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Splines and seasonal unit roots in weekly agricultural prices  

By José Juan Cáceres-Hernández and Gloria Martín-Rodríguez, 

University of La Laguna 

Abstract 

In this paper, a methodological proposal is described to test for seasonal unit roots in 

weekly series of agricultural prices. When the deterministic seasonal component is 

not fixed over the sample, the tests for unit roots at seasonal frequencies tend to fail to 

reject the null hypothesis. This being the case, the original series are proposed to be 

filtered in order to remove the evolving deterministic seasonal component before 

applying standard procedures for testing for seasonal unit roots. In such a sense, the 

non-restricted evolving spline model (ESM) and the restricted evolving spline model 

(RESM) are shown to be useful parametric formulations to capture this type of 

deterministic seasonal pattern. 
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1. Introduction 

Weekly series of agricultural prices are increasingly available. In this type of series, seasonal effects 

do not usually remain the same over time. Therefore, dealing with these seasonal patterns is a 

complex task. In many papers in the field of agricultural economics, the seasonal effect at a season 

is assumed to be constant. Then, seasonal effects are removed by seasonal adjustment or modelled 

by means of seasonal dummies. However, wrong assumptions about the seasonal component may 

lead to draw wrong conclusions about the dynamic behaviour of the series and the transmission 

mechanisms between different price series. In particular, non-stationarity due to the presence of unit 

roots at seasonal frequencies needs to be tested. 

To this aim, as Hylleberg (2011) pointed out, “the existence of seasonal unit roots in the data 

generating process implies a varying seasonal pattern where summer may become winter. In most 

cases, such a situation is not feasible and the findings of seasonal unit roots should be interpreted 

with care and taken as an indication of a varying seasonal pattern, where the unit root model is a 

parsimonious approximation and not the true DGP”. Furthermore, the finite sample distributions of 

HEGY type tests depend on the deterministic components included in the auxiliary regressions. In 

this paper, a non-fixed deterministic seasonal pattern is proposed to be modelled by means of 

evolving splines (Martín-Rodríguez and Cáceres-Hernández, 2012, 2013), able to capture gradual 

changes in the seasonal pattern as often observed in weekly series of agricultural prices. Once the 

deterministic seasonal component is removed, HEGY type tests for the null hypotheses of unit root 

at the seasonal frequencies (Cáceres-Hernández, 1996) are applied to three weekly series of Canary 

banana prices in Spanish markets. 

The methodological proposal is described in the following section. Firstly, the restricted evolving 

spline model proposed in Martín-Rodríguez and Cáceres-Hernández (2012) is slightly modified in 

order to adjustments be not required in the estimates of the seasonal effects. Secondly, the specific 

regressors in the auxiliary regression to seasonal unit root tests are defined. Section 3 shows the 

results of applying these tests to both the original series of weekly prices of Canary banana from 

2005 to 2013 and also the series obtained when the seasonal deterministic component modelled by 

means of the restricted evolving spline model is removed. Finally, concluding remarks are stated. 

2. Evolving splines and test for seasonal unit roots 

The following subsection deals with the proposal of a model to capture evolving seasonal patterns 

in weekly series. Next, in the second part of this methodological section, some procedures are 

explained for testing the null hypothesis of seasonal unit roots. 
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2.1. Restricted evolving spline model 

In a weekly time series,   1,...,t t T
y


, such that 

tttty   , Tt ,...,1 ,      (1) 

where t  and t  are the trend or level component and the seasonal component, respectively, and 

t  is the irregular component, the seasonal pattern can be assumed to be completed in a period 

whose length does not remain the same over time1. Let cs  be the length of seasonal period c , 

mc ,...,1 . Let t  be defined as wct ,   if the observation at time t  and sub-period c  corresponds 

to season cj  in such a way that c

c

j
w

s
 , 1,...,c cj s . According to Martín-Rodríguez and Cáceres-

Hernández (2012), a restricted evolving spline model can be formulated to capture changes in the 

shape of the seasonal pattern over time. 

