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Abstract. Controlling for unobserved heterogeneity is a fundamental challenge in 

empirical research, as failing to do so can introduce omitted variables biases and 

preclude causal inference. In this paper we develop an innovative method – the 

Iterative Geographically Weighted Regression (IGWR) method – to identify clusters 

of farms that follow a similar local production econometric model, taking explicitly 

unobserved spatial heterogeneity into account. The proposed method is the perfect 

combination of the GWR approach and the adaptive weights smoothing (AWS) 

procedure. This method is applied to regional samples of olive growing farms in Italy. 

The main finding is that the conditional global IGWR model fits the data best, proving 

that explicitly accounting for unobserved spatial heterogeneity is of crucial 

importance when modeling the production function of firms particularly for those 

operating in land based industries  

 

 
 
 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

1. Introduction  

Although theory supports firms do not operate on a common production function (homogeneous 

technology), in most empirical literature a global production function is proposed that assumes 

production technology is invariant over space and across firms. As a matter of fact, especially in 

land based industries such as agriculture, the analysis of production often need to be more 

nuanced and account for the spatial variations in production technology arising from local-

specific solutions that satisfy, for example, the environmental constraint of a geographical area. 

Assuming a common production function encompassing every sample observation, i.e. failing to 

recognize the geographical variations in technology, leads to biased estimates.  

When it is possible to classify the sample observations into certain categories defined on the 

basis of a priori sample separation, for example the location in different geographical or 

administrative regions, then a production function can be estimated for each group of firms. 

These estimates can then be used to build a meta-production, which represents the envelope of 

the production points of the most efficient groups (Hayami and Ruttan, 1971; Mundlak and 

Hellinghausen, 1982; Lau and Yotopoulos ,1989; Battese and Rao, 2002). There are cases, 

though, in which the groups of firms sharing a common technology and the boundaries of the 

regions in which they operate cannot be defined on the basis of information known a priori. In 

this case cross firm heterogeneity can be modeled in the form of continuous parameter variation, 

such as in state-dependent production functions (Munlak, 2012).  As a matter of fact the data 

referring to the state of nature are usually highly aggregated over space, hence of little use to 

discriminate between different states of nature at the farm level. An alternative is to specify and 

test a latent class model, also referred to as finite mixture model (Orea and Kumbakhar, 2004; 

O’Donnell and Griffith 2006;), which treat heterogeneity in technology as generated by a latent 

discrete distribution.  

In this paper we extend to this latter stream of literature by taking explicitly into account the 

inherent spatial heterogeneity in technologies. Spatial heterogeneity refers to those cases in 

which the same stimulus provokes a different response in different parts of the study region. 

Variations in relationship over space are referred to as a particular case of non-stationarity. If a 

spatial non-stationary relationship is modeled using global models, possible wrong conclusions 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

might be drawn. In order to overcome the biasedness due to spatial heterogeneity, we propose an 

innovative method, i.e. the Iterative Geographically Weighted Regression (IGWR), to identify 

spatial technology clusters, i.e. groups of firms using a common technology.  

The rest of the paper is organized as follows. In the second session we present the methodologies 

used to identify the spatial clusters of olive growing farms that is the subsample of farms in 

which a single local econometric model is justified. In the third session we present an application 

to the olive growing farms in Italy. Finally, some concluding comments are provided. 

2. Methodology 

In this section we briefly describe the Iterative Geographically Weighted Regression algorithm. 

In order to account for local parameter estimates over space GWRs are typically used 

(Fotheringham et al., 2002). The basic idea behind local geographical estimations is that simple 

linear functions may fit well for observations close to site i, but they will probably be 

inappropriate when more distant observations are included. In other words, this means that 

simple econometric models might provide a reasonable approximation of the local estimate as 

long as we use the information in a group of observations close to i. Therefore, simple linear 

functions can be written to account for local parameter estimates in the following way 

y = β⨂X 𝟙+ ε,   ε~MVN 0,σ!I                                               [2.1] 

where y is an n-dimensional column vector, β is an n by k+ 1 matrix with i-th row β! =

