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Estimating Economies of Scope Using Profit Function: A Dual Approach of the Normalized 

Quadratic Profit Function 

Zhifeng Gao and Allen Featherstone 

 

Abstract 

Theoretical relationships between the parameters of the normalized quadratic cost and profit 

functions were derived. The cost function was recovered from an estimated profit function, and 

thus economies of scope (EOS) were calculated using a profit function. An empirical example 

showed that the parameters in the true cost function could be precisely recovered using the 

estimated profit function. Estimating economies of scope measures using profit functions have 

several merits over that using cost function, which include easier imposition of curvature, avoiding 

calculating EOS off the production frontier and capturing the inefficiency in the allocation of 

output quantities. The EOS calculated using a profit function was based on the Baumol et al.’s 

concept of EOS and can be easily compared with the EOS that was computed using cost function. 

Keywords: duality, economies of scope, normalized quadratic cost and profit function 

Introduction 

Economies of scope exist if the costs of producing several products together are lower than 

that of producing these products separately. It measures the percentage of cost savings in 

producing the outputs jointly in one firm rather than producing the products individually in 

different firms. The sources of economies of scope lie in the complimentary property among inputs: 

the marginal cost of producing one product decreases as the output of the other product increases.



1: Another widely used functional form is the translog function. However, the translog function form is multiplicative in 
output and the cost will be zero when one or more outputs are zero in the cost function. Taking the log of a zero output causes 
problems. Most research replaces the zero output with 10 percent of the mean output but the effect on the measurement of the 
scope economies of replacing the zero output with a small portion of mean output is still unclear. 
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Since Baumol, Panzar and Willig’s work in the 1980s, economies of scope have become an 

important concept in measuring economic efficiency in a multiproduct framework. Basically, there 

are two approaches in estimating economies of scope. One approach is nonparametric analysis. In 

the nonparametric approach (Färe), linear programming is used to calculate the minimum 

multiproduct cost with all/individual outputs, and then the cost of producing multiproducts jointly 

and the cost of producing these products individually are compared. The advantage of 

nonparametric method is that it doesn’t require specific functional forms, which avoids the 

problem of distorting the technology by imposing a functional relationship on the cost function. 

However, this method does not necessarily allow setting the output equal to zero leading to some 

possible approximation error (Coffey and Featherstone).

The second approach involves directly estimating a specified cost function, and comparing 

the cost of producing multiproducts jointly and the sum of the cost of producing all the products 

individually. This approach is widely used in studying economies of scope of firms in various 

industries, such as agricultural and financial industries. The normalized quadratic functional form 

is widely used to approximate the cost function in the study of economies of scope1 (Featherstone 

and Moss, Fernandez-Cornejo et al, Jin et al and Cohn et al). The main problem with the 

parametric approach is that the data used to estimate cost functions are not always on the efficient 

frontier. Because scope economies are defined only on the efficiency frontier, testing economies of 

scope by “using data off the frontier could confound scope economies with X-efficiencies.” 

(Berger et al 1993a). In addition, imposing curvature in a profit function is easier than that in a 
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cost function. Normally, the concavity in outputs and the convexity in inputs have been imposed 

for the two sub-matrices of the Hessian matrix, and off diagonal sub-matrices are not considered. 

Using the profit function makes it easier to impose curvature on the off diagonal sub-matrices 

(Marsh and Featherstone). Berger et al (1993b) also pointed out that measuring scope economies 

from cost function didn’t consider whether the output bundle is optimal, thus lacking the 

consideration of the revenue effects on the efficiency measure. Therefore, they suggested that 

more research should concentrate on estimating economies of scope from the profit function, 

which includes both revenue and cost sides of production. In accordance with their argument, 

Berger et al (1993b) provided a new concept of optimal scope economies, which determines 

“whether a firm facing a given set of prices and other exogenous factors should optimally produce 

the entire array of products or specialize in some of them.” With an unrestricted profit function, the 

optimal quantities of outputs can be derived using Hotelling’s lemma i
i

y
p

=
∂
Π∂ . If the optimal 

quantities of all outputs are determined to be positive at given exogenous prices, optimal scope 

economies exist at that point. The new concept of economies of scope, however, loses its 

connection with the classic definition of economies of scope, in that while it can be determined 

whether scope economics exist, the magnitude of scope measures cannot be determined.  

