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Abstract

Concerns have frequently been raised regarding the impact of federally-subsidized crop insurance

and agricultural subsidy payments on land allocation and crop mix choices. If the reduction in

production risk encourages farmers to plant on economically marginal land, it has often been

asserted that this will lead to increases in environmental damage, including increases in soil erosion

rates. This paper investigates the “conventional wisdom” that economically marginal land is also

environmentally fragile, as defined by higher levels of inherent soil erodibility. We address this issue

by looking at the distribution of crop yields for 4 major crops across National Resource Inventory

(NRI) erodibility classes and by performing regression analysis. Our results indicate that land with

higher levels of soil erodibility exhibit lower mean crop yields, a proxy for economic marginality,

which lends support to the conventional wisdom.



1 Introduction

Recent research undertaken to explore the relationship between government programs, e.g., crop

insurance, and acreage allocation decisions (see Wu (1999) and Goodwin, Vandeveer, and Deal

(2004), for example) was motivated, in part, by concerns that increases in acreage or changes

in input use would lead to a decline in environmental amenities. It has generally been assumed

that the reductions in production risk associated with the availability of insurance and income

subsidies encouraged production on economically marginal land. In this context, economically

marginal land can be thought of as land that would not be cultivated at current output and input

prices without the availability of government support programs. The “conventional wisdom” is

that economically marginal land is also environmentally fragile, i.e., highly erodible (Goodwin,

Vandeveer, and Deal (2004). This assumed positive correlation between economically marginal

land and environmentally fragile land has rarely been questioned. In one of the few attempts to

address this issue, Heimlich (1989) concluded that there was a relatively weak correlation between

economically and environmentally marginal land.

For given output and input prices, land productivity (i.e., potential crop yield) determines

whether or not land should be considered economically marginal. If input prices decrease, output

prices increase, or the provision of government programs reduces production risk, economically

marginal land may be brought into production. If this land is also highly erodible, the increase in

cultivated cropland will potentially lead to greater levels of soil erosion, habitat destruction, and

water quality degradation. As a result, the environmental impact of the provision of government

income support and risk reduction programs depends on the direction and the magnitude of the

link between economically marginal and environmentally fragile land.

It has generally been assumed that land retired from production due to its inherent erodibility or

erosion history will not entail the sacrifice of high levels of production since erodible land is thought

to be less productive than nonerodible land.1 If there is not a significant negative relationship

between land erodibility and productivity, efforts to take highly erodible land out of production

(e.g., the Conservation Reserve Program (CRP)) could result in higher levels of foregone production

than originally thought. As a result, the opportunity costs, in terms of foregone production, incurred

by society when attempting to reduce soil erosion will again depend on the direction and magnitude

of the link between economically and environmentally marginal land.

In a comprehensive study of the relationship between risk management policies and environmen-

1In addition to the inherent erodibility of the soil, the impact on productivity will also depend on the tolerance
of the land to soil loss. Our measure of erodibility includes the T factor, the measure of tolerance to productivity
decreases due to soil loss.
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tal outcomes, Soule, Nimon, and Mullarkey (2000) concluded that “the hypothesis that economi-

cally marginal land is also environmentally marginal is largely untested” (p.2) and that “research

efforts need to be broadened to determine the environmental vulnerability of economically mar-

ginal cropland” (p.26). The limited research conducted in this area occurred primarily during

the 1980s. Recent changes in federal risk management programs (e.g., increases in federal crop

insurance subsidy levels) provide increased incentives for farmers to expand crop acreage on eco-

nomically marginal land. If the land brought into production is also environmentally fragile, these

policies may result in higher levels of environmental damage. Therefore it is increasingly important

to explore the relationship between economically and environmentally marginal land.

Contrary to the concerns expressed by many (see Plantinga (1996)) as to the susceptibility of

less productive land to soil erosion, one can also provide a reasonable argument that less productive

land may be less susceptible to soil erosion (i.e., less erodible). For example, lower land productivity

may result from low levels of soil permeability which inhibits the transport of water from rainfall to

the rooting zone of the plant. As a result, one would expect to obtain lower crop yields. At the same

time, lower soil permeability is associated with lower levels of soil erosion since less permeable soils,

such as clay, are less susceptible to wind- or water-induced soil erosion. Therefore, it is theoretically

possible that less productive land may be associated with less erodible soil. While “conventional

wisdom” would indicate that economically marginal land (i.e., land with lower productivity) should

also exhibit higher levels of soil erodibility, this is an open empirical question that deserves further

study.

The potential environmental impact of land brought into production can be seen by looking at

differences in soil erodibility by changes in land use. Table 1 contains the mean soil erodibility levels

of land brought into cultivation during the period from 1982 to 1997.2 The table designates the

land use prior to cultivation and the data indicates the level of soil erodibility as measured after the

land was brought under cultivation.3 Noncultivated cropland and pasture that was brought into

cultivation during this period exhibited higher levels of soil erodibility than land that remained

under cultivation during the period.4 For example, pasture brought into production during the

1982-1987 period exhibited a level of soil erodibility that was almost twice as large (15.8609 vs.

2The changes in land use designation are contained in the National Resources Inventory. The NRI contains a
number (recordid) that allows one to link data from multiple points in time to one sample site. While data exists
at five year intervals, these changes do not take into account changes that may have occurred during the five year
inventory period.

3The NRI does not provide measures of erodibility for land (e.g., pastureland) that is not designated as cropland
(cultivated or noncultivated) or Conservation Reserve Program land. While the erodibility index was therefore not
available for the beginning land use for pastureland, alternative analysis of cultivated and noncultivated cropland
indicates that the soil erodibility index values were similar when using the previous or ending year measure.

4Noncultivated cropland includes land used for horticulture (e.g., fruit or nuts), grass/hay/legume rotations, or
land not used for crop production (e.g., corn or cotton) during the previous three years.
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8.0736) as the land that remained under cultivation from 1982 to 1987. It is likely that the

increases in soil erodibility associated with the cultivation of previously noncultivated cropland

and pastureland reflect initial efforts, such as plowing, needed to prepare the land for planting.

If agricultural risk management policies encourage farmers to bring pasture and noncultivated

cropland into cultivation, this will increase the mean soil erodibility of land under cultivation, at

least during the initial periods of cultivation.

Table 1. Soil Erodibility by Land Use Change

Soil Erodibility
Previous Land Use

1982-1987 1987-1992 1992-1997

Cultivated 8.0736 7.6931 9.2827
Noncultivated 11.8492 11.8115 16.7845
Pasture 15.8609 13.5452 26.5619

This study attempts to explore this relationship by extending the framework employed by

Heimlich (1989). To capture the idea of economic marginality, we equate this concept with land

productivity. As with Heimlich’s study, we use mean crop yields as a measure of productivity.

In contrast to Heimlich, we look at the yields of multiple crops in our study. Heimlich used a

measure of soil erodibility (the Erodibility Index) based on the factors contained in the Universal

Soil Loss Equation (USLE).5 While the erodibility index employed by Heimlich only accounted for

water-induced erodibility, we also take into account the impact of wind-induced erodibility in our

study.

We employ two methodological approaches in our study. First, we analyze the distribution of

mean crop yields across different levels of erodibility. A finding that mean crop yields decrease

as erodibility levels increase would lend support to the conventional wisdom. Second, we employ

multiple regression analysis to determine the contribution of our measure of soil erodibility to

the variation in our measures of land productivity. We also include measures of inherent land

productivity, climate, and management practices to capture other factors that affect crop yield and

yield variability. While many of these factors are relatively stable over time, they can often exhibit

a high degree of cross-sectional variability. We employ data from the 1992 NRI and the Soil Record

Interpretation (SOILS-5) data in this study. Since the study uses data from one year only, all of

the variation in the model is cross-sectional.

This study is organized as follows. Section 2 presents a brief discussion of the literature. Section

5The USLE predicts the long-run average soil loss associated with runoff from fields with specific characteristics
and under specified cropping and conservation practices.
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3 presents a discussion of the methodology employed to test the relationship between economic

and environmental marginality. In addition, we also discuss the data and the theoretical issues

associated with the measures of economic and environmental marginality employed in this study.

The presentation and discussion of the results is provided in section 4, while a summation of the

findings and concluding remarks are presented in the final section.

2 Literature

As previously stated, there has been very little research conducted to explore the relationship

between productivity and soil erodibility. In an early effort, Bills (1985)examined the relationship

between the yields for two crops - corn silage and hay - and the level of soil erodibility on New

York cropland. He used both SOILS-5 and state generated estimated crop yields in the study.6

Using the RKLS7 components of the Universal Soil Loss Equation (USLE) to define the inherent

physical capacity of the soil to erode, he found that SOILS-5 yields for both crops exhibited a weak

negative correlation (ranging from -.093 to -.106) with the level of soil erodibility.