(β!", β!", β!",… , β!")′, ⨂ is a logical multiplication operator in which each element of β! is 

multiplied by the corresponding element of the i-th row in X, x! = (x!", x!", x!",… , x!"), 𝟙 is a 

(k+ 1)-dimentional column vector of ones, and ε is an n-dimensional column vector. Then, a 

geographically weighted estimator for each observation is simply obtained by repeated Weighted 

Least Squares (WLS) estimations 

β!!"# = X!W!X !!X!W!y, i = 1,…n                                            [2.2] 

where W! is an n-by-n matrix whose off-diagonal elements are zero, while those along the 

diagonal denote the geographical weights w!",w!",… ,w!",… ,w!"  of each of the n observed 

data for regression point i. We will therefore have n diagonal spatial weighting matrices and n 

sets of local parameter estimates that correspond to the marginal effects. 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

Given our aim of identifying spatial clusters, that is subsamples of observations (farms in our 

case) in which a single local econometric model is justified, we iteratively extend the GWR 

approach till when all the observations with similar beta coefficients will belong to the same 

homogeneous cluster. This is obtained by computing new weights in the main diagonal of W! at 

each iteration (see Polzehl and Spokoiny, 2000) and then comparing the estimated beta 

coefficients in [2.2] by using distance criteria. During this procedure, it is important to provide 

enough observations for each group since those characterized by a scarce quantity will be 

automatically excluded from the analysis due to identification problems, and treat as outliers. 

This can be avoided by setting the number of observations sufficiently larger than the number of 

parameters to be estimated. It is worth noting that the more the regressors, the higher the 

minimum number of observations required to construct the spatial clusters. 

Given a production function  

y = X β+ ε                  ε~MVN 0,σ!!I!                                          [2.3] 

where y is a n by 1 vector of the quantity produced , X is an n by k matrix of inputs, β is a k by 1 

vector of coefficient estimates, ε is the column vector of independently and identically 

distributed normal error terms, to iteratively identify spatial clusters of farms we need first  to 

specify the diagonal matrix W! in [2.2]. For this purpose we use the bi-square kernel weighting 

function for the initial weights and the Gaussian kernel weighting function for the iterative 

procedure (i.e. to update the weights), which have the following forms 

w!"
!"#$ = 1−

d!"
b

! !

I d!" < b ; w!"
!"#$$ = exp −0.5

d!"
b

!
               [2.4]  

where w!" is the weight given to observation j in constructing the estimate for observation i, d!" is 

the Euclidean distance between observations i and j, I .  is the indicator function that equals 1 if 

the condition in parenthesis holds and b is the so-called bandwidth. The choice of the bandwidth 

value is crucial: nearby observations of i are defined by the value of b that, therefore, determines 

which observations receive weight in constructing the estimate for observation i. Moreover, the 

value of b determines how rapidly the weights decline with distance. In general, higher values of 

b put more weight on distant observations leading to results similar to those obtained by OLS. To 

solve the problem of choosing an optimal bandwidth value, b!"#, a cross-validation (CV) method 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

has been proposed and still currently used, which minimizes the overall residual sum of squares 

obtained when observation i is deleted in forming its own forecasted value 

b!"# = min! CV = min! y! − y!! b
!!

!!!                                     [2.5] 

(Fotheringham et al., 2002). Another important issue is that the bandwidth value can be defined 

as fixed or variable. A fixed bandwidth presumes a fixed distance in which all the observations 

located at lower-distances are taken into account for the neighborhood definition. On the 

contrary, a variable or adaptive bandwidth assumes a fixed number of neighboring observations, 

so defining a k-nearest neighbor approach. In spatial economic analyses it has been suggested to 

use an adaptive bandwidth (McMillen and Redfearn, 2010). Thus, in this paper we adopt an 

adaptive bandwidth and we define, for the used kernel weighting function, the optimal variable 

bandwidth (b!"#) by using the minimizing CV criterion in [2.5]. The kernel function used to 

calculate the bandwidth value for each data set is the same kernel chosen to define the initial 

weights (i.e. the bi-square function). Moreover, we define the distance measure as a simple 

Euclid distance between farms in space1. 

