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Estimating Economies of Scope Using Profit Function: A Dual Approach of the Normalized

Quadratic Profit Function

Zhifeng Gao and Allen Featherstone

Abstract
Theoretical relationships between the parameters of the normalized quadratic cost and profit
functions were derived. The cost function was recovered from an estimated profit function, and
thus economies of scope (EOS) were calculated using a profit function. An empirical example
showed that the parameters in the true cost function could be precisely recovered using the
estimated profit function. Estimating economies of scope measures using profit functions have
several merits over that using cost function, which include easier imposition of curvature, avoiding
calculating EOS off the production frontier and capturing the inefficiency in the allocation of
output quantities. The EOS calculated using a profit function was based on the Baumol et al.’s
concept of EOS and can be easily compared with the EOS that was computed using cost function.
Keywords: duality, economies of scope, normalized quadratic cost and profit function
Introduction

Economies of scope exist if the costs of producing several products together are lower than
that of producing these products separately. It measures the percentage of cost savings in
producing the outputs jointly in one firm rather than producing the products individually in
different firms. The sources of economies of scope lie in the complimentary property among inputs:

the marginal cost of producing one product decreases as the output of the other product increases.



Since Baumol, Panzar and Willig’s work in the 1980s, economies of scope have become an
important concept in measuring economic efficiency in a multiproduct framework. Basically, there
are two approaches in estimating economies of scope. One approach is nonparametric analysis. In
the nonparametric approach (Fére), linear programming is used to calculate the minimum
multiproduct cost with all/individual outputs, and then the cost of producing multiproducts jointly
and the cost of producing these products individually are compared. The advantage of
nonparametric method is that it doesn’t require specific functional forms, which avoids the
problem of distorting the technology by imposing a functional relationship on the cost function.
However, this method does not necessarily allow setting the output equal to zero leading to some
possible approximation error (Coffey and Featherstone).

The second approach involves directly estimating a specified cost function, and comparing
the cost of producing multiproducts jointly and the sum of the cost of producing all the products
individually. This approach is widely used in studying economies of scope of firms in various
industries, such as agricultural and financial industries. The normalized quadratic functional form
is widely used to approximate the cost function in the study of economies of scope' (Featherstone
and Moss, Fernandez-Cornejo et al, Jin et al and Cohn et al). The main problem with the
parametric approach is that the data used to estimate cost functions are not always on the efficient
frontier. Because scope economies are defined only on the efficiency frontier, testing economies of
scope by “using data off the frontier could confound scope economies with X-efficiencies.”
(Berger et al 1993a). In addition, imposing curvature in a profit function is easier than that in a

1: Another widely used functional form is the translog function. However, the translog function form is multiplicative in 2
output and the cost will be zero when one or more outputs are zero in the cost function. Taking the log of a zero output causes
problems. Most research replaces the zero output with 10 percent of the mean output but the effect on the measurement of the

scope economies of replacing the zero output with a small portion of mean output is still unclear.



cost function. Normally, the concavity in outputs and the convexity in inputs have been imposed
for the two sub-matrices of the Hessian matrix, and off diagonal sub-matrices are not considered.
Using the profit function makes it easier to impose curvature on the off diagonal sub-matrices
(Marsh and Featherstone). Berger et al (1993b) also pointed out that measuring scope economies
from cost function didn’t consider whether the output bundle is optimal, thus lacking the
consideration of the revenue effects on the efficiency measure. Therefore, they suggested that
more research should concentrate on estimating economies of scope from the profit function,
which includes both revenue and cost sides of production. In accordance with their argument,
Berger et al (1993b) provided a new concept of optimal scope economies, which determines
“whether a firm facing a given set of prices and other exogenous factors should optimally produce

the entire array of products or specialize in some of them.” With an unrestricted profit function, the

optimal quantities of outputs can be derived using Hotelling’s lemma o =Y, . If the optimal
i

quantities of all outputs are determined to be positive at given exogenous prices, optimal scope
economies exist at that point. The new concept of economies of scope, however, loses its
connection with the classic definition of economies of scope, in that while it can be determined
whether scope economics exist, the magnitude of scope measures cannot be determined.

Following Berger et al’s suggestion, this paper provides a novel way to estimate economies of
scope using a profit function. Different from Berger et al’s (1993b) approach, we use the classic
concept of scope economies that was first provided by Baumol et al.

