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A Semiparametric Approach to Estimate Engel curves using the US Micro Data 

Introduction 

Engel curves explain the change of expenditure for different goods as a function of 

income (or total expenditure). Ernst Engel (1857) made the first attempt to investigate 

Engel curves; he studied how household expenditures on food vary with income. He 

found that food expenditures are an increasing function of income and of family size, but 

that food budget shares decrease with income. The study adopted a nonparametric 

approach to construct curves which are currently called regressograms. Since then much 

of the work on Engel curves involved use of parametric models.  

Cross-section Engel functions have been a major subject of research in applied 

demand analysis. The use of cross-sections from survey data in the estimation of demand 

systems simplifies demand analysis as it assumes constant prices (all households face 

same prices). The relationship between consumption, income and prices is transformed 

into the well known consumption income relationship.  

Classical approaches to estimating cross-sectional Engel curves are based on 

parametric models. Working (1943) proposed the log-linear budget share specification, 

which is known as the Working-Leser model, since Leser (1963) found that this 

functional form fit better than some alternatives. The most common demand system 

specifications such as AIDS, translog, linear expenditure, PIGL, and PIGLOG have been 

favored because of their exact aggregation or representative agent properties, but model 

misspecification is a recurrent theme. Recent studies have focused on Engel curves 

because these are more curvature flexible than the PIGLOG specification, for example 

Hausman et al., (1991); Hausman et al., (1995); Lewbel, (1991); Blundell and Duncan, 



(1998); and Blundell et al., (1993) find quadratic terms are needed in the model. In any 

parametric model the functional shape of the estimate is already given by assumptions. 

The quality of the resulting estimator depends heavily on the correctness of this 

specification. If the model is misspecified, then inferences and forecasts from such 

models are inadequate.  

The assumption of a fixed parametric functional form embedded in parametric 

methods is relaxed in nonparametric models; consequently, there are no parameters to 

estimate. But parametric properties can be added in a semiparametric framework to arrive 

to a more economic theory consistent specification. In the context of Engel curve 

estimation nonparametric smoothing methods have been applied in a few studies, for 

example, in Bierens and Pott-Butler (1990), Banks et al., (1997), Blundell et al., (1998).  

The basic relationship represented by an Engel curve is that of consumption and 

income. However, the consumption patterns of households also respond to demographic 

characteristics. For example, it is reasonable to expect a family with two children to 

spend more on food than a family with one child. Knowledge of the way income effects 

differ across household types is critical in understanding the impact of tax and welfare 

programs on expenditure patterns (Blundell et al., 1998). In the context of Engel curves 

most empirical studies allow demographic and other household characteristics to enter 

parametrically resulting in semiparametric specification. 

Blundell et al. (1998) estimated Engel curves using a partial linear framework 

developed by Robinson (1988). The study found that under partial linear framework if at 

least one good has shares that are linear in ln x, for example food shares, then introducing 

demographics restricts all demands to have shares linear in ln x. To overcome this 
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restriction they propose the extended partial linear model which allows the demographics 

to enter the model in an additive way and at the same time allowing for shape invariance 

of Engel curves. Blundell et al. (1998), investigate expenditure shares of couples with one 

child that are supposed to be related by parametric transformations to the expenditure 

shares of couples with two children using the UK data by applying the concept of shape 

invariance. 

The objective of this paper is to estimate Engel curves with an emphasis on 

modeling the demographic characteristics using cross-section data from the 2003 US 

consumer expenditure survey (CES). The study focuses on finding adequate specification 

for the US Engel curves estimation using parametric, nonparametric, and semiparametric 

techniques. Nonparametric kernel regression techniques are used to estimate Engel 

curves. A semiparametric approach is used to pool across groups mainly households with 

one child as reference group and households with two children as the non reference 

group. We also estimate popular parametric specifications to consider as the null against 

the nonparametric and semiparametric alternatives. Model specification tests are 

conducted using the recently developed nonparametric specification test (Ellison and 

Ellison, 2000).  