Once obtained initial GWR estimates we can start the iterative procedure. The IGWR algorithm 

is based on different steps. The first step starts with the definition of a starting weighting vector, 

w!"
! = K d!"; b , which is a Bisquare kernel function of the form in [2.4] based on both the 

distance between two units in space, d!", and the optimal bandwidth value obtained by the 

combination of the model in [2.3] with the criterion in [2.5]. The initial parameter and variance 

estimates, β!!,σ!! , are then calculated by using the GWR model in [2.1] and the production 

function in [2.3]. From the second step and until the condition max w!"
!!! −w!"

! < ω  ∀ij, i ≠ j 

holds, with ω a fixed small value, updated weights w!"
!  are calculated for each iteration l as 

follows. At the same iteration l the GWR parameter estimates β!!, β!!   ∀ij, i ≠ j are compared by 

using the following quadratic forms 

T!!"
! = β!! − β!!

!
Σ!

!! β!! − β!!                      [2.6] 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 The package GWmodel in R (Lu et al., 2014) was useful to obtain the optimal bandwidth values. We needed only 

to specify an Euclid distance matrix, the used kernel function for the initial weights and the same model as in [2.3]. 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

where Σ! is the pooled variance-covariance matrix obtained as a weighted average of the two 

variance-covariance matrices, i.e. Σ! = tr W! Σ! + tr W! Σ! tr W! + tr W! , and (β!!, β!!) 

are (k+ 1)-dimensional column vectors. The updated weights are then calculated as a product of 

the previous weights with the updated ones, 

w!"
! = K d!"! ; b K T!"! ; τ                                       [2.7] 

where d!"! = d!" k in order to guarantee that further iterations do not decrease in the estimation 

accuracy, whereas τ is a parameter that scales the value of T!!"
! . In particular, the second factor in 

equation [2.7] is equal to K T!!"
! ; τ =   exp −0.5 T!"!τ

!
. The choice of τ is usually arbitrary 

and depends on the weight given from researchers to the criteria in [2.6]. The higher is the value 

of τ, the higher is the sensitivity to structural changes and therefore the number of clusters over 

space. Generally, a sensitivity analysis is required. Polzehl and Spokoiny (2004) found different 

default values by using Monte Carlo simulations and showed that this value is a function of the 

α-value. Finally, in order to stabilize the convergence procedure, the weights w!"
!  are then re-

updated by averaging them with those obtained in the previous step 

w!"
! = 1− η w!"

!!! + ηw!"
!                                      [2.8] 

where η ∈ 0,1  is a control parameter (also called memory parameter in Polzehl and Spokoiny, 

2004) which is equal to 0.5. 

	
  

3. An Application To Olive Farms In Italy 

We use the above technique to examine the production of olives in Italy. In the Mediterranean 

area, Italy represents the central point of olive production, either in terms of history and 

environmental conditions, and it ranks second in the world after Spain for olive-oil production. 

The Italian olive sector is still characterized by a large number of small operations, more in detail 

Italy has the highest number of holdings (776 000) with the smallest average size (1.3 ha) in the 

EU Mediterranean countries. Over time the different microclimate conditions, soil formations 

and elevation have led to natural or man assisted modifications (breeding and selection) of the 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

olive tree into many location-specific varieties, each with different productivity, agronomic 

needs and adaptability to irrigation and mechanization.2 While in the case of arable crops, e.g. 

maize and oil seeds, local varieties have been widely substituted by industrial global varieties, 

whose production response does not vary much over space, on the contrary in the case of olive 

tree the local-specific varieties are still largely in use. The territorial anchorage of the production 

of location-specific olive varieties is further enforced by social and marketing considerations 

since, similarly to the case of wine and grapes, farmers choose the varieties to grow not only on 

the basis of their agronomic characteristics (disease resistance, climate preferences, high 

productivity, etc.) but also for their aptitude to preserve local knowledge (flavor, suitability for 

curing, etc.) and guarantee the production of high quality oil.   