The seasonal pattern in period c  can be modelled by means of a periodic cubic spline. That is 

wccwc wg ,, )(   ,      (2) 

where wc,  is a residual term and )(wgc  is a third-degree piecewise polynomial function, 

3
3,,

2
2,,1,,0,,, )()( wgwgwggwgwg icicicicicc  , icic www ,1,  , ,...,ki 1 ,  (3) 

where 00, cw  and 1, kcw . It is also assumed that iic ww , , mc ,...,1 , ki ,...,0 . The 

continuity of the spline function and of its first and second derivatives are enforced by the following 

conditions 

, , 1( ) ( )c i i c i ig w g w , 1 1i ,...,k  , )()( ,01, kkcc wgwg  ,    (3.a) 

, , 1( ) ( )c i i c i ig w g w   , 1 1i ,...,k  , )()( ,01, kkcc wgwg  ,   (3.b) 

2 2
, , 1( ) ( )c i i c i ig w g w  , 1 1i ,...,k  , )()( ,

2
01,

2
kkcc wgwg  .   (3.c) 

Furthermore, by assuming that 

       
0
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3,,

3
1
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2
1

2
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

 













k

i

ii
ic

ii
ic

ii
iciiic

ww
g

ww
g

ww
gwwg ,  (4) 

                                                            
1 Note that the number of weeks in a year is not exact. Most years have 365 days, but a leap year has 366 days. 
Therefore, 53 weekly observations are occasionally registered in the same year depending on what is called a week. 
This being the case, an average of the observations corresponding to two contiguous weeks can be calculated to 
substitute the original observations in order to the length of the seasonal period remains to be 52. Furthermore, 
agricultural prices are usually observed for different weeks in different years. See, for example, Martín-Rodríguez and 
Cáceres-Hernández (2012, 2013). 
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the area under the spline over the whole seasonal period is restricted to be zero2. Then, the spline 

c ( )g w  can be expressed as a linear function 

c ,2,0 ,1, , ,0 , 1,( ) ...g g
c c w c k c k wg w g X g X    ,    (5) 

where , ,
g
c i wX , 11,  ...,k-i  , are appropriate functions of the proportion w  and the break points 

iic ww , , ki ,...,0 , and ,2,0 , ,0,...,c c kg g  are free parameters to be estimated. Therefore, the seasonal 

pattern in the m  subperiods in which the series is divided can be jointly modelled as tt tg   )( , 

where )(tg  is the evolving spline 

   



m

c

sp
tc

g
tkkc

g
tc DXgXgtg

1
,,10,,,10,2, ... ,    (6) 

where 


 


case  other  in

c periodsubt
Dsp

tc ,0

,1
, , mc ,...,1 . 

To identify the changes in the shape of the seasonal pattern over time, the seasonal variation at any 

proportion w  in period c  can be also expressed as a function of the values of the seasonal effects at 

break points in such a period, 
iwc, , 0,...,i k . In a similar sense to Koopman (1992) and Harvey et 

al. (1997), the spline c ( )g w  can be expressed as a linear function 

    wkcwcwcwcc XXwg
k ,1,,,1,, 11

... 
 ,    (7) 

where ,1, , 1,,...,c w c k wX X 
  are appropriate functions of the proportion w  and the break points 

iic ww , , ki ,...,0 , and 
1 1, ,,...,

kc w c w 


 are free parameters to be estimated. Now, the evolving 

seasonal pattern over time can be modelled as tt tg   )( , where )(tg  is the evolving spline 

   





m

c

sp
tctkwctwc DXXtg

k
1

,,1,,1, 11
...   ,    (8) 

where 
wicti XX ,,,  , 1,...,1  ki , if the observation at time t  and sub-period c  corresponds to 

season cj  in such a way that 
c

c

s

j
w  . 