Heimlich’s study (1989) is the most comprehensive effort to date to explore the relationship

between land productivity and erodibility. In addition, his basic approach forms the starting point

of the approach employed in this study. As a result, a detailed discussion of his methodology and

results is warranted. Heimlich’s purpose was to test the “hypothesis that highly erodible soils are

less productive than less erodible soils and empirically investigate the overlap between physically

and economically marginal U.S. cropland” (Heimlich (1989), p.1.). He used data from the 1982

NRI survey and the Soil Survey Interpretations Record (SOILS-5) to obtain productivity and soil

erodibility measures.8 The study was national in scope since it used all nonirrigated sample points

in the NRI data where at least one of the eight crops used in the study was grown.

His methodological approach consisted of presenting the correlations between measures of pro-

ductivity and soil erodibility, the distributions of productivity measures by erodibility levels, and

regression results obtained by regressing measures of productivity on measures of erodibility. He

6Soil Interpretation Record (SOILS-5) data is a collection of soil survey attribute information. Among other
things, it contains information on physical and chemical soil properties, land use, and estimated crop yields. This
data can be linked to the NRI sample sites by a key or pointer (nriptr) contained in both datasets.

7The RKLS components of the USLE account for the soil and climate variables that affect potential soil erosion.
The R variable accounts for the impact of rainfall and runoff on potential soil erosion, the K variable accounts for
inherent soil erodibility, and the L and S variables account for the impact of slope length and steepness on potential
soil erosion.

8The SOILS-5 data contains estimated crop yields that can be linked to NRI site data. This allows the researcher
to avoid aggregating the NRI data to a level, e.g. county, where crop yield data is available. The crop yields in
the SOILS 5 data are estimated to approximate “leading commercial farmers at the management level that tends
to produce the highest economic returns per acre” (Heimlich (1989). Therefore the estimated yields may be slightly
larger than those obtained over a wide range of farm sizes and management practices.
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used the Bills-Heimlich soil erodibility classification system as the measure of soil erodibility.9 He

used corn grain yield and average net revenue from field crops as measures of soil productivity.10

Dummy variables for USDA land capability classes and subclasses and USDA prime farmland des-

ignation were included in the regression equations as independent variables to proxy for measures

of inherent land productivity.

In the correlation results, Heimlich found that the relationship between the Bills-Heimlich erodi-

bility measure and both productivity measures (i.e., corn yield and net revenue) was negative and

not significantly different from zero (-.110 and -.059, respectively). While the signs were consistent

with the hypothesis that less erodible land is more productive, the magnitudes of the correlations

were relatively small. He also found a weak and negative relationship between land capability

class and both productivity measures. The relationship between the prime farmland designation

and both productivity measures was positive, but also weak. In terms of the independent variable

correlations, the Bills-Heimlich measure of soil erodibility was not highly correlated with either

of the inherent land productivity independent variables, with a .318 correlation with USDA land

capability classes and a -.187 correlation with the USDA prime farmland designation.

When analyzing corn grain yield by level of erodibility and land capability class, Heimlich found

that yields were higher on nonerodible land for land capability classes 1-3, but were lower (except for

wind erodible land) for capability classes 4-8. Even in capability classes 1-3, crop yields were almost

as high (96 bushels/acre) on moderately erodible land as on nonerodible land (99 bushels/acre).

The same pattern held when analyzing corn yields by erodibility and prime farmland designation.

For example, corn yields on nonprime farmland in the moderately erodible class (83 bushels/acre)

were higher than those in the nonerodible class (76 bushels/acre). Similar results were generated

when net crop revenue was used as the measure of productivity. Results for both measures of

productivity indicate that the conventional wisdom that productivity is lower on highly erodible

lands may not be accurate.

Heimlich used multiple regression analysis to decompose the impact of soil erodibility classifi-

cations on productivity. Specifically he regressed the two measures of productivity on the following

independent variables: Bills-Heimlich soil erodibility classes, USDA land capability classes, USDA

land capability subclasses, and the USDA prime farmland designation. The measures of inherent

land productivity (i.e., the prime farmland designation and the class/subclass designations) were

9The Bills-Heimlich classification system used the RKLS components of the USLE to partition cropland into
three classes - highly erodible, moderately erodible, and nonerodible - based on its physical characteristics and the
type of cropping activities conducted on the land.

10The net revenue measure was calculated as the gross revenue of eight major field crops minus their variable costs
of production. This measure was employed as an alternative to corn yields since previous research indicated that
crop yields on the same land are often not highly correlated. Therefore the use of one indicator crop may bias the
results to the degree that it may not represent the yield-land erodibility relationship for all crops.

5



included to capture the impact of land characteristics, excluding land erodibility, on the dependent

variables. The independent variables were all discrete categorical variables that were represented

by dummy variables. The coefficients on these regressors indicated how much that attribute added

or subtracted from mean crop yield and net revenue. The estimated yields were generated by

summing the coefficient estimates on each regressor.

In general, highly erodible land added more to corn grain yield and net revenue than did

nonerodible land. Highest yields were generated on highly erodible land, while lowest yields were

generated on wind erodible land and nonerodible land. For example, nonerodible land added

137.3 bushels to corn grain yield, while highly erodible land added 142.4 bushels. Land capability

subclass e where potential soil erosion was deemed to be the primary limiting factor to agricultural

production subtracted 12.5 bushels from corn grain yields. While this e subclass result lends support

to the view that erodible land is less productive, the results for the land capability classes were

not as definitive. For both measures of productivity, land capability classes 1-3 exhibited higher

productivity than classes 4-8, but productivity did not decrease for each increasing class level. For

example, land in LCCs 4 and 5 subtracted more from corn grain yield than did land in LCCs 6

and 7.

In a study of the use of productivity measures to target conservation programs, Runge, Larson,

and Roloff (1986) compared a measure of erosion potential, i.e., land erodibility, with a measure

of land productivity. Runge et al. used the Bills-Heimlich measure of soil erodibility, while the

productivity index was constructed to incorporate the factors that lead to suitable root growth.11

They conducted their study for six Major Land Resource Areas (MLRAs) in the Midwest using

1982 NRI and SOILS-5 data. While MLRAs with low erosion potential generally had high values

for the productivity index, the third highest value for the productivity index occurred in a MLRA

with the most erodible land. In addition, the most productive land was not found in the MLRA

with the least erodible land. Exploring the relationship between air pollution and crop yield,

Westenbarger and Frisvold (1995) found a negative relationship between corn and soybean yields

and the Bills-Heimlich measure of soil erodibility.

Most efforts to test the relationship between economic and environmental marginality fail to

take into account differences that may exist across crops and geographic regions. 12 Little research

11The adequacy of root growth is considered to be essential to potential plant growth. Among the factors included
in the productivity index were the sufficiency of available water capacity and the sufficiency of bulk density.

12While Heimlich’s net revenue measure did take into account differences in crops, the choice of revenue as a proxy
for land productivity masked the fundamental relationship between crop yield and soil erodibility. For instance, land
with highly erodible soil may be associated with low crop yields. At the same time, an increase in output prices
or reduction in input prices may yield higher revenue on the same highly erodible soil. The first case generates a
negative relationship between erodibility and productivity, while the second yields a positive relationship. Unless
output and input prices are site-specific, revenue may not capture the direct relationship between soil productivity
and soil erodibility.
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has been conducted during the last decade to take advantage of improvements in the statistical

reliability of the NRI data used in many of these studies. Given greater data reliability, the potential

environmental impacts of government policy-induced expansions in production, and the potential

opportunity costs associated with acreage reduction programs, this relationship deserves a more

comprehensive and updated analysis.

3 Methodology and Estimation

3.1 Measures of Economic Marginality

The first step in undertaking this study is the development of empirical measures of economic

and environmental marginality. The concept of economic marginality is state dependent. Land

that could not be economically cultivated under some level of output (input) prices and policy

regimes may come under cultivation under some other price and policy regime. Holding prices and

government policies constant, an increase in the productivity of the land increases the likelihood

that a particular field will be brought into cultivation. Assuming that price and policy changes

are not specific to geographic location, differences in economic marginality across space would be

highly dependent on differences in land productivity. Since the data used in this study varies across

space (not time), differences in land productivity will determine which land should be identified as

economically marginal. We use mean crop yield as our measure of productivity in this study.13

While previous studies used one or two indicator crops (see Bills (1985), Heimlich (1989), and

Westenbarger and Frisvold (1995)) to proxy for land productivity, different crops exhibit complex

interactions with soil characteristics and climate that vary during the period of the growing season.

In particular, different crops may require different types of soil for growth. For example, corn and

soybeans grow best on high-quality finely-textured soils, while wheat grows best on deep fertile

soils (Wu and Segerson (1995)). By looking at only one crop, it may be difficult to capture the

different impacts of soil erodibility on crop productivity across different types of soil. Motivated

by this potential concern, we include equations to model mean yield for the following crops: corn,

soybeans, cotton, and grain sorghum. The inclusion of these four crops ensures that a variety of

different soil types and characteristics are studied.

The mean crop yield data we use in this study comes from two different sources - SOILS-5

estimated crop yields and NASS county-level crop yields. Following the approach employed by

Heimlich, we use the SOILS-5 estimated mean crop yields in the site-specific portion of our study.