For example, in the case of olive trees farmers grow different cultivars that have different yields, 

aptitude to the mechanization of the harvesting and input needs. As we mentioned before the 

decision to grow a low-yielding or higher cost variety, hence not to operate on the most efficient 

production function, is partly connected to the characteristics of the local natural environment 

(climate, water, soils, etc.) and partly to the preservation of the local cultural heritage (flavor and 

quality of oil, landscape, etc.). Under these circumstances it is very difficult, when not 

impossible, to collect all the information needed to define the boundaries of the area within 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Two main methods of olive growing can be distinguished: traditional processes, generally used in mountainous 

or hilly areas which are not irrigated, and modern processes which involve elevated planting density, irrigation and 

mechanization. Over the last 30 years, the Italian olive growers have moved from traditional olive groves to new (i) 

medium-density plantation, adapted for mechanical harvesting; and (ii) high-density plantation adapted for full 

mechanization and especially for continuous harvesting using straddle machines. In both models (traditional and 

modern), the selection of varieties is fundamental to obtain the maximum productivity. 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

which a specific technology results efficient. Since the area, hence the groups, within which 

farms use the same production technology, are not known a priori, then the meta-production 

function is no more useful. A solution is offered by the application of the IGWR method, which 

allows us to identify local technology clusters of farms, that is groups of farms that follow a 

similar local production econometric model, by taking unobserved spatial heterogeneity 

explicitly into account.  

3.1 Data 

This study relies on cross-sectional data collected by the 2012 Italian Farm Accountancy Data 

Network (FADN) survey. The FADN sample is stratified according to criteria of geographical 

region, economic size (ESU) and type of farming. The field of observation is the total of 

commercial farms.3 The survey gathers physical and structural data (i.e. location, crop areas, 

livestock numbers, labor force, etc.) and the economic and financial data needed for the 

determination of incomes and business analysis of agricultural holdings. It is worth noting that, 

starting from year 2009, the Italian FADN collects the geographic longitude and latitude of the 

farm, in this way allowing us to use spatial econometric models and, in our specific case, to 

account for farm spatial heterogeneity. Another advantage of the Italian FADN is that the 

information on input use and production results are collected by activity. As a consequence, 

differently from most of the previous SFA studies4, we do not need rely on data referred to the 

whole farm production, hence we do not need to focus on farms highly specialized in olive 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 In the FADN a farm is defined commercial when is large enough to provide a main activity for the farmer and a 

level of income sufficient to support his or her family. 
4 For example, in the case of olive production see Dinar et al. (2007) and Karagiannis (2009). 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

growing. The advantage of using information of farms either specialized and not specialized in 

olive growing is that the regional samples are large enough to perform separate regional analysis.  

The study focuses on three samples of olive-growing farms located respectively in the Marche 

(268) region, Apulia (270) and Tuscany (317). The dependent variable in the production function 

is the olive production measured in kilograms. The inputs included as explanatory variables are 

(a) land (measured in hectares), including only the share of utilized agricultural area devoted to 

olive-tree cultivation; (b) labor, comprising hired (permanent and casual) and family labor, 

measured in working hours; (c) capital, proxied by the hours of mechanical work employed in 

olive growing and harvesting; (d) other intermediate inputs including expenses for water, 

fertilizers, pesticides, fuel and electric power and other miscellaneous expenses, measured in 

euros, augmented with the expenses for contract work.  

3.2 Empirical results 

Here we present the results of the application of the IGWR approach to three samples of olive 

growing farms, the first referred to the Marche region, the second one to Tuscany and the third to 

Apulia.  

We use the Cobb–Douglas (CD) functional form since the coefficients of this production 

function are easy to interpret. Furthermore, the use of the CD function avoids the 

multicollinearity problem that arises with more flexible functional forms such as the translog and 

the Fourier functional forms. In addition to this, flexibility is not an issue in our case given our 

coefficients are local specific.  

More in detail, with the IGWR method we identified 7 spatial technology clusters of olive 

growing farms in the Marche region, 4 in Apulia and 2 in Tuscany (Fig. 1).  The optimal 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

bandwidth values suggested by the Cross-validation (CV) criterion in [2.7] are 174261 for 

Marche, 261 for Tuscany and 78 for Apulia, whereas the values of τ suggested by the sensitivity 

analysis performed on each sample of observations are 0.1, 0.01 and 0.001 for the Marche 

region, Tuscany and Apulia respectively.  