The rest of the paper is organized as follows. Section two provides a description 

of the empirical model followed by the data and methodology section. Results from the 

empirical analysis are discussed in section four. Finally summary and conclusions are 

presented. 
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Empirical Model  

 Working (1943) proposed the linear budget share specification, which is known as 

the Working-Leser model, since Leser (1963) found that this functional form fit better 

than some alternatives. We use the basic framework of Working-Leser model which is 

specified as follows: 

wj = aj + bj ln x        (1) 

The model underlies the popular Almost Ideal and Translog demand models of Deaton 

and Muellbauer (1980a) and Jorgenson, Lau, and Stoker (1980) which also have the 

Piglog specification in which budget shares are linear in log total expenditure. In our 

empirical analysis the parametric models use the above log linear model and the 

quadratic model includes extra squared term of log expenditure. 

 Blundell et al., (1998) extended partial linear Working-Leser framework which 

they named “extended partial linear model”. The study estimates Engel curves by using 

shape invariance parameter to pool across demographic groups. The shape invariance 

parameter which is also referred to as equivalence scales is estimated in the 

semiparametric framework by minimizing a loss function. The correction for endogeneity 

of total expenditure is also introduced into the model. In our study we use extended 

partial linear framework. The formal representation of extended partial linear model is 

given as 

jjjjj zxgzw ενρφα ++−+= )(ln          (2) 

where wj is the expenditure share of the jth good and x the total household expenditure, z 

represents the demographic variable and v are the residuals obtained from the augmented 

regression of ln x on log income of household. 
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To adjust for endogeneity the popular augmented regression technique suggested 

by Holly and Sargan (1982) is adopted in the semiparametric framework. Suppose ln x is 

endogenous in model in the sense that 0)ln|( ≠xE ε . To correct for endogeneity we use 

the two step procedure. The first step involves a regression of log of total expenditure on 

log of income of the household; the residuals obtained from this step are used in the 

second stage. 

vyx += βln , with E(v|y) = 0        (3) 

The second step partial linear model is specified using the residuals from the first step as 

the excluded instrumental variable. 

jjjj xgw ενρ ++= )(ln           (4) 

The significance jρ parameter confirms the endogeneity while correcting the same. 

Data and Methodology 

We use cross-sectional data derived from 2003 Consumer Expenditure Survey 

(CES) conducted by U.S. Department of Labor (Bureau of Labor Statistics). The data 

selected include observations on households with one or two children under the age of 

eighteen. In order to preserve demographic homogeneity in all other aspects we include 

only married couples. This leaves us with a sample size of 682 including 371 couples 

with one child and 311 couples with two children. Table 1 gives descriptive statistics of 

the sample used in the study. In our application we consider six broad categories of 

goods: food, clothing, alcohol, transportation, recreation, and other goods. 

The linear and quadratic models are estimated using simple ordinary least squares 

(OLS) and used as null against alternatives nonparametric and semiparametric 

specifications. We use the Nadaraya-Watson estimator for estimating the nonparametric 
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regression. The idea of nonparametric regression is to let the data determine the shape of 

the function to be estimated. Given an underlying data generating function, 

iii xgY ε+= )(  ( )0(~ iidε ), an estimated nonparametric regression curve, , may be 

defined over the data points {Y

)( ixg
∧
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K(.) is a weakly positive Kernel function, and h is a nonzero bandwidth. The choice of 

the kernel function, K(.), has a minimal affect on the estimate of  (see Hardle, 1993), 

so we choose the triangle kernel for K(.). Cross-validation technique is employed to 

select the optimal bandwidth for each estimated nonparametric regression. The top and 

bottom 2.5% of the data are trimmed to avoid the boundary bias in the estimation of 

nonparametric regression. 

)( ixg
∧

 The semiparametric approach involves partial linear specification for each of the 

budget share equations 

ijijijij xgzw εα ++= )(ln`           (7) 

in which z represents a linear index in terms of a vector of observable exogenous 

regressors z

`
jα

i and unknown parameters . Here we will assume jα 0)ln,|( =xzE ijε and 

. Following Robinson (1988), a simple transformation of the )ln,()|( 2 xzxzVar jij σε =ln,
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model can be used to give an estimator for . Taking expectations of the above 

conditional on ln x, and subtracting from the resulting expression from (7) yields

      (8) 

jα

ijεiiijiijij xzEzxwEw α +−=− ))ln|(()ln|( `

)ln|( iij xwE )ln|( ii xzE

jα
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The terms and  can be replaced by  and  

nonparametric fitted values respectively. A simple OLS estimator is then applied to the 

residuals obtained to get . To adjust for endogeneity the popular augmented regression 

technique suggested by Holly and Sargan (1982) is used in the semiparametric 

framework. 