Duality and Recovering Cost Function from Unrestricted Profit Function



To determine economies of scope (EOS), the cost of producing multiproducts jointly and the
sum of the cost to produce these products individually need to be compared. Economics of scope
measures how much savings could occur if the products are produced jointly rather than producing

them separately. Specifically, EOS is:

> C(Y)-C(Y)
EOS =- o) where C(Y;) is the cost of producing only Y; by a individual firm, and

C(Y) is the cost of producing all outputs by a single multiproduct firm. If EOS is positive,
economies of scope exist and firms can be more cost efficient by diversification in production.

According to duality theory, a profit maximizing firm must also minimize cost, and the
unrestricted profit function from profit maximization problem contains the same information as the
cost function from cost minimization problem (Mas-Colell et al.). Theoretically, it’s possible to
link the parameters of the profit function to the parameters in the cost function. Lau (1976) proved
that under perfect competition, a restricted profit (cost) function or production function can be
recovered from an unrestricted profit function and vice versa. Lusk et al. test the relationship
between the parameters of production function, unrestricted profit function and restricted profit
function empirically. Therefore, estimating the economies of scope using the profit function is to
obtain a cost function from a profit function, and then use the concept of EOS determined by the
cost function to calculate economies of scope.

We use the normalized quadratic functional form in this paper, because it is self-dual in cost

and profit functions and the links between these two functions do not depend on particular data

points (Lusk et al.).



It seems plausible to be able to recover the cost function from the profit function. However,
the unrestricted profit function is calculated from the difference between the maximized revenue
and the minimized cost, and calculating revenue and cost functions both involve the first order
derivative of the corresponding objective functions. Obtaining the cost function from a profit
function involves the opposite process, which is integration. Compared to taking the derivative of
a function, integrating a function is relatively more difficult and in some cases may be intractable.
To begin the derivation, we begin with a cost function and use the maximization process to
calculate the unrestricted profit function theoretically. If the parameters of profit function (Y) can
be expressed using the parameters of the cost function (X), such as Y = f(X), an inverse
relationship can be obtained, which expresses the parameters of cost function using the parameters
from the profit function : X = f '(Y). In the case that the theoretical inverse relationships cannot
be obtained when there are highly nonlinear relationships between the parameters of those two
functions, the parameters of cost function can be recovered from the profit function empirically
using an algorithm to I\/LinY — f(X). As long as a cost function can be expressed using parameters
from a profit function, economies of scope can be calculated using the parameters from
unrestricted the profit function.

Theoretical Relationship between Cost and Unrestricted Profit Functions

Suppose that we have a normalized quadratic cost function C(W,Y)=min wx where W is a
vector of normalized input prices and Y is a vector of output quantities. C(W,Y) has following
properties:

1. C(W,Y) is continuous in (W,Y) and differentiable in W and Y



2. C(W,Y) is linear homogenous and concave in W
3.C(W,Y)isconvex in Y
The normalized cost function with n+1 inputs and m outputs is:

(1) CW,Y)=b, +B*V\*/+ A*Y +0.5*W *BB*W+0.5*Y *CC*Y +W * AA*Y

*m  m*l 1*n n*n  n* 1*m m*m  m*  1*n n*m m*l

where C(W,Y) is the cost, and W is a vector of input prices, both are normalized on the n+1 input

price, which implies that the cost function satisfies the homogeneity condition. Formally,

b, b, . b,
b, b, .. b,
BB=| ' " | and by =b to satisfy symmetry condition in input prices
by by e b |
C,, Cp o Cin
Chy Cpy o Cyp,
cC=| ’ ‘ " | andc; = c to satisfy symmetry condition in output quantities
Cop Cpy eooee C.o




a, a, . a,
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AA =
A, Ay e A,

Curvature conditions required that cost function is concave in input prices W and convex in
output quantities Y. The Hessian matrix of the normalized quadratic cost function on input prices
and output quantities are just BB and CC respectively. The curvature and symmetry conditions
together imply that the matrix BB and CC are negative semi-definite symmetric matrices and
positive semi-definite symmetric matrices, respectively. Empirically, Cholesky decomposition can
be used to impose curvature globally on the cost function in estimating this function.

Assume both input and output markets are perfectly competitive, the unrestricted profit
function can be obtained as a result of following maximization problem
IT =max P*Y -C(W,Y) where P is a vector of exogenous output prices, P =[p, p,......p,, ]-

The first order conditions of profit maximization allow us to determine the optimal

. CW,Y) _OCW,Y)
oY

is the general
oY

ou‘[putZ—IYT =P =0 by solving a set of equations. P

condition under perfect competition that the output prices equal the corresponding marginal cost of
that output. For the normalized quadratic cost function (1), the first order conditions are:

P =A +CC*Y + AA *W and the optimal output quantities are determined by solving for Y:
(2) Y'=CC'*(P' —A —AA *W) ?