Following Berger et al’s suggestion, this paper provides a novel way to estimate economies of 

scope using a profit function. Different from Berger et al’s (1993b) approach, we use the classic 

concept of scope economies that was first provided by Baumol et al. 

Duality and Recovering Cost Function from Unrestricted Profit Function 
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To determine economies of scope (EOS), the cost of producing multiproducts jointly and the 

sum of the cost to produce these products individually need to be compared. Economics of scope 

measures how much savings could occur if the products are produced jointly rather than producing 

them separately. Specifically, EOS is: 

)(

)()(

YC

YCYC
EOS i

i∑ −
=  where )( iYC  is the cost of producing only Yi by a individual firm, and 

)(YC  is the cost of producing all outputs by a single multiproduct firm. If EOS is positive, 

economies of scope exist and firms can be more cost efficient by diversification in production.  

According to duality theory, a profit maximizing firm must also minimize cost, and the 

unrestricted profit function from profit maximization problem contains the same information as the 

cost function from cost minimization problem (Mas-Colell et al.). Theoretically, it’s possible to 

link the parameters of the profit function to the parameters in the cost function. Lau (1976) proved 

that under perfect competition, a restricted profit (cost) function or production function can be 

recovered from an unrestricted profit function and vice versa. Lusk et al. test the relationship 

between the parameters of production function, unrestricted profit function and restricted profit 

function empirically. Therefore, estimating the economies of scope using the profit function is to 

obtain a cost function from a profit function, and then use the concept of EOS determined by the 

cost function to calculate economies of scope. 

 We use the normalized quadratic functional form in this paper, because it is self-dual in cost 

and profit functions and the links between these two functions do not depend on particular data 

points (Lusk et al.). 
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It seems plausible to be able to recover the cost function from the profit function. However, 

the unrestricted profit function is calculated from the difference between the maximized revenue 

and the minimized cost, and calculating revenue and cost functions both involve the first order 

derivative of the corresponding objective functions. Obtaining the cost function from a profit 

function involves the opposite process, which is integration. Compared to taking the derivative of 

a function, integrating a function is relatively more difficult and in some cases may be intractable.  

To begin the derivation, we begin with a cost function and use the maximization process to 

calculate the unrestricted profit function theoretically. If the parameters of profit function (Y) can 

be expressed using the parameters of the cost function (X), such as ( )Y f X= , an inverse 

relationship can be obtained, which expresses the parameters of cost function using the parameters 

from the profit function : 1( )X f Y−= . In the case that the theoretical inverse relationships cannot 

be obtained when there are highly nonlinear relationships between the parameters of those two 

functions, the parameters of cost function can be recovered from the profit function empirically 

using an algorithm to ( )
X

MinY f X− . As long as a cost function can be expressed using parameters 

from a profit function, economies of scope can be calculated using the parameters from 

unrestricted the profit function.  

Theoretical Relationship between Cost and Unrestricted Profit Functions 

Suppose that we have a normalized quadratic cost function C(W,Y)=min wx where W is a 

vector of normalized input prices and Y is a vector of output quantities. C(W,Y) has following 

properties: 

1. C(W,Y) is continuous in (W,Y) and differentiable in W and Y 
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2. C(W,Y) is linear homogenous and concave in W 

3. C(W,Y) is convex in Y 

The normalized cost function with n+1 inputs and m outputs is: 

(1) 
1**

'

*11**

'

*11**

'

*11**11**10 *****5.0***5.0**),(
mmnnmmmmnnnnmmnn
YAAWYCCYWBBWYAWBbYWC +++++=   

where C(W,Y) is the cost, and W is a vector of input prices, both are normalized on the n+1 input 

price, which implies that the cost function satisfies the homogeneity condition. Formally, 
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 and jiij cc = to satisfy symmetry condition in output quantities 