                                                            
2 Such a condition is not taken into account by Martín-Rodríguez and Cáceres-Hernández (2012). This being the case, 
when the spline is introduced as a regressor into a time series model, the estimates of seasonal effects, and also the 
estimates of the level component, need to be corrected. Furthermore, in Martín-Rodríguez and Cáceres-Hernández 
(2012), the values of spline function, and first and second derivatives at the end of the seasonal period are not assumed 
to be equal to the corresponding values at the beginning of the seasonal period. In fact, the spline is assumed to be 

natural, in such a way that 2
,1 0( ) 0cg w   and 2

, ( ) 0c k kg w  . 
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Therefore, the changes in the shape of the seasonal pattern over time can be explained by describing 

the evolution of the seasonal effects at break points. To this aim, a non-periodic spline is adjusted to 

the values of each one of these seasonal effects over time,  
mcwc i ,...,1, 

 , ki ,...,0 . That is, 

ciciwc wg
i ,, )(   ,      (9) 

where ci,  is a residual term and )( ci wg  is a third-degree piecewise polynomial function, 

3
3,,

2
2,,1,,0,,, )()( cjicjicjijicjici wgwgwggwgwg  , 

jj ccc www 
1

, ,...,rj 1 , (10) 

where 
m

c
wc  , 0

0
cw  and 1

rcw . By imposing the following conditions 

, , 1( ) ( )
j ji j c i j cg w g w , 1 1j ,...,r  ,     (11.a) 

, , 1( ) ( )
j ji j c i j cg w g w   , 1 1j ,...,r  ,    (11.b) 

2 2
, , 1( ) ( )

j ji j c i j cg w g w   , 1 1j ,...,r  ,    (11.c) 

and also assuming that the spline is natural, that is to say, 

0

2
,1( ) 0i cg w  ,      (12.a) 

2
, ( ) 0

ri r cg w  ,      (12.a) 

the estimates  
mcwc i ,...,1, 

 , ki ,...,0 , can be expressed as 

g
i,r,wi,r,

g
,wi,,i,

g
w,i,,i,

g
w,i,,i,ci cccc

Yg...YgYgYg)(wg 00,202,1111,0101  ,   (13) 

where 1 0, 11, 2,0, , , ,
c c c c

g g g g
i, , w i, , w i, ,w i,r,wY Y Y ... Y  are appropriate functions of the proportion cw  and the break 

points 
jcw , 0,...,j r , and 1 0 1 1 2 0 0, , , ,i, , i, , i, , i,r,g g g ... g  are free parameters to be estimated. Alternatively, 

the non-periodic cubic spline ( )i cg w  can be also expressed as a function of the values of the 

seasonal effect 
iwc,  at specific seasonal periods, ,j ic w , located at the break points 

jcw , 0,...,j r , 

as follows 

   
crirci wciwcwciwcci YYwg ,,,,,, ...

00
 .    (14) 

Finally, from Equation (14), the parameters  
mcwc i ,...,1, 

 , 1,...,1  ki , could also be assumed to 

evolve over time according to the parametric model    
crircii wciwcwciwcciwc YYwg ,,,,,,, ...

00
 . 

Then the evolving spline in Equation (7) can be written as a function of parameters 

 
1,...,1,, ..., ,

0  kiwcwc iri
 , as follows: 
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 
0 1 1 1 1

0 2 1 2 2

0 1 1 1 1

, 1,0, , 1,1, , 1, ,

, 2,1, , 2,1, , 2, ,

, 1,0, , 1,1, , 1, ,

....

           .... ...

          ....

r

r

k k r k

c w t c w t c w r t

c w t c w t c w r t

c w k t c w k t c w k r t

g t U U U

U U U

U U U

  

  

  
    

    

    

  

     (15) 

where 
ti

m

c

sp
tcwcitji XDYU

cj ,
1

,,,,, 







 



, 1,...,1  ki , rj ,...,0 . Therefore, 

  


 


1

1 0
,,,

k

i

r

j
tjiwc Utg

ij
 .     (16) 

Note that 
ij wc ,  is the seasonal variation at proportion iw  of the seasonal period corresponding to 

the break point located at sub-period jc . Therefore, the number of parameters to be estimated is 

equal to   )1(*1  rk . 