Plug Y~ into the original cost function (1) to solve for the cost function at the optimal output

2: The inverse of CC matrix requires that the production function is strictly convex. It also indicates that there is single pointin 7
Y corresponding to one set of prices, making Hotelling’s lemma feasible. Throughout this paper, we assume that the

production function is strictly convex. If the assumption is relaxed, the inverse of CC may not be found. However, generalized
inverse can be used instead to determine inverse matrix of CC to solve for possible solutions of Y. This is beyond the study of

this paper, for more details of the theory of generalize inverse, see Ben-Israel.



quantities:
CW.,Y")=b, +1*B”‘\/\/1+1A”‘CC’1 *(P' — A — AA *W)
n n* *m m*1

(3) +0.5*W *BB*W+0.5*[CC™ (P ~ A — AA *W)] *CC*[CC™ *(P' — A — AA"*W)]

n*n  n*l 1*m m*l
+W ' ARECC # (P — A — AA *W)
*n n*m m*1

Expanding the function via multiplication, gives:

CW,Y ) =b, + B*W+ (A*CC ' *P' — A*CC ' * A — A*CC ' * AA *W)
(4) +0.5*W *BB*W+0.5*[(P' — A — AA *W) *(CC™) J*(P' — A" — AA *W)

+(W *AA*CC ' *P' —W * AA*CC ' * A —W * AA*CC ™ * AA *W)

Because CC and BB are symmetric matrices, (CC™')'isequalto CC™' and (BB) is equal

to BB . By further expanding equation (4) , the cost function is:

C(W,Y")=b,— A*CC'*A +0.5* A*CC ™' *A
+B*W— A*CC™' * AA *W +0.5*W * AA*CC™ * A’ +0.5* A*CC ™ * AA *W —W * AA*CC™' * A
+A*CC'*#P —0.5% A*CC™'*P' —0.5*P*CC™' *A

) ,
+0.5*W *BB*W +0.5*W * AA*CC™" * AA *W —W * AA*CC ™" * AA *W

+0.5%P*CC™ *P'
—0.5*W * AA*CC™ #P'—0.5% P*CC™ * AA *W +W * AA*CC ™ %P

Since each term in equation (5) is a scalar, we can transpose any item in the above equation.
This allows us to combine A*CC™'*A and 0.5* A*CC™'* A’ in line 1, cancel out
0.5*W *AA*CC™'*A, 0.5%*A*CC™' *AA'*W and W * AA*CC™' *A’ in line 2, cancel
out third line, combine 0.5*W * AA*CC™' * AA *W and W * AA*CC™' * AA"*W in line
four, and cancel out the last line of equation (5). As a result, we can find a simplified cost function,

which is



©) CW,Y)=b,—0.5% A*CC™'* A" +(B—- A*CC ™' * AA)*W
+0.5*W *(BB— AA*CC™ * AA)*W +0.5*P*CC ™' *P’
Now, plug the optimal output Y~ (equation (2)) and the above cost function into the profit function
[M=P*Y -C(W,Y"), the unrestricted profit function is

MM=P*CC'*(P —A — AA *W)—[b, —0.5* A*CC * A" +(B— A*CC ™ * AA)*W

(7) , . ,
+0.5*W *(BB—-AA*CC™' * AA)*W +0.5*P*CC™" *P]
By simplifying equation (7), we obtain

IT=-b, +0.5%*A*CC ' *A = A*CC™' *P +(A*CC™ * AA —B)*W
+0.5%P*CC™ *P' +0.5*W *(AA*CC™ * AA —BB)*W —W *CC™' * AA *P’

(8)

Equation (8) is the unrestricted profit function expressed by the parameters of a given cost
function, input and output prices. It is also a normalized quadratic function. The next step is to find
the inverse relationships, to recover the cost function from the unrestricted profit function.

At this point, if the unrestricted normalized quadratic profit function is used as the form

(9) I1 = pb, +1*P* PA+ PB*W+0.5* P*PCC* P'+0.5%W * PBB*W+ P* PAA*W

m*1 *n  n* *m m m*1 1*n n*n n*l  1*m m*n n*l

the profit function can be expressed by the corresponding cost function, and the parameters in
these two functions have the following relationships:
(10) pb, =-b, +0.5*A*CC"'*A’, PA=—-A*CC™', PB=A*CC'*AA -B
(11) PCC=CC™", PAA=-AA*CC™' andPBB = AA*CC™' *AA - BB

With the explicit relationships between the parameters from the cost and unrestricted profit
functions, we can recover the parameters in the profit function from the cost function.