)(ln xg w
jh

∧

)(ln xg z
h

∧

 The shape invariance parameter is estimated using a pooling approach. Under the 

pooling approach nonparametric regressions for the two demographic groups (families 

with one child and two children) are assumed to be linked by the parameters (φ ,{ }jα ) 

and follow the shape-invariance specification given by:  

.       (9) 

Hardle and Marron (1990) suggested a simple loss function equal to the integrated 

squared distance between the reference function and the transformed function to estimate 

the parameters. But the approach is valid for fixed design models.  The budget data used 

in the study are suited to random design models because the independent variable, total 

expenditure, is a random variable. We use a slightly more complex function suggested by 

Pinkse and Robinson (1995) for the random design case. The definition of this estimator 

is essentially based on the Nadaraya-Watson estimator.   

dxxwxg jj
xlowj

)())( 2
0

1

αφ −−
∧

=

 (10) 
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Where , and , are the kernel density estimates, , and   are the fitted values of the 

nonparametric regressions, and  w(x) is equation specific non-negative weight function. 

Estimation of scale parameter 

1∧

f
0∧

f
1

jg
∧ 0

jg
∧

φ  and the shift parameters  involves sequential 

gridsearch methods. Robinson's (1988) method is applied to estimate the initial values 

for . Conditional on  a sequential gridsearch method is applied to the loss function 

to estimate the scale parameter

jα

jα jα

φ . The standard errors obtained should be interpreted with 

caution as the distribution of loss function is likely non-normal (Pendakur, 2005). Hence 

we construct bootstrap standard errors for φ  and through repetition of this gridsearch 

process for 500 bootstrap samples.  

jα

 We use the “wild” bootstrap procedure because of the potential heteroscedastic 

setting. In this case, for each estimated residual iε one creates two-point distribution for a 

random variable, say  iυ  = iε (1- 5 )/2, with probability (prob( iυ ) =(5+ 5 )/10 ) and iυ = 

iε (1+ 5 )/2, with probability (prob(5- 5 )/10) (see Yatchew, 2003). The random 

variable iυ  has properties E , , and . Based on this distribution 

we draw  and build the bootstrap data set. The data set is then used for further analysis 

in the estimation of standard error and the empirical distribution of the loss function.  

0) =i(υ
∧

= 2
iε

2 )( iE υ
∧

= 33 )( iiE ευ

B
iε

 The empirical distribution of the loss function is developed under the assumption 

of extended partially linear null. The test for shape invariance is conducted using the 

bootstrap critical values for the loss function generated from the bootstrap samples 

(similar to Pendakur, 1999). Finally specification tests are conducted with parametric 

models as null hypothesis and nonparametric and semiparametric specification as the 
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alternatives. We use the recently developed specification test by Ellison and Ellison 

(2000) which looks at the orthogonality between nonparametric fitted values and 

parametric residuals. 

)],()[(/1
1

bxfyxgn iii
n

i

∧

=

∧

−∑         (11) 

The test simplifies into a weighted function of the sum of squares of parametric residuals, 

and can be linked to the test proposed by Zheng (1996).     

Empirical Results  

The results from kernel regression are presented in Figures 1 to 6 for the six 

budget shares considered in our study. The figures present unrestricted non-parametric 

Engel curves for the demographic group (couples with one child) which is also our 

reference group and the second group (couples with two children). The triangle kernel is 

used for all the regressions, applying leave-one-out cross-validation methods for 

bandwidth selection to each non-parametric regression. 

The regression curves appear to demonstrate that the Working-Leser linear 

logarithmic (Piglog) formulation is a reasonable choice for some budget share curves (for 

example, food, clothing, and alcohol). For other shares, in particular transportation and 

other goods, a more non-linear relationship between share and log expenditure is evident.  