This parametric model can be introduced into a time series model to estimate conjointly the 

seasonal component and the remainder of components in the original series. However, the 

formulation in Equation (16) is also useful to provide estimates of seasonal effects at any point in 

time over the sample, and, by subtracting these estimates, a filtered series can be obtained without 

changing deterministic seasonality. To filter the original series, a previous approximation to the 

seasonal variations, t


, needs to be obtained. Then, from estimating the model 

( )t tg t  
,       (17) 

where ( )g t  is the spline formulated in Equation (16), estimates of seasonal variations are obtained. 

Finally, values of a filtered series are obtained as follows 

* ˆ( )t ty y g t  ,       (18) 

where ˆ ( )g t  are the estimates of ( )g t . 

2.2. Test for seasonal unit roots 

To apply conventional unit root tests at seasonal frequencies, the length of the seasonal period, cs , 

is assumed to be 52. 

Let tx  be the value of the series ty  once the filter described in section 2.1 is applied. That is to say, 

*
t tx y , Tt ,...,1 ,      (19) 

where the data generating process for the series   1,...,t t T
x


 is such that 

  t t tB x    , Tt ,...,1 ,     (20) 

where  B  is an autoregressive polynomial, and t  represents the deterministic component. 
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To test for roots corresponding to seasonal frequencies which have a unitary modulus (see Table 1), 

the procedure described in Cáceres-Hernández (1996), following Hylleberg et al. (1990), can be 

applied. The following auxilliary regression needs to be estimated, 

   
27

52 1 1, 1 2 2, 1 ,1 , 1 ,2 , 2 52
3 1

r

t t t t k k t k k t t j t
k j

B x y y y y B x         
 

            ,  (21) 

where 52
52 ( ) 1B B   , and regressors 1, 27,,...,t ty y  are defined as 

 2 5152
1,

( )
1 ...

1t t t

B
y x B B B x

B


     


,     (22.a) 

 2 5152
2,

( )
1 ...

1t t t

B
y x B B B x

B


       


,    (22.b) 

52
, 2

( )

1 2cos( )k t t
k

B
y x

B B


 
 

, 
2( 2)

52k

k  
 , 3,..., 27k  .  (22.c) 

A number of lags of the dependent variable are included in order to ensure serial uncorrelation in 

the error term. Then, the hypothesis of unit root at zero frequency is rejected when the null 

hypothesis 1 0   is rejected against 1 0   by means of a t  type test 1t . The hypothesis of unit root 

at Nyquist frequency is rejected when the null hypothesis 2 0   is rejected against 2 0   by 

means of another t  type test 2t . As regards the remainder of seasonal frequencies, an F  type test 

2kF   about the significance of parameters ,1 ,2,k k  , can be applied to test for the presence of a pair 

of unit roots at seasonal frequency k , 3,..., 27k  . Critical values to these tests have been obtained 

in Cáceres-Hernández (1996) for finite samples when a constant, seasonal dummy variables or a 

linear trend are included as deterministic components3. 

INSERT TABLE 1 

3. Application to weekly agricultural price series 

In this section, the tests for zero and seasonal frequencies described in Section 2 are applied to three 

weekly series of Canary banana prices in Spanish markets from 2005 to 2013: prices perceived by 

farmers,  
1,...,468

F
t t

y


, prices at wholesale markets,  
1,...,468

W
t t

y


, and consumer prices,  
1,...,468

C
t t

y


 

(see Figure 1). HEGY type tests are also applied to the series seasonally adjusted by both, the non-

restricted evolving spline model (ESM) in Equation (8) (see Figure 2), and also the restricted 

evolving spline model (RESM) in Equation (16) (see Figure 3). The dependent variable to estimate 

                                                            
3 Asymptotic critical values obtained by Meng and He (2012) to tests for seasonal unit roots in data at any frequency 
can also be applied to weekly data. 
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the seasonal component in equations (8) and (16) has been calculated as the difference between the 

original series and a 52-week moving average series. 