13Differences in crop yield may result from differences in the physical, chemical, and biological characteristics of
the soil. It may also capture substitution of other inputs, e.g., fertilizers, for land.
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This data was collected and analyzed by the USDA’s Soil Conservation Service (SCS), which later

became the Natural Resources Conservation Service (NRCS). In addition to collecting data on

estimated crop yields, the NRCS collects data on soil characteristics (e.g., texture, organic matter

content, and water holding capacity), climate characteristics (e.g., mean rainfall and temperature),

and physiographic characteristics (e.g., slope and land cover) for individual soil mapping units.14

The crop yields are estimated for a series of benchmark soils. Yield estimates for other soils

are then made by comparing the key soil properties (e.g., pH levels and water holding capacity) of

the soil in question with the soil properties of similar benchmark soils. In addition, differences in

climate between the mapping units are taken into account when assigning estimated yields to each

site. These soil property comparisons and the estimated crop yields are based on the judgments of

soil scientists, agronomists, and conservationists. A number of sources of crop yield information are

used to develop the SOILS-5 yield estimates for the benchmark soils. These estimates are based

on yield measurements from all of the following: (1) commercial farm fields, (2) field trials for

particular farming practices, and (3) small research plots at experiment stations and other research

institutions. Crop yields are estimated for soils on which the particular crop is most commonly

grown.15. Attempts are made to employ ten years of data, if available, when estimating crop yields.

Crop yields are estimated assuming that the farmer employs a high level of management. The

National Soil Survey Handbook defines a high level of management as “a level obtained by leading

farmers that produce the highest economic returns per acre. It includes the best varieties; balancing

plant populations and added nutrients to the potential of the soil; control of erosion, weeds, insects,

and diseases; maintenance of optimum soil tilth; adequate soil drainage; and timely operations.”16

Given the level of management assumed for the crop yield estimates, those yield estimates should

represent the upper end of the yield distribution.

NASS county-level mean crop yields are used for the aggregate portion of our study.17 While

these yields are not directly attributable to the individual NRI sample points (and thus may mask

the heterogeneity between sites), they are constructed from historical crop yield data, and thus

provide an alternative to the SOILS-5 estimated crop yields.

Since two sources of crop yield data are employed in this study, a comparison of the summary

statistics of the two measures is warranted. Table 2 provides summary statistics comparing the

14A soil mapping unit is a collection of areas that are defined in terms of their soil components or miscellaneous
areas, where miscellaneous areas are areas that contain no recognizable soil but share common observable surface
features, such as rock formations and vegetation.

15Crop yields are not reported on soils where they are too low to be economically feasible or where they are
economically feasible but not competitive with other potential crops (Heimlich (1989))

16The National Soil Survey Handbook acts as a guideline for soil scientists when collecting soil samples, measuring
soil characteristics, and estimating crop yield data.

17See http://www.usda.gov/nass/nassinfo/estimate.html for a description of NASS data collection methods.
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NASS mean crop yields (N) and the SOILS-5 estimated crop yields (S). To provide a direct compar-

ison to the NASS data, the SOILS-5 data were aggregated to the county level before the calculation

of the summary statistics.18

Table 2. Comparison of NASS and SOILS-5 Mean Crop Yields

Summary Statistics
Crop

Obs. Mean St. Dev. Median Correlation

Corn(N) 2490 91.3699 25.9118 89.4100 .2661
Corn(S) 1724 90.3162 30.9964 95.4650 (.0242)

Cotton(N) 624 544.3834 197.0318 537.7506 .5627
Cotton(S) 366 552.5802 211.0526 599.5283 (.0532)

Soybeans(N) 1998 28.3325 6.1780 27.7800 .4356
Soybeans(S) 1338 32.7754 9.2410 34.0861 (.0274)

Sorghum(N) 1512 55.5006 15.9962 54.4000 .3095
Sorghum(S) 456 47.7991 21.2240 47.4724 (.0474)

The standard errors of the correlation coefficients are in parentheses.

Differences are readily apparent when comparing the NASS and SOILS-5 data. While the

SOILS-5 yields were estimated to reflect the implementation of a “high” level of management, and

therefore should reflect the upper end of the yield distribution, the NASS mean yields were higher

for 2 of the 4 crops. With respect to the median yield, the SOILS-5 data yielded higher median

yields for 3 of the 4 crops. One possible reason that the SOILS-5 mean yields were not consistently

higher than the NASS mean yields was that the optimal choice for a profit-maximizing farmer may

have been to employ the “high” level of management practices assumed in the construction of the

SOILS-5 estimates. Alternatively, the differences between the NASS and SOILS-5 data may simply

reflect problems associated with the subjective nature of the SOILS-5 crop yield estimation process.

The correlations between the NASS and SOILS-5 mean yields range from .266 for corn to .563

for cotton.19 Finally, the sample size is consistently lower for the SOILS-5 data, which indicates that

actual production was undertaken in counties where SOILS-5 yield estimates were not reported.

This result is somewhat surprising since the SOILS-5 estimates are provided for each mapping unit

if the crop can be produced in an economically viable manner on the land, whether or not the crop

was actually grown on the land.

18The SOILS-5 crop yields can be linked to each NRI site and then aggregated to the county level by the use of
the NRI weighting factor (xfact) which accounts for the acreage represented by each NRI site.

19The correlation coefficients presented are the Fisher’s Z transformation of Pearson correlation coefficients. We
used this transformation to calculate standard errors that could be used to calculate confidence intervals.
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3.2 Measure of Environmental Marginality

To act as a proxy for environmental marginality in this study, we construct a soil erodibility index

from the water and wind erodibility indices contained in the NRI data. The erodibility index EI

is a numerical value that expresses the potential for a soil to erode by considering the properties of

the soil (chemical and physical) and the climatic conditions where the soil is located. The EI does

not take into account cropping or conservation management practices, so it measures the “inherent

physical erodibility” of the soil. The higher the EI value, the more susceptible the soil is to erosion

and the greater the investment needed to maintain production on the soil. A value of EI greater

than 8 is the criteria that is employed by the USDA to denote a plot of land as being “highly

erodible.”

The erodibility index employed in this study is constructed as the sum of the numeric values

associated with the wind and water erodibility indices.20 The water-induced erodibility index is

based on use of the RKLS components of the Universal Soil Loss Equation (USLE), where K is

an inherent soil erodibility factor, R is a rainfall erosivity factor, L is a slope-length factor, S is a

slope-steepness factor. The K factor value for a particular soil type is determined from an equation

that includes the following variables: silt percent, sand percent, organic matter content, structure

(e.g., fine granular soil), and permeability . The K factor is assumed to be constant for each

soil type, regardless of the production practices undertaken on the soil or the climatic differences

associated with the geographic location of the soil. The rainfall erosivity factor R accounts for the

soil erosivity associated with the impact of rain drops on the soil and the resulting runoff associated

with the impact. It is a function of the kinetic energy associated with the rain drop impact and

the maximum 30 minute intensity of the rainfall (Mitchell and Bubenzer (1980)).

The RKLS measure expresses the level of sheet and rill erosion that would occur if the field were

maintained in clean-tilled fallow (Lee and Goebel (1986)). The index is adjusted (i.e., RKLS/T ) to

take into account the tolerance of the soil to maintain productivity in the presence of inherent soil

erodibility. The T value is defined as the “the maximum rate of annual soil erosion that may occur

and still permit a high level of crop productivity to be obtained economically and indefinitely”

(Lee and Goebel (1986), p. 42). Wind-induced soil erodibility is measured as (C ∗ I/T ), where C

measures the climatic components (e.g., windspeed and duration), I measures the susceptibility of

the soil to wind erosion, and T measures soil tolerance. The I component is primarily a function of

the surface cover and soil texture, including particle size (clods vs. fine granular) and ridge height

and length, which is primarily a function of tillage practice.

20These indices account for factors that affect the erodibility of the land without regard to the usage or production
practices employed on that land.
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In summation, we employ two measures of land productivity (mean crop yield and the coefficient

of variation of mean crop yield) to proxy for economic marginality. The mean crop yield measure

used in the site-specific research is the SOILS-5 estimated crop yield, while NASS county-level

mean crop yield data were used in the aggregate portion of this study. Since the SOILS-5 data

contain no measure of crop yield variability, the coefficient of variation of mean crop yield could be

constructed only for the NASS data. We employ an erodibility index that incorporates the impact

of water and wind on soil erodibility to proxy for environmental marginality. A list of variables

and summary statistics for the site-specific data can be found in Table 9, while a list of variables

and summary statistics for the aggregate data can be found in Table 10.21

3.3 Site-Specific Yield Model

Past research (Kaufmann and Snell (1997), for example) has shown that any model attempting to

explain crop yield should contain the following factors: management practices, climate, and soil

characteristics.22 Crop yield response models have typically been estimated in a single-equation

framework with a linear model specification (Dixon et. al. (1994)). Hansen (1991) concluded that

“commonly estimated yield functions are linear across most inputs with quadratic or logarithmic

measures of particular inputs with nonconstant marginal products.” He tested alternative functional

forms (logarithmic and translog) for corn and soybean crop yield equations and found that the linear

model performed better. We use a linear specification of the crop yield equations in our study.