In Figure 1, for example, we see a broadly parallel shift in the food Engel curve, 

with couples with two children spending more of their budget on food than couples with 

a single child at the same level of total expenditure. For alcohol, on the other hand, Engel 

curves for couples with two children shift down relative to the reference group (see 

Figure 2). There is no strong evidence of demographic variability in clothing, 
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transportation, and other good shares. The similarity in the shapes across demographic 

characteristic suggests existence of shape invariance. 

 The parametric and semiparametric estimates are reported in Tables 2-7 for each 

of the six share equations. The first column in each of the tables presents results for a 

simple OLS regression of budget share on log expenditure with no semiparametric 

controls. The second column reports results for a model which adjusts for the number of 

children in the household using the partially linear framework of Robinson (1988). The 

estimates of the model that controls for demographics and endogeneity using the partial 

linear framework are presented in third column. The final two specifications relate to the 

shape-invariant generalizations proposed by Blundell et al., (1998). The fourth model 

allows for scale shifts in log expenditure by demographic type using the estimation 

method of Pinkse and Robinson (1995) and the fifth in addition introduces controls for 

endogeneity.  

 In these tables refers to the simple OLS estimate of the slope coefficient. The 

shape-invariant transformation has two parameters for each share equation; the scaling 

parameter 

ols

j

∧

β

φ  in the term (ln )zx φ− and an intercept parameter jα . For the two models in 

column four and five in each of Tables 2 to Table 7 we estimate the parameters (φ ,{ }jα ) 

through minimization of loss function presented in equation (10). 

The estimate of scale parameter common to all six share equations is 0.258, 

giving an estimated equivalence scale of (1.294) for couples with two children compared 

with reference group (couple with one child). This is quite close to the estimates reported 

by the U.S. House of Representatives (1994), Blundell et al (1998) for UK data and 
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Pendakur (1999) for Canada data. The parameters specific to each share equation are 

reported in the tables. Having accounted for the scale parameter

jα

φ , we find significant 

shift parameter for food, confirming the initial graphical evidence in Figure 1. We fail to 

reject the null hypothesis of shape invariance for all share equations based on the critical 

values generated from the empirical distribution of the loss function. The critical values 

are obtained from the distribution of loss function generated under the null hypothesis of 

shape invariance and then compared to the value loss function for each share equation.  

The results from tests of the linear and quadratic logarithmic specifications 

against the nonparametric and semiparametric alternatives are reported in bottom two 

rows of Tables 2-7. For majority of the expenditure shares (food, alcohol, clothing, 

recreation, and other shares) in Tables 2-7, in all specifications, we are unable to reject 

linearity. In contrast, for transportation share, the Piglog of Working-Leser form, and 

quadratic specifications are strongly rejected. This result is maintained even after 

controlling for demographic variation and the endogeneity of total expenditure. We also 

find the correction for endogeneity of log total expenditure to be important in most share 

equations, most notably food, transportation and other share. 

Summary and Conclusions 

The objective of this paper was to investigate the shape of Engel curves using 

theoretically consistent and data coherent methods. By choosing a cross section of US 

consumers we have focused on the Engel curve relationship. As a baseline specification 

we have worked with the Working-Leser or Piglog specification in which budget shares 

are expressed in terms of log total expenditure, this being the Engel curve shape 

underlying the popular AIDS and Translog demand models.  

 11



We also consider parametric models which have more variety of curvature than is 

permitted by the Piglog. The evidence of quadratic curvature from more recent studies 

(Banks et al., 1997) warrants the need to investigate quadratic specification. 

Consequently we used both the Piglog and quadratic logarithmic specifications as null 

parametric specifications against non-parametric and semiparametric alternatives.  

The shape invariant semiparametric framework proposed by Blundell et al., 

(1998) is estimated using the pooling approach suggested by Pinkse and Robinson 

(1995). To correct for endogeneity Holly and Sargan (1982) augmented regression 

approach is adopted in the semiparametric framework. Income is used to instrument total 

expenditure, correcting for endogeneity is found to have an important impact on the 

curvature of the Engel curve relationship. We fail to reject the assumption of shape 

invariance based on the critical values generated from the empirical distribution of loss 

function. 