INSERT FIGURE 1 

INSERT FIGURE 2 

INSERT FIGURE 3 

The results of autocorrelation tests applied to the residuals of estimating Equation (20) lead to not 

include lags of the dependent variable into the auxiliary regression. To test for seasonal unit roots in 

the original series, a linear trend and seasonal dummies are included as deterministic components; 

whereas only a linear trend is included into the auxiliary regressions for the filtered series. As 

shown in Table 2.a, tests for seasonal unit roots in the original series fail to reject the null 

hypothesis of unit roots at several frequencies at the 5% or 10% significance level, whereas tests on 

the filtered series lead to reject the same null hypothesis at the same confidence level (see Table 

2.b). These results have been obtained according to critical values in Tables 2.a and 2.b, although 

results are very similar when critical values obtained by Cáceres-Hernández (1996) or Meng and He 

(2012) are taken into account. 

INSERT TABLE 2.a 

INSERT TABLE 2.b 

On the other hand, the HEGY type tests do not have good power properties against deterministic 

seasonal component alternatives (Ghysels et al., 1994). Therefore, when the null hypothesis of unit 

root is not rejected, stationarity tests at seasonal frequencies should also be applied. In such a sense, 

the KPSS test (Kwiatwokski et al., 1992) has been extended to the seasonal case (Taylor, 2003; 

Lyhagen, 2006; Khedhiri and Montasser, 2012; Montasser, 2014). According to the procedure 

described in Khedhiri and Montasser (2012), the statistics  0 ,    and  k , 
2( 2)

52k

k  
 , 

3,..., 27k  , have been calculated to test for the null hypothesis of stationarity at zero and seasonal 

frequencies. To make the non-parametric correction of the estimate of the error variance to account 

for residual serial correlation, the maximum lag length, l , is set to be 3 or 8, following conventional 

criteria based on the sample size (Newey and West, 1987), and 52, taking the length of the seasonal 

period into account. A linear trend and seasonal dummies are included as deterministic components 

into the auxiliary regressions for the original series. In the case of the filtered series, the testing 

equations only include a linear trend. Although asymptotic distribution of statistical tests could be 

applied according to the results in Kwiatkowski et al. (1992), Khedhiri and Montasser (2012) and 

Montasser (2014), the decision has been made to obtain critical values by simulation exercises for 

the effective sample size in the weekly price series (8 years). The results shown in Table 3 
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correspond to the tests at the frequency   for the series of prices perceived by farmers, at the zero 

frequency for the series of wholesale prices, and at the frequencies 0, 
5

26


 and 

10

26


 for the series of 

consumer prices.  Note that the increase on the maximum lag length eventually leads to the failure 

to reject the null hypothesis. However, when conventional criteria are applied, the null hypothesis 

of stationarity at the zero frequency is rejected for both the wholesale and the consumer price series. 

Some doubts remain about the stationarity at the frequency 
5

26


 for the retailing prices. On the other 

hand, whatever the maximum lag length, the null hypothesis of stationarity is clearly rejected at 

both the frequency   for the series of prices perceived by farmers and the frequency 
10

26


 for the 

series of consumer prices. 

INSERT TABLE 3 

4. Conclusions 

In the standard HEGY type tests for seasonal unit roots, seasonal variations under the alternative 

hypothesis are assumed to be stationary around a fixed deterministic seasonal component modelled 

by seasonal dummies. However, weekly series of agricultural prices usually exhibit an evolving 

seasonal pattern. The results obtained in this paper show that this type of seasonal pattern tends to 

make HEGY type test wrongly fail to reject the null hypothesis of unit root at seasonal frequencies. 