We use ordinary least squares (OLS) to estimate multiple regression equations with crop yield

as the dependent variable and the aforementioned factors as regressors. While including rainfall,

temperature, soil characteristics, and management practice variables in each equation, we estimate

a separate equation for each of the crops in our study. The general form of the crop yield model is

given by the following equation:

Y LDi = b0 + b1 · TEMP + b2 · SQTEMP + b3 · PRECIP + b4 · SQPRECIP

+b5 · TEMP ∗ RAIN + b6 · EI + b7 · AWC + b8 · CFACT + ǫi

(1)

where Y LDi is the yield of crop i, TEMP is monthly mean temperature, SQTEMP is the square of

monthly mean temperature, PRECIP is monthly mean precipitation, SQPRECIP is the square

of monthly mean precipitation, TEMP ∗ RAIN is an interaction term between mean monthly

temperature and precipitation, EI is the measure of soil erodibility, AWC is average water holding

capacity, CFACT is the cropping management factor, and ǫi is an error term.

21The summary statistics for the squared climate variables and the temperature/precipitation interaction terms
are not included in the tables.

22Crop yield response models that employ time-series data should also include a variable to capture technological
change. While technology adoption differs across space, the major impact occurs over time.
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Crop yields for soybeans, upland cotton, grain sorghum, and corn were used in this study.

The yield data are the estimated yields contained in the SOILS-5 dataset. Even though crop

yields were estimated for land defined as “noncultivated” cropland in the NRI if the soil could

sustain production, we use data only from land defined as “cultivated cropland.” This makes the

comparison with the NASS county-level data more reasonable since actual yield data would have

been collected only for land that was under cultivation. Since the SOILS-5 yields reported in 1992

(the data employed in this study) were estimated from data collected, when available, over the

previous ten year period, we included all sites that were classified as “cultivated cropland” in either

the 1987 or 1992 NRI. In the SOILS-5 data, crop yields were estimated for both irrigated and

nonirrigated cropland. We ran regressions using both irrigated and nonirrigated crop yield data

for this study, though only the results from the nonirrigated yields are presented.23. We include

a variable, the percentage of nonirrigated cropland in the county, in the aggregate portion of our

study to account for differences in nonirrigated and irrigated yields since we use total (irrigated

and nonirrigated) yields from the NASS data. We chose to use total crop yield data since NASS

fails to report irrigated and nonirrigated yields for a large number of counties.

To capture the inherent productivity of the soil, we include the average water holding capacity

(AWC). Average water holding capacity, the ability of the soil to store and supply water for

plant use, is critical for plant development, particularly in areas that have limited and/or variable

precipitation. The AWC was constructed from data contained in the SOILS-5 dataset. The

maximum and minimum values for the variable are reported for individual soil layers. To construct

measures that could be linked to the NRI site data, the minimum and maximum values of the AWC

were averaged for each soil layer. The resulting mean value was then multiplied by the number

of inches in that soil layer. The resulting product was then summed over all soil layers down to

a predetermined soil depth. The resulting sum was then divided by the number of inches to the

predetermined soil depth; therefore, the final value of the variable was reported per inch of soil.

We used a soil depth of 30 inches in this study to construct our soil productivity measure.

Although the impact of weather variables on crop yield has generally been recognized (for exam-

ple, see Runge(1968); Thompson (1969); and Teigen and Thomas (1995), the complex interactions

among weather, biological and chemical processes, and technological factors make it difficult to

separate the crop yield impact of weather from those associated with the other variables (Metcalfe

and Elkins (1980)). Even with this limitation, the importance of including weather variables in

any crop yield model can be demonstrated by noting that Teigen and Thomas found that over 90%

23The results were robust to the choice of irrigated or nonirrigated yield. We present the nonirrigated yield data
to facilitate comparisons with the results found in (Heimlich (1989)
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of the variability of corn and soybean yields in the United States between 1950 and 1994 could be

explained by variations in monthly temperature and rainfall.

While Kaufmann and Snell (1997) used rainfall and temperature data that corresponded to

the phenological stages of crop development, they were looking at only one crop (i.e., corn) and

one geographic area (i.e., the Corn Belt).24 The more typical approach is to include average

temperature and rainfall measures over the growing season (e.g., Westenbarger and Frisvold) or

include monthly measures of those variables for some or all months over the growing season (e.g.,

Dixon and Segerson (1999)). Ideally we would like to model climate variables in a manner that

corresponds to the phenological stage of crop development rather than in a manner that corresponds

to calendar designations, i.e., months. However, the scope of this study (i.e., the large geographic

area and number of crops under study) and the limitation of available data prohibited a detailed

modeling of the impact of climate variables on the phenological stages of crop development. To

attempt to capture the impact of climate on crop yield, we include mean temperature (TEMP )

and mean precipitation (PRECIP ) for the critical months during the year. For the crops in our

study, adequate precipitation and temperature in the months of May, June, July, and August are

crucial for plant growth. Since the weather data is not site-specific, we assign the county averages

to each NRI site within the county. Since crop yields have not been found to be a linear function

of climate variables, a quadratic term was included for temperature (SQTEMP ) and precipitation

(SQPRECIP ) to capture those nonlinear effects. A negative (positive) sign on the quadratic term

would indicate a(n) diminishing (increasing) marginal impact of climate on crop yield. In addition,

the impact of temperature on crop yield is highly dependent on the presence of rainfall (and

vice versa). For example, the effect of above average temperatures may be mitigated with higher

than average rainfall. We include an interaction term between the temperature and precipitation

variables in each month to capture this effect.

While differences in input usage can account for differences in crop yield across space, data on

chemical usage (expenditure) or capital intensity/technology adoption do not exist at the NRI site

level. In an effort to capture the impact of these factors, we include a NRI variable, the C factor

(CFACT ), which is designed to capture the impact of cropping management practices.25 Among

other things, the C factor incorporates the impact of cover, cropping sequence, residue management,

conservation tillage, growing season length, and cultural practices on crop production (Mitchell and

24The phenological stages of crop development indicate the different stages of plant growth.
25The C factor is calculated as the ratio of soil loss from a specific combination of cropping practices to the soil

loss associated with land in a tilled, continuous fallow condition. While the C factor directly addresses the impact
of management practice on soil loss, its component factors also contribute to differences in yield. Given the lack of
site-specific input and management practice data with respect to crop yield, the C factor provides a reasonable proxy
measure.
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Bubenzer (1980). The lower the C factor, the less soil loss that should occur from a given set of

cropping management activities; therefore, a lower C factor would indicate the implementation

of more intensive management practices with respect to the reduction in soil loss.26 While these

practices (e.g., conservation tillage) may enhance productivity in the long-run, it is likely that crop

yields may decline in the short-term. Therefore, a higher C factor value may be associated with

higher crop yields, at least in the short-run.

3.4 Aggregate Models

For the aggregate portion of the study, mean crop yields were constructed as ten-year (1983-1992)

crop yield averages using NASS county-level yield data.27 The site-specific variables contained

in the NRI data were aggregated to the county level to correspond to the NASS data.28 The

NRI contains a weighting factor (xfact) that is equivalent to the number of acres that each NRI

sample point represents. The xfacts are summed for each county to give the total number of

acres represented by the NRI sample points. The attribute value (e.g., C factor) is multiplied by

the xfact, and then summed over all NRI sites within the county. Finally, the value obtained by

summing the weighted attribute values was divided by the sum of the xfacts for the county in which

the sites reside to obtain a county average for the attribute in question. County averages of the

soil erodibility measure EI (AGEI), C factor (AGCFACT ), and average water holding capacity

(AGAWC) were constructed in this manner. While the SOILS-5 data provided yields for irrigated

and nonirrigated land, we constructed a variable (PERNIRR) for the aggregate portion of the

study to capture the percentage of nonirrigated cropland within the county. All data from the NRI

used to construct the county-level aggregate measures were limited to those sites associated with

the cultivated cropland designation.

While differences in crop yield and yield variability across time and space are functions of

input use and technological change, data limitations complicate their inclusion within our empirical

framework. For example, crop-specific chemical usage or expenditure data are not available on

the scale (i.e., county-level) employed in this study.29 While technological change (e.g., precision

farming and genetically engineered crops) has led to increases in crop yields over time, our focus is on

26The inclusion of the C factor and the erodibility index in our regression equations raises a potential issue of
collinearity. One could expect that higher inherent soil erodibility would encourage farmers to undertake cropping
practices, e.g., conservation tillage, to reduce potential soil loss. Pearson correlation coefficients that range from -.115
(SOILS-5) to -.140 (NASS) indicate that the inclusion of both variables does not pose a major problem.

27For each crop model, we used only those counties where the crop in question accounted for 10% or more of the
total planted acres in the county.