2: The inverse of CC matrix requires that the production function is strictly convex. It also indicates that there is single point in 
Y corresponding to one set of prices, making Hotelling’s lemma feasible. Throughout this paper, we assume that the 
production function is strictly convex. If the assumption is relaxed, the inverse of CC may not be found. However, generalized 
inverse can be used instead to determine inverse matrix of CC to solve for possible solutions of Y. This is beyond the study of 
this paper, for more details of the theory of generalize inverse, see Ben-Israel. 
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Curvature conditions required that cost function is concave in input prices W and convex in 

output quantities Y. The Hessian matrix of the normalized quadratic cost function on input prices 

and output quantities are just BB and CC respectively. The curvature and symmetry conditions 

together imply that the matrix BB and CC are negative semi-definite symmetric matrices and 

positive semi-definite symmetric matrices, respectively. Empirically, Cholesky decomposition can 

be used to impose curvature globally on the cost function in estimating this function. 

Assume both input and output markets are perfectly competitive, the unrestricted profit 

function can be obtained as a result of following maximization problem 

Y)C(W,-Y*Pmax  =Π  where P is a vector of exogenous output prices, ]p ......p p[ m21=P . 

The first order conditions of profit maximization allow us to determine the optimal 

output 0),(' =
∂

∂
−=

∂
Π∂

Y
YWCP

Y
 by solving a set of equations. 

Y
YWCP

∂
∂

=
),('  is the general 

condition under perfect competition that the output prices equal the corresponding marginal cost of 

that output. For the normalized quadratic cost function (1), the first order conditions are: 

WAAYCCAP ** ''' ++=  and the optimal output quantities are determined by solving for Y: 

(2) )*(* '''1* WAAAPCCY −−= −  2   

Plug *Y  into the original cost function (1) to solve for the cost function at the optimal output 
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quantities: 

(3) 
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Expanding the function via multiplication, gives: 
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Because CC and BB are symmetric matrices, '1 )( −CC is equal to 1−CC  and ')(BB  is equal 

to BB . By further expanding equation (4) , the cost function is: 

(5) 
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Since each term in equation (5) is a scalar, we can transpose any item in the above equation. 

This allows us to combine ACCA ** 1−  and '1 ***5.0 ACCA −  in line 1, cancel out 

'1' ****5.0 ACCAAW − , WAACCA ****5.0 '1−  and '1' *** ACCAAW −  in line 2, cancel 

out third line, combine WAACCAAW *****5.0 '1' −  and WAACCAAW **** '1' −  in line 

four, and cancel out the last line of equation (5). As a result, we can find a simplified cost function, 

which is 
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(6) 
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Now, plug the optimal output *Y  (equation (2)) and the above cost function into the profit function 

)YC(W,-Y*P **=Π , the unrestricted profit function is 

(7) 
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By simplifying equation (7), we obtain  

(8) 
''1''1''1
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Equation (8) is the unrestricted profit function expressed by the parameters of a given cost 

function, input and output prices. It is also a normalized quadratic function. The next step is to find 

the inverse relationships, to recover the cost function from the unrestricted profit function.   

At this point, if the unrestricted normalized quadratic profit function is used as the form 

(9) 
1***11**

'

*11*

'

**11**11**10 *****5.0***5.0**
nnmmnnnnmmmmnnmm
WPAAPWPBBWPPCCPWPBPAPpb +++++=Π   

the profit function can be expressed by the corresponding cost function, and the parameters in 

these two functions have the following relationships: 

(10) '1
00 ***5.0 ACCAbpb −+−= , 1* −−= CCAPA , BAACCAPB −= − '1 **   

(11) 1−= CCPCC , 1* −−= CCAAPAA  and BBAACCAAPBB −= − '1 **        

With the explicit relationships between the parameters from the cost and unrestricted profit 

functions, we can recover the parameters in the profit function from the cost function.  

However, recovering the parameters in the cost function using the profit function may not be 

as straightforward as recovering the parameters in the profit function using cost function. Two 
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cases exist. In the first case, the relationships between the parameters from the cost and profit 

functions are highly nonlinear, and it may be intractable to find the inverse function given 

parameters in profit function as a function of parameters in cost function. That is, it’s difficult to 

express the parameters in the cost function explicitly with the parameters in profit function. 