We have computed the AIC statistics in order to select the model that fit the data best. The best 

model is the one with the lowest AIC. Both in Marche and Tuscany the model with spatially 

varying coefficient fits the data best, while in Apulia even if we find no evidence of spatial 

dependence the best fitting model is the spatial model with spatially varying parameters. These 

results give rise to the hypothesis that the effects of farm localization on production are mainly 

represented by heterogeneity in technology, and not by the presence of spatial autocorrelation. 

These results allow us to conclude that accounting for unobserved spatial heterogeneity is an 

important issue when modeling the production function of olive growing farms. It is interesting 

to note that in all three regions the parameter estimates for all inputs are statistically significant 

in the global model, while in the model with spatially varying coefficients this is no longer true. 

For example, in the Marche region the coefficient estimate associated with labor is significant 

only in one cluster, while changes in levels of labor do not have a statistically significant impact 

on olive production in the remaining clusters. As for the other inputs, according to the global 

model a 1% increase in their use leads to approximately a 0.18% increase in output, while the 

results of the IGWR model show that in three clusters the output elasticity of other inputs is 

greater than 0.20%, while in other two clusters it is not statistically different from zero. In other 

word the results of the global model provide misleading signals since they fails to recognize the 

geographical variation in production technology. 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

Finally, in order to test the validity of our results, we overlaid the regional maps of the olive 

technological clusters to the maps of olive varieties obtained on the basis of a priori information 

available at the territorial level. It is very interesting to note that there is a high degree of 

overlapping between these two map types. The results of this cross-validation test show that farm 

geographic longitude and latitude can be used to proxy soil types, climate and variety variations, 

hence to account for the spatial heterogeneity in technologies arising from the adaptation of 

production techniques to variables that are not usually gathered by agricultural surveys at the 

farm level. 

Conclusions 

The article presents an empirical analysis of production function within the framework of 

heterogeneous technology with specific attention to the role of spatial non-stationarity in the 

identification of the production function and its impact on the choice of estimators. We suggest a 

new approach for the simultaneous estimation and stationary test of the regression models, to see 

whether or not the model parameters show to be spatially clustered and thus locally 

homogeneous. 

The proposed partitioning algorithm is based on an iterative version of the geographically 

weighted regression methods to identify groups of farms, which obey a common production 

function. The proposed IGWR procedure explicitly allow for local parameter heterogeneity.  

The framework is applied to estimate the production functions of olives on geocoded individual 

farm data as collected by the RICA sample survey in 2012 in 3 Italian Regions. The empirical 

results confirmed the existence of technological heterogeneity; therefore empirical analysis that 

fails to incorporate parameter heterogeneity can produce misleading results. In our empirical 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

analyses we always identify at least two groups, with significantly different regression 

parameters. Once partitioned the study area, we observed that the spatial interaction between 

farms belonging the same cluster is not anymore significant, giving rise to the hypothesis that the 

effects of farm localization on production technology are mainly represented by heterogeneity, 

and not by the presence of spatial autocorrelation. The presence of these different production 

regimes is related to the existence of some latent, not observed, factors that are closely related to 

the spatial position of the observed farms as climate, soil types, varieties.. A specific feature of 

these factors is that they are locally approximately homogeneous, but they rapidly change as 

soon as a natural, social or economic border is crossed. 

The results are encouraging even if some additional research is needed. In particular, the 

conditions under which the proposed partitions imply a better fit of the regression model, should 

be better investigated. Finally, the proposed strategy performs very well with large datasets, but 

we need to explore the computational burden when huge sample sizes are used. 

 
References 
Battese G. E., and Prasada Rao D. S. 2002. “Technology Gap, Efficiency, and a Stochastic 

Metafrontier Function.” International Journal of Business and Economics 1(2):87-93. 

Fotheringham, A. S, Brunsdon C., and Charlton M. 2002. Geographically Weighted Regression. 
The analysis of spatially varying relationships. Chichester: John Wiley & Sons, Ltd.  