Furthermore, parametric formulations such as ESM or RESM are capable of capturing the changes 

in the deterministic component of seasonal variations and, when the original series are filtered to 

delete such a deterministic seasonality, the HEGY tests can lead to reject a unit root hypothesis 

which is not rejected for the original series. 

A note of caution concerning these results should be made. On the one hand, the sample size is 

small, although the critical values have been obtained by simulation exercises in which the effective 

sample size is the same as the one for estimating auxiliary regressions. On the other hand, the 

asymptotic distribution of HEGY type tests should be obtained when an evolving deterministic 

seasonal component is included in the auxiliary regressions. From estimating these auxiliary 

regressions, simulation exercises need to be done to obtain critical values for different sample sizes. 
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Table 1. Unit roots in weekly data 
Unit roots Frequency Period (weeks) Cycles per year 

rj=cos(j)isen(j) j 2/j 52j/2 
r1=1 0 - - 

r3,1=cos(/26)+isen(/26); r3,2=cos(/26)-isen(/26) /26 52 1 
r4,1=cos(/13)+isen(/13); r4,2=cos(/13)-isen(/13) 2/26 26 2 

r5,1=cos(3/26)+isen(3/26); r5,2=cos(3/26)-isen(3/26) 3/26 52/3 3 
r6,1=cos(2/13)+isen(2/13); r6,2=cos(2/13)-isen(2/13) 4/26 13 4 
r7,1=cos(5/26)+isen(5/26); r7,2=cos(5/26)-isen(5/26) 5/26 52/5 5 
r8,1=cos(3/13)+isen(3/13); r8,2=cos(3/13)-isen(3/13) 6/26 26/3 6 
r9,1=cos(7/26)+isen(7/26); r9,2=cos(7/26)-isen(7/26) 7/26 52/7 7 

r10,1=cos(4/13)+isen(4/13); r10,2=cos(4/13)-isen(4/13) 8/26 26/4 8 
r11,1=cos(9/26)+isen(9/26); r11,2=cos(9/26)-isen(9/26) 9/26 52/9 9 
r12,1=cos(5/13)+isen(5/13); r12,2=cos(5/13)-isen(5/13) 10/26 26/5 10 

r13,1=cos(11/26)+isen(11/26); r13,2=cos(11/26)-isen(11/26) 11/26 52/11 11 
r14,1=cos(6/13)+isen(6/13); r14,2=cos(6/13)-isen(6/13) 12/26 26/6 12 

r15,1=i ; r15,2=-i 13/26 4 13 
r16,1=cos(7/13)+isen(7/13); r16,2=cos(7/13)-isen(7/13) 14/26 26/7 14 

r17,1=cos(15/26)+isen(15/26); r17,2=cos(15/26)-isen(15/26) 15/26 52/15 15 
r18,1=cos(8/13)+isen(8/13); r18,2=cos(8/13)-isen(8/13) 16/26 26/8 16 

r19,1=cos(17/26)+isen(17/26); r19,2=cos(17/26)-isen(17/26) 17/26 52/17 17 
r20,1=cos(9/13)+isen(9/13); r20,2=cos(9/13)-isen(9/13) 18/26 26/9 18 

r21,1=cos(19/26)+isen(19/26); r21,2=cos(19/26)-isen(19/26) 19/26 52/19 19 
r22,1=cos(10/13)+isen(10/13); r22,2=cos(10/13)-isen(10/13) 20/26 26/10 20 
r23,1=cos(21/26)+isen(21/26); r23,2=cos(21/26)-isen(21/26) 21/26 52/21 21 
r24,1=cos(11/13)+isen(11/13); r24,2=cos(11/13)-isen(11/13) 22/26 26/11 22 
r25,1=cos(23/26)+isen(23/26); r25,2=cos(23/26)-isen(23/26) 23/26 52/23 23 
r26,1=cos(12/13)+isen(12/13); r26,2=cos(12/13)-isen(12/13) 24/26 26/12 24 
r27,1=cos(25/26)+isen(25/26); r27,2=cos(25/26)-isen(25/26) 25/26 52/25 25 

r2=-1  2 26 
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Table 2.a. Tests for unit roots at frequency   in the original series 
   F

ty  W
ty  C

ty   Critical values(1) 