However, recovering the parameters in the cost function using the profit function may not be

as straightforward as recovering the parameters in the profit function using cost function. Two



cases exist. In the first case, the relationships between the parameters from the cost and profit
functions are highly nonlinear, and it may be intractable to find the inverse function given
parameters in profit function as a function of parameters in cost function. That is, it’s difficult to
express the parameters in the cost function explicitly with the parameters in profit function.
Empirically, we can use EXCEL or GAMS to recover the unknown parameters in the cost function
using parameters from the profit function by the explicit relationships that we have derived in (10)
and (11), i.e. parameters in profit function as functions of parameters in cost function. In the
second case, the relationships are not highly nonlinear, and it is easy to solve the inverse
relationships between the parameters of cost and profit functions, i.e., express the parameters of a
cost function as a function of the parameters from the profit function. In this case, the cost function
can be recovered directly from the profit function using those relationships.

In our case, it is tractable to solve the inverse relationships between the parameters from the
profit function and cost functions. With the relationships in (10) and (11), the parameters in the
cost function can be expressed using those in the profit function.

(12) b, =—pb, +0.5*PA*PCC~' *PA’, A=—-PA*PCC™', B=PA*PCC™' *PAA -PB
(13) CC=PCC™', AA=-PAA*PCC™ and BB=PAA*PCC™' *PAA - PBB
The results in (12) and (13) imply that for a normalized quadratic profit function, the
underlying cost function can be recovered using linear algebra computations.
An Empirical Example: A Case of Three Inputs and Two Outputs

Suppose that the normalized quadratic cost/profit function has three inputs (w; w, ws3) and
two outputs (y; y2), and the input prices w;, w, and cost C(W,Y) are normalized on the third input

10



price ws.

The cost function is

wl yl bl bi2] [wl
CW,Y)=b, +[ol b2]* 1 a2]* 0.5*[wl  w2]* *
W.¥)=b, +| ] [wz}r[a 22| {yz}+ - w2] [blz bzz} {wz}

cll cl2 yl all al2 yl
+0.5%[yl y2]* # +[wl ow2]* *
cl2 c22| |y2 a2l a22| |y2

Economies of scope can be expressed as

(14)

(15) gog = CW.y)+CW, y,)-CW,Y) _ by +b, * W, +b, *w, +0.5%b, * W +b, *w, *w, +0.5%b,, *w; —c,, *y, *y,
CW.,Y) CW.,Y)

The unrestricted profit function corresponding with the cost function is

I = pb, +[pbl pb2]*vaj+[pa1 pa2]*[§ﬂ+0.5*[wl Wz]*[pbll pblz}*[wl}

(16) pb12  pb22 | |w2
11 12 1 11 12 1
+0.5%[yl yz]{pc be }([p }+[w1 W2]’{pa ba }{p }
pcl2 pc22 p2 pa2l pa22 p2

Following the theoretical results from (12) and (13), the parameters in the cost function (14) can
be calculated from the unrestricted profit function (16).

Also, note that the optimal output y1 and y2 in the equation of EOS can be calculated using

Hotelling’s lemma, where a =Y, . Thus, economies of scope at the optimal quantity can be

i
calculated using the recovered cost function and the optimal output supplies.

In this paper, 500 data points for each of the three input prices and two output prices were
generated using Monte-Carlo procedure. The parameters of the normalized cost function (true cost
function) were specified so that the cost function satisfied homogeneity, symmetry, and curvature
conditions. Homogeneity was satisfied by normalizing all prices and cost by the third input price,

symmetry was imposed by letting the Hessian matrices of input prices and output quantities being

11



symmetric, and curvature was imposed using Cholesky decomposition, which means the Hessian

T [ou by fdy 0] [dy 0]
matrix on input side can be expressed as BB = =— and
bZl b22 le d22 d2] d22

. . . G Cn | | & 0 * e, 0
Hessian matrix on the output side can be expressed as CC = = .
C21 C22 e21 e22 e21 eZ2

With input and output prices, as well as the parameters in cost function, the optimal output
quantities y were calculated using equation (2). The minimized costs C(W,Y") were determined
using the input prices and optimal output quantities. Maximized profits were the differences
between maximized revenue and the minimized cost TI=P*Y" -C(W,Y"). All the costs and
profits were calculated at each of the 500 data points. The unrestricted normalized quadratic profit
function was estimated with profit on the left hand side and input and output prices on the right
hand side. At this point, we estimate the unrestricted profit function and our objective is to recover
the cost function using the relationships between the parameters of cost and profit functions.