Dinar A., Karagiannis  G., and Tzouvelekas V. 2007. “Evaluating the impact of agricultural 
extension on farms' performance in Crete: a nonneutral stochastic frontier approach.” 
Agricultural Economics 36(2):135-146. 

Hayami, Y., and Ruttan V. W.  1971. “Agricultural Development: An International Perspective.” 
Baltimore: John Hopkins University Press 

Karagiannis G., and Tzouvelekas V. 2009. "Measuring technical efficiency in the stochastic 
varying coefficient frontier model,” Agricultural Economics 40(4):389-396. 

Lau, L. J., and Yotopoulos P. A. 1989. “The Meta-Production Function Approach to 
Technological Change in World Agriculture.” Journal of Development Economics 31: 
241-269. 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

Lu B., Harris P., Charlton M. and Brunsdon C. 2014. “The GW model R package: further topics 
for exploring spatial heterogeneity using geographically weighted models.” Geo-spatial 
Information Science 17(2):85-101. 

Mundlak Y., Butzer R., and Larson D. 2012. “Heterogeneous technology and panel data: The 
case of the agricultural production function.” Journal of Development Economics 
99(1):139-149. 

Mundlak, Y., and Hellinghausen R. 1982. “The Intercountry Agricultural Production Function: 
Another View.” American Journal of Agricultural Economics 64:664-672. 

O'Donnell C. J., and Griffiths W. E. (2006). Estimating State-Contingent Production Frontiers, 
American Journal of Agricultural Economics 88(1): 249-266. 

Orea, L. & Kumbhakar, S.C., 2004. “Efficiency measurement using a latent class stochastic 
frontier model.” Empirical Economics 29(1):169–183. 

Polzehl, J., Spokoiny, V. 2000. “Adaptive weights smoothing with applications to image 
segmentation.” Journal of the Royal Statistical Society 62, Series B: 335-354. 

Polzehl, J., Spokoiny, V. 2004. Local Likelihood Modeling by Adaptive Weights Smoothing. 
Available at. http://opus4.kobv.de/opus4-matheon/frontdoor/index/index/docId/69. 

 
  



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

Tables and Figures 
 
Table 1. Marginal Effects – Marche Region   

 Global Model Model with spatially 
varying parameters 

Spatial Global Model Spatial Model with 
spatially varying 
parameters 

Intercept -0.519*** - -0.086 - 
Intercept (1) - -0.856** - -0.322 
Intercept (2) - 0.257 - 0.270 
Intercept (3) - -0.547 - -0.544 
Intercept (4) - 0.440 - 0.471 
Intercept (5) - 0.444 - 0.486 
Intercept (6) - 0.776˙ - 0.771˙ 
Intercept (7) - 0.267 - 0.412 
Land 0.433*** - 0.429*** - 
Land (1) - 0.515*** - 0.500*** 
Land (2) - 0.499*** - 0.500*** 
Land (3) - 0.210* - 0.220** 
Land (4) - 0.373*** - 0.372*** 
Land (5) - 0.882** - 0.870*** 
Land (6) - 0.729*** - 0.719*** 
Land (7) - 0.297*** - 0.298*** 
Labour 0.089* - 0.094* - 
Labour (1) - -0.061 - -0.056 
Labour (2) - 0.016 - 0.021 
Labour (3) - 0.395** - 0.411*** 
Labour (4) - 0.064 - 0.065 
Labour (5) - -0.113 - -0.101 
Labour (6) - 0.172 - 0.160 
Labour (7) - 0.029 - 0.007 
Capital 0.062˙ - 0.064˙ - 
Capital (1) - 0.144 - 0.154˙ 
Capital (2) - 0.125 - 0.120 
Capital (3) - -0.089 - -0.094 
Capital (4) - 0.098 - 0.096 
Capital (5) - 0.069 - 0.063 
Capital (6) - -0.230 - -0.209 
Capital (7) - 0.164 - 0.180˙ 
Other inputs 0.179*** - 0.180*** - 
Other inputs (1) - 0.230*** - 0.240*** 
Other inputs (2) - 0.187* - 0.185** 
Other inputs (3) - 0.360** - 0.341** 
Other inputs (4) - 0.186** - 0.185** 
Other inputs (5) - 0.039 - 0.032 
Other inputs (6) - -0.024 - -0.022 
Other inputs (7) - 0.311*** - 0.311*** 
rho - - -0.168 -0.213 
lambda - - 0.453˙ -0.442 
AIC 290.215 279.002 292.169 282.016 
Note: Asterisks ∗ , ∗∗ , and ∗∗∗  denote significance at the 10%, 5%, and 1% levels, respectively. 