      5% 10% 
0  -3.480 -3.089 -2.510  -3.057 -2.792 
  -2.473 -3.012 -2.759  -2.571 -2.291 
      90% 95% 
/26  7.491 4.759 7.690  4.483 5.327 
2/26  7.983 4.106 4.859  4.481 5.382 
3/26  3.487 4.298 3.600  4.418 5.260 
4/26  6.493 12.741 6.863  4.489 5.282 
5/26  4.459 5.644 4.671  4.421 5.261 
6/26  5.643 5.247 8.905  4.509 5.349 
7/26  6.921 3.498 8.733  4.477 5.337 
8/26  5.177 2.887 11.653  4.448 5.263 
9/26  9.498 3.508 9.949  4.463 5.341 
10/26  3.247 6.521 3.272  4.444 5.277 
11/26  7.452 6.311 4.857  4.486 5.305 
12/26  8.184 6.084 9.765  4.445 5.311 
13/26  8.829 5.204 8.147  4.468 5.281 
14/26  4.392 5.937 7.352  4.469 5.345 
15/26  6.793 5.705 6.504  4.408 5.267 
16/26  8.903 5.899 6.561  4.452 5.296 
17/26  6.319 6.348 4.540  4.444 5.321 
18/26  7.565 7.002 5.258  4.448 5.301 
19/26  7.077 4.928 14.190  4.421 5.247 
20/26  4.984 8.217 2.785  4.438 5.303 
21/26  8.664 6.964 4.063  4.424 5.262 
22/26  8.778 5.941 7.809  4.410 5.244 
23/26  8.405 7.255 3.454  4.477 5.291 
24/26  8.268 5.667 5.730  4.441 5.284 
25/26  10.228 4.357 4.129  4.448 5.292 
(1) Critical values have been obtained by Monte Carlo simulation experiments. The data generating process is a 
seasonal random walk where the disturbance term has unit variance. Twenty thousand replications were 
conducted. Testing equations include a constant, seasonal dummies and a trend. The effective sample size to 
estimate auxiliary regressions was 416 (8 years of weekly data). 
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Table 2.b. Tests for unit roots at frequency   in the filtered series 
   ,F ESM

ty  ,W ESM
ty  ,C ESM

ty
 

 ,F RESM
ty ,W RESM

ty ,C RESM
ty  Critical values(1) 