28The temperature and precipitation data were already reported at the county level.
29An alternative model specification that included county-level total chemical expenditures was estimated. Given

the lack of crop-specific expenditures, the results were difficult to interpret, and their inclusion did not change the
relationship between crop yield (yield variability) and soil erodibility.
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differences in crop yield across space. As a result, differences in technology adoption across space are

more relevant to our study. Though a body of research (see Daberkow and McBride (1998); Khanna,

Epough, and Hornbaker (1999); and El-Osta and Mishra (2001)) have demonstrated a positive

correlation between technology adoption and size of the farming operation (e.g., average number of

acres comprising the farm), farm size could also represent a number of other influences, including

economies of scale.30 Finally, the rapid technological change of the 1990s occurred after our period of

study. To avoid the lack of crop-specific chemical expenditure data and the difficulties associated

with modeling technology adoption, we included the county average C factor (AGCFACT ) to

account for cropping management choices.

While crop yields are a proxy measure for economic marginality, the variation in crop yields may

also play a significant role in the farmer’s perception of the desirability of initiating or maintaining

crop production on a particular plot of land. To account for this, we develop a measure of yield

variability from the NASS time-series data. We construct the coefficient of variation of the ten-

year average (1983-1992) of mean crop yields at the county level as our measure of yield variability.

Many of the factors that contribute to crop yield should also contribute to yield variability. As a

result, we include the same explanatory variables in the crop yield variability model as we did in

the county-level crop yield model.

3.5 Data

This study makes use of data collected from a number of sources. In particular, we make extensive

use of 1982, 1987, and 1992 NRI data (see chapter 1 for a general discussion of the NRI). Among

other things, the measure of soil erodibility (EI) and the cropping management factor (CFACT )

were contained in the NRI data. The soil productivity measure (AWC) was obtained from the Soil

Survey Interpretations Record (SOILS-5) data. The estimated crop yields used in the site-specific

portion of the study were also obtained from the SOILS-5 data, while the county-level mean crop

yield data (and the constructed coefficient of variation data) were obtained from the NASS agency

of the USDA.

In addition to the site-characteristic and yield data, our study required data on other variables

that have an impact on crop yield. Monthly mean temperature and precipitation data were obtained

from the PRISM database created from research undertaken by the USDA and Oregon State

University. The data used in this study were 30 year (1961-1990) averages of precipitation and

temperature for all counties in the United States (excluding counties in Alaska and Hawaii). The

30An alternative model specification that included farm size was estimated, but the results were difficult to interpret.
In addition, their inclusion did not change the relationship between crop yield (yield variability) and soil erodibility.
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data on the measure of scale (i.e., average farm size in acres) was taken from the 1992 USDA

Agricultural Census, while data on average chemical expenditures was constructed from 1987-

1992 chemical expenditure data contained in the Regional Economic Information System (REIS)

database from the Bureau of Economic Analysis (BEA). Data on these variables were collected at

the county level.

4 Results

4.1 Acreage Distributions

The fact that cropland was not cultivated at a point in time indicates that the land was economically

marginal at the existing input/output prices and government policy parameters. To determine

if economically marginal land is also environmentally fragile, we can compare the measures of

erodibility of cultivated and noncultivated cropland. If there is a positive relationship between

economic marginality and environmental marginality, the erodibility measures should be higher on

the noncultivated (i.e., economically marginal) cropland. We find a positive relationship in our data

for the erodibility index in 1992, with the EI having a value of 12.623 on noncultivated cropland

and a value of 7.028 on cultivated cropland.

Table 3. Distribution of Cropland Acreage by Erodibility Class (1992)

Cropland
Erodibility Classes

Cultivated Noncultivated

EI<2 20.6 20.5
2≤EI< 5 34.2 24.2
5≤EI< 8 19.4 15.9
8≤EI< 10 7.3 7.2

10≤EI< 15 9.0 11.7
EI≥ 15 9.5 20.5

The distribution of acreage across erodibility classes can also provide a clue as to the relationship

between economic and environmental marginality. If a positive relationship exists, one would expect

that noncultivated cropland (since it is economically marginal) would contain a higher proportion

of land in the higher erodibility classes than would cultivated cropland. The results are displayed in

Table 3. Within the cultivated cropland data, 74.2% of the acreage falls in the 3 classes associated

with the lowest degree of soil erodibility, while the remaining 25.8% falls in the 3 classes of highest

erodibility. Within the noncultivated cropland data, only 60.6% of the acreage falls in the lowest
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3 erodibility classes, while the remaining 39.4% falls in the 3 highest classes. In particular, 20.5%

of the acreage in noncultivated cropland falls in the class with the highest erodibility index value,

while only 9.5% of the acreage in cultivated cropland exhibits the highest measure of erodibility.

The results indicate that noncultivated cropland contains a higher percentage of more erodible soil

than cultivated cropland, which gives some support to the conventional wisdom.

Table 4. Land Use Distribution within Erodibility Classes (1992)

Land Use
Erodibility Classes

Cultivated Noncultivated CRP

EI<2 84.41 14.23 1.37
2≤EI< 5 87.00 9.40 3.60
5≤EI< 8 82.60 10.40 7.00
8≤EI< 10 79.16 9.81 11.03

10≤EI< 15 72.92 12.53 14.55
EI≥ 15 64.14 18.78 17.08

Alternatively, one could look at the distribution of land use within each erodibility class. Recall

that the NRI erodibility index is only reported on land that is designated as cropland (cultivated

or noncultivated) and land that is enrolled in the Conservation Reserve Program. The results in

Table 4 i ndicate that the percentage of cultivated cropland generally decreases over the range of

erodibility classes. As expected, the percentage of land enrolled in the CRP increases over the range

of erodibility classes. While the changes in noncultivated cropland are not as dramatic as those in

the CRP, land in the two highest erodibility classes contain a higher percentage of noncultivated

cropland than do lower erodibility classes, except for the EI < 2 class. These results indicate

that the percentage of cropland that is noncultivated or enrolled in CRP (as opposed to cultivated)

increases as the level of soil erodibility increases. Again, this lends some support to the conventional

wisdom that economically marginal land is associated with higher levels of soil erodibility.

4.2 Site-Specific Crop Yield Distributions

If economically marginal land is also highly erodible, we would expect to find a decrease in mean

crop yields (and an increase in crop yield variability) as the level of soil erodibility increases. Table

5 presents data on the mean crop yield (and standard deviation of crop yield) across classes of the

soil erodibility index. The erodibility classes were chosen to coincide with the categories employed

by the NRCS in reporting their summary findings for the NRI. The highest estimated mean yield

for each crop occurs on land where the erodibility index (EI) is less than 2, and the yields generally
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decline as the erodibility index takes on larger values. In addition, the standard deviation of mean

crop yields tends to increase as the erodibility class increases.

Table 5. Site-Specific Mean Crop Yield by Erodibility Class (1992)

Erodibility Classes
Crop

EI<2 2≤ EI < 5 5≤ EI < 8 8≤ EI < 10 10≤ EI < 15 EI ≥ 15

649.559 638.379 478.161 435.233 439.357 433.237
Cotton

(135.568) (175.926) (189.460) (181.219) (195.095) (211.240)

118.022 103.986 88.432 87.555 92.779 92.382
Corn

(28.230) (30.371) (34.412) (35.856) (34.264) (28.283)

75.803 67.462 50.831 43.729 40.481 38.149
Sorghum

(17.224) (16.378) (17.282) (16.973) (19.043) (21.191)

40.390 37.210 34.762 35.007 34.937 33.118
Soybeans

(8.046) (7.984) (8.954) (9.234) (9.062) (8.684)

0.270 0.253 0.244 0.242 0.248 0.223
C factor

(0.106) (0.096) (0.100) (0.105) (0.121) (0.128)

The standard deviations of mean crop yield and C Factor are in parentheses.

While the general trend supports the view that land productivity and soil erodibility are in-

versely related, crop yields do not decrease as erodibility levels increase for all of the crops. Mean

crop yields for sorghum decline over the entire range of erodibility classes, but the results for soy-

beans, cotton, and corn are mixed. For example, mean corn yields decline for the 4 lowest erodibility

classes, but the fifth class (10≤ EI < 15) exhibits higher yields than land in the fourth class (8≤

EI < 10). Even in cases where the yield generally declines over the range of erodibility classes,

the magnitudes of the differences are quite small. For example, the soybean yield ranges from

35.007 to 33.118 over the four classes exhibiting the highest levels of erodibility. It should also be

noted that the C Factor also generally declines over the range of erodibility classes. This indicates

that more intensive cropping management practices with respect to the reduction in soil loss (for

example, a higher percentage of land under conservation tillage) are conducted as the erodibility of

the land increases. As previously discussed, a decline in the C factor may actually be expected to

decrease crop yields in the short-run as cropping management practices are undertaken to reduce

soil erosion.

4.3 Aggregate Crop Yield Distributions

Table 6 presents data on the mean crop yield (and standard deviation of crop yield) across classes

of the soil erodibility index for the NASS data. In contrast to the findings for the SOILS-5 data,

most of the crops do not exhibit their largest yields on land in the lowest erodibility class. Mean
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corn yields are highest in erodibility class 5 (10≤ EI < 15), while soybean yields are highest in

erodibility class 6 (EI ≥ 15). In addition, the crop yields do not generally decline over the entire

range of erodibility classes. For example, the lowest cotton yields occur in classes 3, 4, and 5, while

the highest yields occur in classes 1, 2, and 6.