  



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

Table 2. Marginal Effects – Tuscany Region 
 Global Model Model with spatially 

varying parameters 
Spatial Global Model Spatial Model with 

spatially varying 
parameters 

Intercept -1.641*** - -1.478*** - 
Intercept (1) - -2.791*** - -3.229*** 
Intercept (2) - 1.304* - 1.380** 
Land 0.167*** - 0.168*** - 
Land (1) - 0.108 - 0.119 
Land (2) - 0.175*** - 0.166*** 
Labour 0.273*** - 0.281*** - 
Labour (1) - 0.277* - 0.244 
Labour (2) - 0.309*** - 0.327*** 
Capital 0.179*** - 0.176*** - 
Capital (1) - 0.182˙ - 0.173˙ 
Capital (2) - 0.168** - 0.153** 
Other inputs 0.337*** - 0.336*** - 
Other inputs (1) - 0.570*** - 0.595*** 
Other inputs (2) - 0.281*** - 0.275*** 
rho - - -0.056 0.120 
lambda - - -0.028 -0.974 
AIC 565.735 560.494 569.472 562.319 
Note: Asterisks ∗ , ∗∗ , and ∗∗∗  denote significance at the 10%, 5%, and 1% levels, respectively. 

Table 3. Marginal Effects – Apulia Region  
 Global Model Model with spatially 

varying parameters 
Spatial Global Model Spatial Model with 

spatially varying 
parameters 

Intercept -1.318*** - 0.428 - 
Intercept (1) - -2.230*** - 1.784 
Intercept (2) - 0.836 - 0.905˙ 
Intercept (3) - 1.332* - 1.349* 
Intercept (4) - 1.081 - 1.442* 
Land 0.056˙ - 0.059˙ - 
Land (1) - -0.033 - -0.031 
Land (2) - 0.140˙ - 0.089 
Land (3) - 0.033 - 0.047 
Land (4) - -0.075 - -0.097 
Labour 0.378*** - 0.412*** - 
Labour (1) - 0.503*** - 0.509*** 
Labour (2) - 0.405** - 0.422* 
Labour (3) - 0.236 - 0.235˙ 
Labour (4) - 0.564* - 0.399˙ 
Capital 0.217*** - 0.192*** - 
Capital (1) - 0.009 - 0.013 
Capital (2) - 0.297˙ - 0.324* 
Capital (3) - 0.278* - 0.290** 
Capital (4) - 0.153 - 0.081 
Other inputs 0.346*** - 0.346*** - 
Other inputs (1) - 0.582*** - 0.566*** 
Other inputs (2) - 0.221*** - 0.222*** 
Other inputs (3) - 0.373*** - 0.359*** 
Other inputs (4) - 0.319* - 0.543*** 
rho - - -0.369˙ -0.812 
lambda - - 0.203 -2.005 
AIC 524.231 514.591 524.947 504.679 
Note: Asterisks ∗ , ∗∗ , and ∗∗∗  denote significance at the 10%, 5%, and 1% levels, respectively. 



	
  
	
  
	
  
	
   	
  
	
  
	
   	
   	
  

	
  

Figure 1. Spatial clusters of olive growing farms 

 

Note: Bisquare kernel function for initial weights and Gaussian kernel function for the updated ones are used. 

Adaptive bandwidths are based on the CV criterion: (a) 𝑏!""!" = 174, (b) 𝑏!""!" = 261, (c) 𝑏!""!" = 78.  

 


