 𝑃(𝐿�𝑆𝑇|𝐷�)𝑃(𝐷�) =

𝑃(𝐿�𝑆|𝐷)𝑃(𝑇|𝐷)𝑃(𝐷) + 𝑃(𝐿�𝑆|𝐷�)𝑃(𝑇|𝐷�)𝑃(𝐷�) = (𝟏 − 𝑺)𝝆𝝅+ (𝟏 − 𝝆)(𝟏 − 𝝅)  

𝑷(𝑶𝒗𝒆𝒓 − 𝒃𝒂𝒅) = 𝑃(𝐿𝑆𝑇�) = 𝑃(𝐿𝑆𝑇�|𝐷)𝑃(𝐷) + 𝑃(𝐿𝑆𝑇�|𝐷�)𝑃(𝐷�) =

𝑃(𝐿𝑆|𝐷)𝑃(𝑇�|𝐷)𝑃(𝐷) + 𝑃(𝐿𝑆|𝐷�)𝑃(𝑇�|𝐷�)𝑃(𝐷�) = 𝑺(𝟏 − 𝝆)𝝅  

𝑷(𝑮𝒐𝒐𝒅) = 𝑃�𝐿𝑆���𝑇�� = 𝑃�𝐿𝑆���𝑇��𝐷�𝑃(𝐷) + 𝑃�𝐿𝑆���𝑇��𝐷��𝑃(𝐷�) = 𝑃�𝐿𝑆����𝐷�𝑃(𝑇�|𝐷)𝑃(𝐷) +

𝑃�𝐿𝑆����𝐷��𝑃(𝑇�|𝐷�)𝑃(𝐷�) = (𝟏 − 𝑺)(𝟏 − 𝝆)𝝅+ 𝝆(𝟏 − 𝝅)  

For Weak Farmer 

𝑷(𝑩𝒂𝒅) = 𝑃(𝐿𝑊𝑇) = 𝑃(𝐿𝑊𝑇|𝐷)𝑃(𝐷) + 𝑃(𝐿𝑊𝑇|𝐷�)𝑃(𝐷�) = 𝑃(𝐿𝑊|𝐷)𝑃(𝑇|𝐷)𝑃(𝐷) +

𝑃(𝐿𝑊|𝐷�)𝑃(𝑇|𝐷�)𝑃(𝐷�) = 𝝆𝝅+ 𝑾(𝟏 − 𝝆)(𝟏 − 𝝅)  

𝑷(𝑶𝒗𝒆𝒓 − 𝒈𝒐𝒐𝒅) = 𝑃�𝐿𝑊����𝑇� = 𝑃�𝐿𝑊����𝑇�𝐷�𝑃(𝐷) + 𝑃�𝐿𝑊����𝑇�𝐷��𝑃(𝐷�)

= 𝑃�𝐿𝑊�����𝐷�𝑃(𝑇|𝐷)𝑃(𝐷) + 𝑃�𝐿𝑊�����𝐷��𝑃(𝑇|𝐷�)𝑃(𝐷�)

= (𝟏 −𝑾)(𝟏 − 𝝆)(𝟏 − 𝝅) 

𝑷(𝑶𝒗𝒆𝒓 − 𝒃𝒂𝒅) = 𝑃(𝐿𝑊𝑇�) = 𝑃(𝐿𝑊𝑇�|𝐷)𝑃(𝐷) + 𝑃(𝐿𝑊𝑇�|𝐷�)𝑃(𝐷�) =

𝑃(𝐿𝑊|𝐷)𝑃(𝑇�|𝐷)𝑃(𝐷) + 𝑃(𝐿𝑊|𝐷�)𝑃(𝑇�|𝐷�)𝑃(𝐷�) = (𝟏 − 𝝆)𝝅+𝑾𝝆(𝟏 − 𝝅)  

𝑷(𝑮𝒐𝒐𝒅) = 𝑃�𝐿𝑊����𝑇�� = 𝑃�𝐿𝑊����𝑇��𝐷�𝑃(𝐷) + 𝑃�𝐿𝑊����𝑇��𝐷��𝑃(𝐷�) = 𝑃�𝐿𝑊�����𝐷�𝑃(𝑇�|𝐷)𝑃(𝐷) +

𝑃�𝐿𝑊�����𝐷��𝑃(𝑇�|𝐷�)𝑃(𝐷�) = (𝟏 −𝑾)𝝆(𝟏 − 𝝅)  
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Appendix III.A Summary Statistics 

Region 
Annual yield Annual temperature2) Annual precipitation 

(Kg/Ha.) (Centigrade) (mm) 

Mean SD Mean SD Mean  SD 

Total1) 2736  1414  12.5  5.1  765  411  

       Anhui 2610  1279  15.0  0.5  981  165  
Beijing 3307  1654  11.8  0.7  509  175  
Fujian 3240  1074  18.4  0.5  1311  174  
Gansu 1674  671  7.1  0.6  248  34  
Guangdong 3289  1327  21.6  0.4  1444  213  
Guangxi 2656  1024  21.0  0.4  1360  161  
Guizhou 2495  662  15.1  0.4  969  94  
Hebei 2189  1074  10.1  1.1  444  96  
Heilongjiang 2050  898  1.9  0.8  438  60  
Henan 2345  1288  14.2  0.5  617  110  
Hubei 3229  1394  15.7  0.5  979  150  
Hunan 3566  1384  16.6  0.4  1209  141  
Jiangsu 3523  1703  14.8  0.6  864  143  
Jiangxi 3118  1236  17.5  0.3  1390  207  
Jilin 2963  1860  4.3  0.8  543  69  
Liaoning 3010  1514  8.2  0.7  580  104  
Neimenggu 1491  860  3.9  0.8  251  39  
Ningxia 1756  907  8.0  0.6  229  55  
Shaanxi 1822  743  11.3  0.5  538  89  
Shandong 2753  1562  12.3  0.5  574  114  
Shanghai 4461  1369  16.0  0.7  966  179  
Shanxi 1876  778  8.6  0.7  417  81  
Sichuan 3109  1108  11.8  0.7  772  70  
Xinjiang 2398  1492  7.5  0.6  106  19  
Yunnan 2359  648  16.3  0.5  921  81  
Zhejiang 3854  1180  16.2  0.7  1232  183  

Note: 1) N=1352, # of Provinces=26, # of years=52 (1951-2002) 
2) Inside each year, temperature varies largely from Jan. to Dec., but “Annual (average) temperature” 
varies little among years. 
Source: Chinese National Meteorological Bureau and Chinese National Statistics Bureau. 
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Appendix IV. Distribution of Precipitation, PAI and PDI 

 

 
 
 
 
 
 
 

Appendix V. Provincial Agricultural Production Trends in 1949-2012 in China  
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