Empirically, we can use EXCEL or GAMS to recover the unknown parameters in the cost function 

using parameters from the profit function by the explicit relationships that we have derived in (10) 

and (11), i.e. parameters in profit function as functions of parameters in cost function. In the 

second case, the relationships are not highly nonlinear, and it is easy to solve the inverse 

relationships between the parameters of cost and profit functions, i.e., express the parameters of a 

cost function as a function of the parameters from the profit function. In this case, the cost function 

can be recovered directly from the profit function using those relationships. 

In our case, it is tractable to solve the inverse relationships between the parameters from the 

profit function and cost functions. With the relationships in (10) and (11), the parameters in the 

cost function can be expressed using those in the profit function. 

(12) '1
00 ***5.0 PAPCCPApbb −+−= , 1* −−= PCCPAA , PBPAAPCCPAB −= − '1 **   

(13) 1−= PCCCC , 1* −−= PCCPAAAA  and PBBPAAPCCPAABB −= − '1 **           

    The results in (12) and (13) imply that for a normalized quadratic profit function, the 

underlying cost function can be recovered using linear algebra computations. 

An Empirical Example: A Case of Three Inputs and Two Outputs 

Suppose that the normalized quadratic cost/profit function has three inputs (w1 w2 w3) and 

two outputs (y1 y2), and the input prices w1, w2 and cost C(W,Y) are normalized on the third input 
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price w3. 

The cost function is 

(14) 
[ ] [ ] [ ]

[ ] [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+=

2
1

*
2221
1211

*21
2
1

*
2212
1211

*21*5.0

2
1

*
2212
1211

*21*5.0
2
1

*21
2
1

*21),( 0

y
y

aa
aa

ww
y
y

cc
cc

yy

w
w

bb
bb

ww
y
y

aa
w
w

bbbYWC
.  

Economies of scope can be expressed as 

(15)
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The unrestricted profit function corresponding with the cost function is 

(16) 
[ ] [ ] [ ]

[ ] [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+=Π

2
1

*
2221
1211

*21
2
1

*
2212
1211

*21*5.0

2
1

*
2212
1211

*21*5.0
2
1

*21
2
1

*210

p
p

papa
papa

ww
p
p

pcpc
pcpc

yy

w
w

pbpb
pbpb

ww
p
p

papa
w
w

pbpbpb
.  

Following the theoretical results from (12) and (13), the parameters in the cost function (14) can 

be calculated from the unrestricted profit function (16).  

Also, note that the optimal output y1 and y2 in the equation of EOS can be calculated using 

Hotelling’s lemma, where i
i

y
p

=
∂
Π∂ . Thus, economies of scope at the optimal quantity can be 

calculated using the recovered cost function and the optimal output supplies.  

In this paper, 500 data points for each of the three input prices and two output prices were 

generated using Monte-Carlo procedure. The parameters of the normalized cost function (true cost 

function) were specified so that the cost function satisfied homogeneity, symmetry, and curvature 

conditions. Homogeneity was satisfied by normalizing all prices and cost by the third input price, 

symmetry was imposed by letting the Hessian matrices of input prices and output quantities being 
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symmetric, and curvature was imposed using Cholesky decomposition, which means the Hessian 

matrix on input side can be expressed as 
'
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Hessian matrix on the output side can be expressed as 
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With input and output prices, as well as the parameters in cost function, the optimal output 

quantities y* were calculated using equation (2). The minimized costs )YC(W, *  were determined 

using the input prices and optimal output quantities. Maximized profits were the differences 

between maximized revenue and the minimized cost )YC(W,-Y*P **=Π . All the costs and 

profits were calculated at each of the 500 data points. The unrestricted normalized quadratic profit 

function was estimated with profit on the left hand side and input and output prices on the right 

hand side. At this point, we estimate the unrestricted profit function and our objective is to recover 

the cost function using the relationships between the parameters of cost and profit functions.                

In table 1, the first column are the estimated coefficients of the profit function using the 

generated data, the second column are the recovered parameters of cost function using the 

estimated coefficients from profit function, and the third column are the assumed true parameters 

of the cost function that were used to generate the data set. The results in table 1 show that all the 

recovered parameters in the AA matrix are exactly same as parameters of the true cost function in 

data generating process, which verified our method. 