          5% 10% 
0  -3.316 -2.527 -3.104  -4.880 -3.979 -3.886  -3.202 -2.927 
  -1.700 -3.400 -2.678  -1.732 -3.525 -2.632  -1.803 -1.500 
          90% 95% 
/26  15.199 10.425 11.128  20.507 15.904 18.247  2.245 2.917 
2/26  8.103 10.454 10.685  22.881 20.862 15.231  2.173 2.832 
3/26  5.312 4.750 4.701  9.836 10.632 6.596  2.198 2.809 
4/26  4.942 3.603 6.495  6.899 4.989 6.186  2.159 2.797 
5/26  5.800 4.727 2.133  6.316 6.119 2.490  2.131 2.749 
6/26  5.773 6.076 9.894  6.501 7.229 9.381  2.171 2.793 
7/26  7.196 5.951 7.579  7.307 6.125 7.712  2.166 2.814 
8/26  5.996 4.954 11.212  5.999 4.898 11.172  2.170 2.801 
9/26  8.443 5.078 8.809  8.451 5.117 8.389  2.181 2.799 
10/26  3.497 7.163 2.716  3.437 7.462 2.790  2.186 2.833 
11/26  8.870 4.671 6.555  9.984 5.069 6.097  2.154 2.789 
12/26  9.046 5.919 12.451  9.714 5.722 11.902  2.135 2.794 
13/26  10.600 8.673 11.452  10.754 8.756 10.739  2.162 2.771 
14/26  5.682 5.302 8.586  5.680 4.942 7.978  2.134 2.771 
15/26  9.718 6.654 6.584  10.024 6.327 6.578  2.158 2.842 
16/26  10.725 8.258 8.515  10.742 8.819 8.101  2.189 2.814 
17/26  6.856 6.795 4.500  7.351 7.298 3.901  2.119 2.704 
18/26  9.064 7.263 8.959  9.274 8.025 9.036  2.194 2.865 
19/26  11.945 7.439 16.572  12.126 7.524 16.535  2.198 2.838 
20/26  6.496 9.076 5.754  6.919 9.220 5.492  2.166 2.772 
21/26  5.482 12.043 4.615  5.635 11.843 4.423  2.163 2.766 
22/26  9.924 10.104 6.663  10.272 10.247 6.870  2.196 2.835 
23/26  11.769 11.608 5.072  11.764 10.984 4.891  2.135 2.775 
24/26  6.046 4.994 5.974  6.289 5.279 6.211  2.161 2.848 
25/26  8.929 5.299 4.534   9.178 5.442 5.271  2.186 2.840 
(1) Critical values have been obtained by Monte Carlo simulation experiments. The data generating process is a 
seasonal random walk where the disturbance term has unit variance. Twenty thousand replications were 
conducted. Testing equations include a constant and a trend. The effective sample size to estimate auxiliary 
regressions was 416 (8 years of weekly data). 
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Table 3. Tests for stationarity at frequency   in weekly price series 
   F

ty  
Critical values 

(1) 
 ,F ESM

ty  
,F RESM

ty  
Critical values 

(2) 

l   3 8 52 90% 95%  3 8 52 3 8 52 90% 95% 

  1.145 0.534 0.317 0.395 0.519  26.69 12.05 6.18 26.80 12.11 6.21 1.198 1.655 

  
 W

ty
 

Critical values 
(1) 

 ,W ESM
ty ,W RESM

ty
 

Critical values 
(2) 

l   3 8 52 90% 95%  3 8 52 3 8 52 90% 95% 

0  0.365 0.170 0.066 0.135 0.169  0.816 0.371 0.102 0.707 0.324 0.101 0.121 0.149 

  
 C

ty
 

Critical values 
(1) 

 ,C ESM
ty ,C RESM

ty
 

Critical values 
(2) 

l   3 8 52 90% 95%  3 8 52 3 8 52 90% 95% 

0  0.345 0.158 0.052 0.135 0.169  0.495 0.226 0.067 0.481 0.219 0.066 0.121 0.149 
5/26  1.257 1.414 0.481 0.337 0.418  1.405 1.166 0.329 1.284 1.134 0.331 1.029 1.289 
10/26  1.543 1.019 0.379 0.344 0.422  9.261 4.986 1.511 8.879 4.853 1.488 1.043 1.314 
(1) Critical values have been obtained by Monte Carlo simulation experiments. The data generating process was a 
white noise with unit variance. Twenty thousand replications were conducted. Testing equations include a 
constant, seasonal dummies and a trend. The effective sample size to estimate auxiliary regressions was 416 (8 
years of weekly data). 
(2) Critical values have been obtained by Monte Carlo simulation experiments. The data generating process was a 
white noise with unit variance. Twenty thousand replications were conducted. Testing equations include a 
constant and a trend. The effective sample size to estimate auxiliary regressions was 416 (8 years of weekly 
data). 
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Figure 1. Weekly series of Canary banana prices in Spanish markets, F
ty , W

ty , C
ty . 

 
Figure 2. Weekly price series filtered by ESM (k=6), ,F ESM

ty , ,W ESM
ty , ,C ESM

ty . 

 
Figure 3. Weekly price series filtered by RESM (k=6, r=6), ,F RESM

ty , ,W RESM
ty , ,C RESM

ty . 

 
 