Table 6. Aggregate Mean Crop Yields by Erodibility Class (1992)

Erodibility Classes
Crop

EI<2 2≤ EI < 5 5≤ EI < 8 5≤ EI < 8 10≤ EI < 15 EI ≥ 15

599.666 593.667 482.803 430.329 447.485 584.364
Cotton

(191.575) (164.976) (172.262) (139.194) (198.929) (267.261)

86.869 91.874 89.173 93.283 93.347 92.382
Corn

(28.606) (2.849) (25.266) (27.366) (28.739) (24.689)

55.725 56.129 56.145 55.998 54.070 53.762
Sorghum

(17.631) (14.264) (14.756) (16.359) (16.341) (17.396)

25.722 28.671 27.630 28.566 28.869 29.331
Soybeans

(5.780) (6.643) (7.081) (6.979) (6.546) (6.271)

0.256 0.254 0.229 0.228 0.235 0.218
C factor

(0.120) (0.084) (0.079) (0.084) (0.091) (0.112)

The standard deviations of mean crop yield and C factor are in parentheses.

As in the SOILS-5 data case, the reduction in the C factor, and thus the implementation of more

intensive cropping management practices with repsect to the reduction in soil loss, over the range of

erodibility classes may actually reduce crop yields in the short-run, so the lack of a uniform decrease

of crop yields over the erodibility classes may even be more pronounced if cropping management

practices are excluded. Therefore, these results lend little support to the view that there is a close

link between economic marginality (as measured by mean crop yield) and economic marginality (as

measured by soil erodibility).

4.4 Site-Specific Crop Yields

The erodibility coefficient estimates, standard errors, and adjusted R-squares for the regressions

using the mean estimated crop yields from the SOILS-5 data are presented in Table 7.31 A nega-

tive coefficient on the erodibility index indicates that an increase in soil erodibility (environmental

marginality) leads to a decrease in crop yields, which indicates an increase in economic marginal-

ity. Therefore a negative sign on the erodibility coefficient implies a positive relationship between

economic and environmental marginality.

31Complete regression results for all of the models can be found in Tables 11 through 14.
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The coefficients on the EI variable were negative for all of the crops in the study. In addition,

the coefficient estimates were statistically significant at the 1% level for all of the crops. The

adjusted R-squares ranged from .388 (soybeans) to .661 (sorghum), which indicates that the model

has good explanatory power for cross-sectional data.

Table 7. OLS Results: SOILS-5 Crop Yields (1992)

Erodibility Index
Crop

Coefficient Estimates Adjusted R2

-4.596 .624
Cotton

(0.111)

-0.541 .547
Corn

(0.008)

-0.582 .661
Sorghum

(0.010)

-0.229 .388
Soybeans

(0.003)

The standard errors for the coefficient estimates are in parentheses.

The coefficient estimates in bold are significant at the α=.01 level.

The elasticities of the crop yields with respect to the erodibility index were inelastic in all cases.

The elasticities ranged from -.041 for corn to -.087 for sorghum.32 Given these elasticities, an

increase in the soil erodibility index from its mean value of 7.79 (near the 70th percentile) to the

value at the 80th percentile (10.6), a 36% increase, would result in decreases in yield ranging from

1.48% for corn to 3.13% for sorghum. If the soil erodibility index increased to the value at the

90th percentile (16.4), a 111% increase, crop yield reductions would range from 4.55% for corn to

9.66% for sorghum, respectively. The regression results for the SOILS-5 data provide support for

the belief that there is a positive relationship between economic and environmental marginality.

Land productivity, as proxied by the average water holding capacity (AWC), should be pos-

itively related to crop yield since the ability of the soil to retain and transport water is essential

for plant growth. As expected, the coefficient on AWC was positive and statistically significant in

all cases. The C factor (CFACT ) variable captures the impact of cropping management practices

on soil loss (and indirectly crop yield). Since a lower C factor indicates more intensive cropping

management activities designed to reduce soil loss, a priori expectations were that a higher value for

the C factor would be associated with higher crop yields. As expected, the coefficient on CFACT

was significant and positive in all cases. Since the C factor incorporates management activities

32All of the elasticities in this study were calculated at the mean values of the erodibility index and crop yields.
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designed to mitigate potential soil loss, this positive relationship may indicate that these cropping

management activities, such as cover and crop rotation, lead to reductions in short-term yield in

an effort to protect the long-term productivity of the land.

Finally, the coefficients on the temperature, precipitation, squared terms of those variables, and

interaction terms were of mixed sign and statistical significance. No discernible pattern exists across

crops with respect to the climate variables, though higher precipitation in August is associated with

higher crop yields in all cases. There was also a high degree of collinearity (as expected a priori)

between all of the climate variables, which made the estimates of the standard errors and t-statistics

unreliable. Since these variables were not the focal point of the study, all of the temperature,

precipitation, squared terms, an interaction terms were retained in the estimating equations. The

same problems existed with respect to the climate variables in both of the aggregate models.

4.5 Aggregate Crop Yields

The erodibility coefficient estimates, standard errors, and adjusted R-squares for the regressions

using the mean estimated crop yields from the NASS data are presented in Table 8.33 Again a

negative coefficient on the erodibility measure would indicate support for the belief that there is a

positive relationship between economic and environmental marginality. Consistent with the findings

with the SOILS-5 data, the coefficient signs are negative in all cases, with only the coefficient in

the cotton yield equation being insignificant at the 10% level.

Table 8. OLS Results: NASS Crop Yields (1992)

Erodibility Index
Crop

Coefficient Estimates Adjusted R2

-0.292 .778
Cotton

(1.095)

-0.142 .622
Corn

(0.052)

-0.407 .549
Sorghum

(0.165)

-0.057 .815
Soybeans

(0.017)

The standard errors of the coefficient estimates are in parentheses.

The coefficient estimates in bold are significant at the α=.10 level.

The elasticities of the crop yields with respect to the erodibility index were inelastic, ranging

33Complete regression results for all of the models can be found in Tables 15 through 18.
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from -.013 for corn to -0.062 for sorghum. The magnitudes of the elasticities would indicate that

changes in the level of soil erodibility would have a slightly smaller impact on crop yields than

was evidenced in the SOILS-5 case. An increase in the erodibility index from the mean value of

8.48 (near the 60th percentile) to the value at the 80th percentile (12.30), a 45% increase, would

result in yield decreases of between .23% (cotton) to 2.79% (sorghum). Even an increase to the 90th

percentile (16.38), a 93% increase in the erodibility index, would result in decreases in yield ranging

from .47% for cotton to 5.77% for sorghum. In both the SOILS-5 and NASS cases, an increase in

the soil erodibility index would have a more pronounced impact on sorghum yields than it would

for the yields of the other crops. The adjusted R-squares ranged from .549 (sorghum) to .815

(soybeans), which indicates that the models have good explanatory power for cross-sectional data.

The regression results using the NASS yield data provides evidence to corroborate the findings in

the site-specific portion of the study. Both support the conventional wisdom that there is a strong,

positive relationship between economic and environmental marginality.

As expected, the percentage of nonirrigated cropland (PERNIRR) exhibited a statistically

significant negative relationship with all mean crop yields. As with the SOILS-5 data, the coefficient

on average water holding capacity (AGAWC) was positive, though it was not significant in the

cotton and sorghum yield equations. The coefficient estimates on county-level average C factor

(AGCFACT ) were positive for corn and cotton, though negative for soybeans and sorghum. The

soybean and sorghum results were inconsistent with those contained in the site-specific portion of the

study. As with the results from the SOILS-5 data, the coefficients on the temperature, precipitation,

squared and interaction terms are of mixed sign and statistical significance. The results varied by

crop within each sample (SOILS-5 or NASS). For example, increases in May rainfall are associated

with decreases in corn and sorghum yields and increases in cotton and soybean yields using the

SOILS-5 data. In addition, the results are not consistent for each crop across samples. For example,

increases in precipitation in May are associated with lower corn yields in the SOILS-5 data and

with higher corn yields in the NASS data. Again it should be noted that these variables are highly

collinear and that separating out the individual effects may be impossible.

5 Conclusions

Conventional wisdom has long held that economically marginal land is also environmentally mar-

ginal (i.e., fragile). Very little research has been conducted to test this belief, with the few studies

that have been conducted yielding mixed results. To test this relationship, we use site-specific

(SOILS-5) and county-level (NASS) data on measures on economic marginality (crop yield and
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yield variability) and environmental marginality (the NRI soil erodibility index).

We employ two methodological approaches in our study. First, we analyze the distribution of

our productivity measures across different levels of erodibility. The mean crop yields (SOILS-5 and

NASS) generally diminished as the level of erodibility increased, though higher yields were often

found in classes exhibiting higher levels of erodibility. While the coefficient of variation of mean

crop yields generally increased as the level of erodibility increased, low yield CV’s were also found

at high levels of soil erodibility. These results are somewhat consistent with Heimlich’s findings

that mean yield and soil erodibility are weakly associated, though the general trend of diminishing

(increasing) mean yields (yield variability) as levels of soil erodibility increase provide some support

to those espousing the conventional wisdom.