Using Hotelling’s lemma, the optimal output quantities were obtained at each of the 500 data 

points. The mean cost was also calculated using (14) with recovered parameters of cost function, 

mean input prices and mean output quantities obtained by Hotelling’s lemma. Then EOS at mean 
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optimal output quantities and input prices were calculated using equation (15), which were 0.044, 

implying relatively weak economies of scope.  

Conclusions and Discussions 

In this paper, the theoretical relationships between the normalized quadratic cost and 

unrestricted profit functions were derived. Using the theoretical relationships, the parameters in the 

cost function can be recovered from the unrestricted profit function that is estimated, which 

enables the calculation of economies of scope using the profit function. We numerically analyzed 

the economies of scope based on the normalized profit function which had three inputs and two 

outputs, using Monte-Carlo data. The recovered parameters for the cost function are identical to 

the true parameters. Measuring economies of scope using the profit function has a few merits that 

lack in methods using the cost function. First, imposing curvature on a profit function is easier 

than imposing curvature on a cost function (Marsh and Featherstone). Second, EOS calculated 

from the profit function is always on the production frontier, which avoids the problem that EOS 

from the cost function are not necessarily on the production frontier, violating the condition that 

EOS required (Berger et al 1993a). Third, EOS calculated from cost functions may incorporate 

output inefficiencies (Berger et al 1993b). While the economies of scope calculated from profit 

function can be a result from both the cost saving process on the input side and the optimal 

allocation of output supply in response to exogenous output prices. In addition, using Berger et al’s 

(1993b) method to test optimal economies of scope, an unrestricted profit function was estimated, 

and then the minimum optimal output quantities corresponding to every price was acquired using 

Hotelling’s lemma. If the minimum optimal output quantities was statistically significant and 
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greater than zero, then optimal scope economies exist. This method does not use the quantitative 

measurement of EOS defined by Baumol et al, and lacks the ability of comparing the specifically 

defined EOS with Baumol et al’s definition. In this paper, since the basic concept of economies of 

scope was used, the difference in EOS from both methods (using cost or profit function) can be 

compared.  

We realize that using the profit function to estimate economies of scope is not as straight 

forward as using the cost function, and the process of recovering the parameter in the cost function 

adds additional calculations. A normalized cost/profit function with three inputs and two outputs 

involves 15 unknown parameters. In a production process with n inputs and m outputs, adding one 

more dimension on the input (output) side will add 2(n+1)+m (2(m+1)+m) parameters. If the 

relationships between parameters from cost and profit functions can be expressed using linear 

algebra as with the normalized quadratic cost and profit function, the process should not be a big 

problem. Without measurement error in prices and quantities, the recovered cost function is 

identical to the true cost function used to generate the data. However, in an empirical study, data 

quality are always problem which involves measurement error in prices and quantities that were 

used to estimate profit or cost functions. Lusk et al’s study showed that only under certain 

restricted conditions, the estimated parameters from production function, unrestricted profit 

function and restricted profit function satisfied the Hessian Identity relationships derived by Lau. 

As a result, more research should be conducted to explore how measurement errors in prices and 

output quantities affect EOS calculated from both profit and cost functions.   
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Table 1 
Estimated Profit Function and the Comparison of the True and Recovered Cost Functions 

Pb0 -29.340 b0 30.000 b0 30.000
Pb1 -9.912 b1 10.000 b1 10.000
Pb2 -34.901 b2 35.000 b2 35.000
Pa1 -0.147 a1 0.600 a1 0.600
Pa2 -0.616 a2 2.000 a2 2.000

Pb11 0.101 b11 -0.090 b11 -0.090
Pb12 0.080 b12 -0.075 b12 -0.075
Pb22 0.749 b22 -0.740 b22 -0.740
Pc11 0.250 c11 4.000 c11 4.000
Pc12 -0.001 c12 0.010 c12 0.010
Pc22 0.309 c22 3.241 c22 3.240
Pa11 -0.045 a11 0.180 a11 0.180
Pa12 -0.031 a12 0.100 a12 0.100
Pa21 -0.032 a21 0.130 a21 0.130
Pa22 -0.040 a22 0.130 a22 0.130

True Parameters 
in Cost Function

Estimated Parameters 
in Profit Function

Recovered Parameters 
in Cost function

 