In table 1, the first column are the estimated coefficients of the profit function using the
generated data, the second column are the recovered parameters of cost function using the
estimated coefficients from profit function, and the third column are the assumed true parameters
of the cost function that were used to generate the data set. The results in table 1 show that all the
recovered parameters in the AA matrix are exactly same as parameters of the true cost function in
data generating process, which verified our method.

Using Hotelling’s lemma, the optimal output quantities were obtained at each of the 500 data
points. The mean cost was also calculated using (14) with recovered parameters of cost function,
mean input prices and mean output quantities obtained by Hotelling’s lemma. Then EOS at mean

12



optimal output quantities and input prices were calculated using equation (15), which were 0.044,
implying relatively weak economies of scope.
Conclusions and Discussions

In this paper, the theoretical relationships between the normalized quadratic cost and
unrestricted profit functions were derived. Using the theoretical relationships, the parameters in the
cost function can be recovered from the unrestricted profit function that is estimated, which
enables the calculation of economies of scope using the profit function. We numerically analyzed
the economies of scope based on the normalized profit function which had three inputs and two
outputs, using Monte-Carlo data. The recovered parameters for the cost function are identical to
the true parameters. Measuring economies of scope using the profit function has a few merits that
lack in methods using the cost function. First, imposing curvature on a profit function is easier
than imposing curvature on a cost function (Marsh and Featherstone). Second, EOS calculated
from the profit function is always on the production frontier, which avoids the problem that EOS
from the cost function are not necessarily on the production frontier, violating the condition that
EOS required (Berger et al 1993a). Third, EOS calculated from cost functions may incorporate
output inefficiencies (Berger et al 1993b). While the economies of scope calculated from profit
function can be a result from both the cost saving process on the input side and the optimal
allocation of output supply in response to exogenous output prices. In addition, using Berger et al’s
(1993b) method to test optimal economies of scope, an unrestricted profit function was estimated,
and then the minimum optimal output quantities corresponding to every price was acquired using
Hotelling’s lemma. If the minimum optimal output quantities was statistically significant and

13



greater than zero, then optimal scope economies exist. This method does not use the quantitative
measurement of EOS defined by Baumol et al, and lacks the ability of comparing the specifically
defined EOS with Baumol et al’s definition. In this paper, since the basic concept of economies of
scope was used, the difference in EOS from both methods (using cost or profit function) can be
compared.

We realize that using the profit function to estimate economies of scope is not as straight
forward as using the cost function, and the process of recovering the parameter in the cost function
adds additional calculations. A normalized cost/profit function with three inputs and two outputs
involves 15 unknown parameters. In a production process with n inputs and m outputs, adding one
more dimension on the input (output) side will add 2(n+1)+m (2(m+1)+m) parameters. If the
relationships between parameters from cost and profit functions can be expressed using linear
algebra as with the normalized quadratic cost and profit function, the process should not be a big
problem. Without measurement error in prices and quantities, the recovered cost function is
identical to the true cost function used to generate the data. However, in an empirical study, data
quality are always problem which involves measurement error in prices and quantities that were
used to estimate profit or cost functions. Lusk et al’s study showed that only under certain
restricted conditions, the estimated parameters from production function, unrestricted profit
function and restricted profit function satisfied the Hessian Identity relationships derived by Lau.
As a result, more research should be conducted to explore how measurement errors in prices and

output quantities affect EOS calculated from both profit and cost functions.

14
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Table 1
Estimated Profit Function and the Comparison of the True and Recovered Cost Functions

Estimated Parameters Recovered Parameters  True Parameters

in Profit Function in Cost function in Cost Function
Pb0 -29.340 b0 30.000 b0  30.000
Pbl -9.912 bl 10.000 bl 10.000
Pb2 -34.901 b2 35.000 b2  35.000
Pal -0.147 al 0.600 al 0.600
Pa2 -0.616 a2 2.000 a2 2.000
Pbll 0.101 bll -0.090 bll  -0.090
Pb12 0.080 bl12 -0.075 bl12  -0.075
Pb22 0.749 b22 -0.740 b22  -0.740
Pcll 0.250 cll 4.000 cll 4.000
Pcl12 -0.001 cl2 0.010 cl2  0.010
Pc22 0.309 c22 3.241 c22  3.240
Pall -0.045 all 0.180 all 0.180
Pal2 -0.031 al2 0.100 al2  0.100
Pa21 -0.032 a2l 0.130 a2l 0.130

Pa22 -0.040 a22 0.130 a22  0.130