Second, we conduct a more detailed analysis by regressing our measure of economic marginality

(mean crop yield) on the erodibility index and a set of conditioning variables. This analysis yields

consistent results in support of the conventional wisdom that economically marginal land is also

likely to be environmentally fragile, at least with respect to increasing levels of soil erodibility.

Although the estimated coefficients were negative and significant, the elasticities were generally

small, though increases in the erodibility index from the mean value to values at the 80th and 90th

percentile of the index distribution resulted in reductions in yields that ranged from .5% to 5.8%

in the SOILS-5 data.

Our results do not confirm previous findings that indicate a weak relationship between economic

marginality (crop productivity) and environmental marginality (soil erodibility). While the crop

yield distribution results provide only weak support for the conventional wisdom, our regression

results indicate that there appears to be a significant negative relationship between mean crop

yield and soil erodibility. This would support the assertion that there is a positive association

between economic and environmental marginality. This raises concerns that government policies

that encourage production on economically marginal land (i.e., land with low mean crop yields)

may lead to increases in soil erosion as more erodible soil is brought into production. As a result,

it is important to consider the impact of government income support and risk management policies

on acreage allocation decisions.
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Table 9. Variable Definitions and Summary Statistics for Site-Specific Data.

Variable Definition Mean Std. Dev.

Cotton (cotton nirryld) cotton non-irrigated yield (pounds) 557.6100 201.6164
Corn (corn nirryld) corn non-irrigated yield (bushels) 101.5986 32.8398
Soybeans (soybean nirryld) soybean non-irrigated yield (bushels) 37.0791 8.6245
Sorghum (sorghum nirryld) sorghum non-irrigated yield (bushels) 52.2528 21.3799
Erodibility Index (EI) average of 1987 and 1992 NRI soil erodibility indices 7.7879 10.4136
Soil Water-Holding Capacity (AWC) average water holding capacity per inch of soil 0.1701 0.0374
C Factor (CFACT) average of 1987 and 1992 NRI C Factors 0.2496 0.1071
May Rainfall (MAYRN) average rainfall in ml. (1961-1990) 91.4313 28.0494
June Rainfall (JUNRN) average rainfall in ml. (1961-1990) 91.5546 25.9204
July Rainfall (JULRN) average rainfall in ml. (1961-1990) 86.1122 31.1798
August Rainfall (AUGRN) average rainfall in ml. (1961-1990) 80.2113 28.5049
May Temp. (MAYTEMP) average temperature 1961-1990 (Celsius degrees) 16.5793 3.2858
June Temp. (JUNTEMP) average temperature 1961-1990 (Celsius degrees) 21.4217 2.9472
July Temp. (JULTEMP) average temperature 1961-1990 (Celsius degrees) 23.9495 2.5841
August Temp. (AUGTEMP) average temperature 1961-1990 (Celsius degrees) 22.8749 2.6965
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Table 10. Variable Definitions and Summary Statistics for Aggregate Data.

Variable Definition Mean Std. Dev.

Cotton (cotton mean) county mean cotton yield (pounds) 535.2885 195.6828
Corn (corn mean) county mean corn yield (bushels) 91.3328 25.7158
Soybeans (soybean mean) county mean soybean yield (bushels) 28.3265 6.7262
Sorghum (sorghum mean) county mean sorghum yield (bushels) 55.4756 15.6972
Cotton (cotton cv) county CV of cotton yield (pounds) 25.6442 10.6225
Corn (corn cv) county CV of corn yield (bushels) 22.0148 9.4693
Soybeans (soybean cv) county CV of soybean yield (bushels) 19.6661 7.4606
Sorghum (sorghum cv) county CV of sorghum yield (bushels) 20.3083 10.3797
Nonirrigated Land (PERNIRR) nonirrigated portion of cultivated cropland 0.8564 0.2723
Erodibility Index (AGEI) county average soil erodibility index 8.4780 7.1384
Soil Water-Holding Capacity (AGAWC) county average water holding capacity per inch of soil 0.1454 0.0306
C Factor (AGCFACT) county average C Factor 0.2378 0.0893
May Rainfall (MAYRN) average rainfall in ml. (1961-1990) 96.8731 28.9933
June Rainfall (JUNRN) average rainfall in ml. (1961-1990) 93.7055 28.5065
July Rainfall (JULRN) average rainfall in ml. (1961-1990) 92.8586 36.6809
August Rainfall (AUGRN) average rainfall in ml. (1961-1990) 86.5090 32.6247
May Temp. (MAYTEMP) average temperature 1961-1990 (Celsius degrees) 17.2492 3.8390
June Temp. (JUNTEMP) average temperature 1961-1990 (Celsius degrees) 21.7377 3.4182
July Temp. (JULTEMP) average temperature 1961-1990 (Celsius degrees) 24.1287 2.9621
August Temp. (AUGTEMP) average temperature 1961-1990 (Celsius degrees) 23.2933 3.1102
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Table 11. OLS Estimates of SOILS-5 Cotton Yields.

Variable Estimate Standard Error t-Ratio

INTERCEPT −2969.8183 168.3181 −17.64∗

EI −4.5960 0.1107 −41.50∗

AWC 767.5961 23.3254 32.91∗

CFACT 73.3343 5.8076 12.63∗

MAYRN 27.4431 0.6280 43.70∗

JUNRN −2.2715 1.6431 −1.38
JULRN −30.6302 1.2335 −24.83∗

AUGRN 60.5550 1.8551 32.64∗

MAYTEMP 523.8830 21.8830 23.94∗

JUNTEMP −592.6994 41.6895 −14.22∗

JULTEMP 415.3241 44.1756 9.40∗

AUGTEMP −206.4125 38.0388 −5.43∗

SQMAYTEMP −10.1609 0.4723 −21.52∗

SQJUNTEMP 12.0352 0.7892 15.25∗

SQJULTEMP −10.4937 0.8013 −13.10∗

SQAUGTEMP 7.9043 0.6958 11.36∗

SQMAYRN 0.0042 0.0015 2.74∗

SQJUNRN −0.0058 0.0018 −3.18∗

SQJULRN −0.0236 0.0010 −24.38∗

SQAUGRN −0.0055 0.0013 −4.23∗

MAYRNTEMP −1.3143 0.0328 −40.07∗

JUNRNTEMP 0.0954 0.0672 1.42
JULRNTEMP 1.5117 0.0479 31.53∗

AUGRNTEMP −2.2151 0.0680 −32.57∗

Asterisks indicate statistical significance at the α = .10 or smaller level.
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Table 12. OLS Estimates of SOILS-5 Corn Yields.

Variable Estimate Standard Error t-Ratio

INTERCEPT −14.0091 11.9566 −1.17
EI −0.5412 0.0075 −71.96∗

AWC 277.4048 1.7479 158.71∗

CFACT 20.5848 0.6507 31.64∗

MAYRN −0.1777 0.0432 −4.11∗

JUNRN −2.3444 0.0740 −31.67∗

JULRN 0.7935 0.0638 12.45∗

AUGRN 3.6606 0.0643 56.97∗

MAYTEMP 78.3865 1.4139 55.44∗

JUNTEMP −88.8716 3.1794 −27.95∗

JULTEMP 44.1034 3.7463 11.77∗

AUGTEMP −16.2867 2.7832 −5.85∗

SQMAYTEMP −2.2875 0.0396 −57.74∗

SQJUNTEMP 2.6242 0.0746 35.20∗

SQJULTEMP −1.6104 0.0787 −20.45∗

SQAUGTEMP 0.5928 0.0593 10.00∗

SQMAYRN 0.0009 0.0002 3.73∗

SQJUNRN 0.0005 0.0002 2.11∗

SQJULRN −0.0002 0.0001 −1.47
SQAUGRN −0.0006 0.0001 −4.30∗

MAYRNTEMP −0.0174 0.0025 −7.10∗

JUNRNTEMP 0.1032 0.0036 28.40∗

JULRNTEMP −0.0378 0.0028 −13.56∗

AUGRNTEMP −0.1212 0.0029 −41.20∗

Asterisks indicate statistical significance at the α = .10 or smaller level.
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Table 13. OLS Estimates of SOILS-5 Sorghum Yields.

Variable Estimate Standard Error t-Ratio

INTERCEPT −246.8643 9.2412 −26.71∗

EI −0.5824 0.0104 −55.76∗

AWC 92.5393 2.3087 40.08∗

CFACT 0.0270 0.5551 0.05
MAYRN −0.3502 0.0451 −7.76∗

JUNRN 0.1379 0.0727 1.90∗

JULRN −0.2231 0.1056 −2.11∗

AUGRN 5.6854 0.1163 48.88∗

MAYTEMP −4.2249 1.3185 −3.20∗

JUNTEMP −22.4714 2.6571 −8.46∗

JULTEMP 28.2760 3.9683 7.13∗

AUGTEMP 3.9975 3.2931 1.21
SQMAYTEMP 0.3340 0.0310 10.78∗

SQJUNTEMP 0.1175 0.0569 2.06∗

SQJULTEMP −0.3149 0.0748 −4.21∗

SQAUGTEMP 0.0162 0.0630 0.26
SQMAYRN −0.0005 0.0001 −3.27∗

SQJUNRN 0.0003 0.0001 2.56∗

SQJULRN −0.0048 0.0002 −26.26∗

SQAUGRN 0.0025 0.0002 12.23∗

MAYRNTEMP 0.0394 0.0022 18.00∗

JUNRNTEMP −0.0025 0.0033 −0.77
JULRNTEMP 0.0591 0.0041 14.29∗

AUGRNTEMP −0.2478 0.0045 −54.80∗

Asterisks indicate statistical significance at the α = .10 or smaller level.
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Table 14. OLS Estimates of SOILS-5 Soybean Yields.

Variable Estimate Standard Error t-Ratio

INTERCEPT −92.1451 4.4868 −20.54∗

EI −0.2294 0.0027 −84.50∗

AWC 85.2804 0.5611 151.99∗

CFACT 3.6567 0.2166 16.88∗

MAYRN 0.0806 0.0155 5.20∗

JUNRN −0.4460 0.0273 −16.34∗

JULRN −0.1044 0.0223 −4.69∗

AUGRN 1.2487 0.0215 58.17∗

MAYTEMP 2.9081 0.5026 5.79∗

JUNTEMP 9.3564 1.0643 8.79∗

JULTEMP −17.1989 1.2548 −13.81∗

AUGTEMP 13.4301 0.9358 14.35∗

SQMAYTEMP −0.0681 0.0146 −4.67∗

SQJUNTEMP −0.0637 0.0247 −2.58∗

SQJULTEMP 0.2470 0.0260 9.50∗

SQAUGTEMP −0.2383 0.0198 −12.01∗

SQMAYRN 0.0012 0.0001 15.35∗

SQJUNRN −0.0001 0.0001 −1.42
SQJULRN −0.0001 0.0000 −2.99∗

SQAUGRN −0.0002 0.0000 −4.91∗

MAYRNTEMP −0.0234 0.0009 −27.25∗

JUNRNTEMP 0.0206 0.0013 16.35∗

JULRNTEMP 0.0056 0.0011 5.32∗

AUGRNTEMP −0.0437 0.0010 −45.18∗

Asterisks indicate statistical significance at the α = .10 or smaller level.
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Table 15. OLS Estimates of NASS Cotton Yields (Mean).

Variable Estimate Standard Error t-Ratio

INTERCEPT 4816.2418 1951.8351 2.47∗

AGEI −0.2917 1.0953 −0.27
AGCFACT −160.0767 73.7431 −2.17∗

PERNIRR −280.2744 31.6038 −8.87∗

AGAWC 410.7842 403.4304 1.02
MAYRN −18.7258 6.7747 −2.76∗

JUNRN 4.1674 12.4238 0.34
JULRN −14.9681 15.4890 −0.97
AUGRN 37.9711 16.7521 2.27∗

SQMAYRN 0.0368 0.0149 2.47∗

SQJUNRN 0.0350 0.0186 1.88∗

SQJULRN −0.0095 0.0081 −1.48
SQAUGRN 0.0249 0.0168 1.04
MAYTEMP 538.4492 342.3026 1.57
JUNTEMP −1886.7849 804.5096 −2.35∗

JULTEMP 552.0553 1227.6480 0.45
AUGTEMP 453.0247 927.9176 0.49
SQMAYTEMP −10.6537 7.6830 −1.39
SQJUNTEMP 34.0365 15.6353 2.18∗

SQJULTEMP −9.0963 21.6172 −0.42
SQAUGTEMP −6.8037 16.6999 −0.41
MAYRNTEMP 0.5728 0.3228 1.77∗

JUNRNTEMP −0.4222 0.5222 −0.81
JULRNTEMP 0.7828 0.5602 1.40
AUGRNTEMP −1.5250 0.6307 −2.42∗

Asterisks indicate statistical significance at the α = .10 or smaller level.
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Table 16. OLS Estimates of NASS Corn Yields (Mean).

Variable Estimate Standard Error t-Ratio

INTERCEPT 31.8053 71.5759 0.44
AGEI −0.1423 0.0517 −2.75∗

AGCFACT 14.7014 4.7349 3.10∗

PERNIRR −32.7562 2.0656 −15.86∗

AGAWC 153.7956 15.7651 9.76∗

MAYRN 1.8827 0.1992 9.45∗

JUNRN −1.1391 0.2685 −4.24∗

JULRN −0.2196 0.3393 −0.65
AUGRN 0.3356 0.3100 1.08
SQMAYRN −0.0066 0.0010 −6.50∗

SQJUNRN 0.0053 0.0010 5.12∗

SQJULRN 0.0033 0.0004 7.81∗

SQAUGRN 0.0020 0.0007 3.04∗

MAYTEMP −5.5233 7.7653 −0.71
JUNTEMP −0.2215 18.0865 −0.01
JULTEMP −21.1120 23.4481 −0.90
AUGTEMP 28.0794 18.2400 1.54
SQMAYTEMP −0.3257 0.2216 −1.47
SQJUNTEMP 0.8714 0.4222 2.06∗

SQJULTEMP 0.3090 0.4937 0.63
SQAUGTEMP −0.8341 0.3991 −2.09∗

MAYRNTEMP −0.0236 0.0122 −1.94∗

JUNRNTEMP −0.0031 0.0153 −0.20
JULRNTEMP −0.0225 0.0135 −1.67∗

AUGRNTEMP −0.0123 0.0131 −0.94

Asterisks indicate statistical significance at the α = .10 or smaller level.
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Table 17. OLS Estimates of NASS Sorghum Yields (Mean).

Variable Estimate Standard Error t-Ratio

INTERCEPT −1174.1765 335.0947 −3.50∗

AGEI −0.4074 0.1649 −2.47∗

AGCFACT −29.6441 7.7322 −3.83∗

PERNIRR −14.0862 2.7606 −5.10∗

AGAWC 40.6809 31.9521 1.27
MAYRN −0.1977 0.5954 −0.33
JUNRN −2.0449 0.9500 −2.15∗

JULRN 3.3612 1.4762 2.28∗

AUGRN 1.9268 1.2890 1.49
SQMAYRN 0.0040 0.0013 3.16∗

SQJUNRN 0.0027 0.0012 2.21∗

SQJULRN −0.0036 0.0014 −2.63∗

SQAUGRN 0.0016 0.0023 0.69
MAYTEMP 19.2757 23.9546 0.80
JUNTEMP −61.6379 70.1259 −0.88
JULTEMP 339.8309 86.4700 3.93∗

AUGTEMP −222.9388 61.9475 −3.60∗

SQMAYTEMP −0.7542 0.5816 −1.30
SQJUNTEMP 1.6941 1.4601 1.16
SQJULTEMP −6.3871 1.6183 −3.95∗

SQAUGTEMP 4.3453 1.1561 3.76∗

MAYRNTEMP −0.0285 0.0280 −1.02
JUNRNTEMP 0.0694 0.0394 1.76∗

JULRNTEMP −0.1008 0.0523 −1.93∗

AUGRNTEMP −0.0698 0.0499 −1.40

Asterisks indicate statistical significance at the α = .10 or smaller level.
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Table 18. OLS Estimates of NASS Soybean Yields (Mean).

Variable Estimate Standard Error t-Ratio

INTERCEPT −17.6266 40.6845 −0.43
AGEI −0.0571 0.0171 −3.32∗

AGCFACT 1.8319 1.2287 1.49
PERNIRR −2.1530 0.5231 −4.12∗

AGAWC 54.7830 4.1258 13.28∗

MAYRN 0.7967 0.0735 10.84∗

JUNRN −0.5336 0.1009 −5.29∗

JULRN 0.0201 0.1274 0.16
AUGRN 0.1655 0.0978 1.69∗

SQMAYRN −0.0020 0.0003 −5.84∗

SQJUNRN −0.0012 0.0003 −3.65∗

SQJULRN 0.0002 0.0001 1.13
SQAUGRN 0.0000 0.0001 0.64
MAYTEMP −16.3109 3.1258 −5.22∗

JUNTEMP 30.7008 7.1925 4.27∗

JULTEMP −1.2581 8.4366 −0.15
AUGTEMP −13.9638 5.5194 −2.53∗

SQMAYTEMP 0.2922 0.0873 3.35∗

SQJUNTEMP −0.4784 0.1952 −3.00∗

SQJULTEMP −0.0665 0.1674 −0.40
SQAUGTEMP 0.2633 0.1140 2.31∗

MAYRNTEMP −0.0159 0.0032 −4.95∗

JUNRNTEMP 0.0335 0.0050 6.70∗

JULRNTEMP −0.0030 0.0053 −0.57
AUGRNTEMP −0.0034 0.0039 −0.87

Asterisks indicate statistical significance at the α = .10 or smaller level.
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