Ellison and Ellison (2000) specification test is used to compare the parametric 

specification against the nonparametric and semiparametric alternatives. The results from 

specification tests indicate Working-Leser or Piglog specification was sufficient for most 

budget shares except for transportation where semiparametric specification had support. 

Our study further contributes to the growing evidence on the need for 

investigating specification of model in the empirical analysis of Engel curves. The 

parametric models as evidenced above might not be adequate for all goods. The results 

seem to support the findings from earlier studies using data from other developed nations 

for example Blundell et al., (1998) for UK data and Pendakur (1999) for Canada data. 
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The relatively close estimate for the equivalence scales of developed nations indicates 

similarities in the consumption patterns. 
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Figure 1. Food Engel curves   Figure 2. Alcohol Engel curves 
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Figure 3. Clothing Engel curves  Figure 4. Transportation Engel curves 
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Figure 5. Recreation Engel curves  Figure 6. Other Engel curves 
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Table 1. Descriptive statistics for budget share data 
 Couple with one child Couple with two children 

Variable Means Std. deviations Means Std. deviations 

Food share 0.153 0.073 0.160 0.066 

Alcohol share 0.005 0.008 0.004 0.007 

Clothing share 0.031 0.025 0.033 0.029 

Transportation share 0.187 0.150 0.176 0.150 

Recreation share 0.049 0.040 0.055 0.051 

Other share 0.573 0.134 0.568 0.137 

Log total expenditure 10.150 0.827 10.195 0.757 

Log total income 10. 551 1.115 10.687 1.017 

Sample size 371  311  
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Table 2. Parametric and semiparametric estimates: food Engel curves 
0=φ  258.0=φ (0.047) 

 1 
No 

corrections 

2 
Demographics 

3 
Demographics 

and 
endogeneity 

4 
Demographics 

5 
Demographics 

and 
endogeneity 

ols

j

∧

β  
-0.0464 

(0.0029) 

-0.0466 

(0.0029) 

-0.0464 

-(0.0028) 

-0.0465 

(0.0029) 

-0.0461 

(0.0028) 
∧

jα  
 0.0104 

(0.0045) 

0.0103 

(0.0045) 

0.0222 

(0.0046) 

0.0211 

(0.0045) 

j

∧

ρ  
  0.0170 

(0.0025) 

 0.0444 

(0.0025) 

Loss    0.0002 

[0.0006] 

 

Ho: linear parametric form 

)1(2
EEχ  0.082 0.912 0.362 0.174 0.333 

Ho: quadratic parametric form 

)1(2
EEχ  0.023 0.939 0.127 0.026 0.049 

Notes:     is the estimate obtained from OLS regression. Standard errors are enclosed in () parentheses. 
Bootstrapped 10 % critical values in [ ] parentheses. Bootstrap standard error is reported for the 
parameter

ols

j

∧

β

φ . 
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 Table 3. Parametric and semiparametric estimates: alcohol Engel curves 
0=φ  258.0=φ  (0.047) 

 1 
No 

corrections 

2 
Demographics 

3 
Demographics 

and 
endogeneity 

4 
Demographics 

5 
Demographics 

and 
endogeneity 

ols

j

∧

β  
-0.0009 

(0.0004) 

-0.0009 

(0.0004) 

-0.0012 

(0.0004) 

-0.0009 

(0.0004) 

-0.0009 

(0.0004) 
∧

jα  
 -0.0005 

(0.0006) 

-0.0006 

(0.0006) 

-0.0003 

(0.0006) 

-0.0005 

(0.0006) 

j

∧

ρ  
  -0.0018 

(0.0014) 

 -0.0020 

(0.0009) 

Loss    8.0E-5 

[0.0001] 

 

Ho: linear parametric form 

)1(2
EEχ  0.006 0.005 0.073 0.133 0.203 

Ho: quadratic parametric form 

)1(2
EEχ  0.038 0.037 0.090 0.154 0.175 

Notes:     is the estimate obtained from OLS regression. Standard errors are enclosed in () parentheses. 
Bootstrapped 10 % critical values in [ ] parentheses. Bootstrap standard error is reported for the 
parameter

ols

j

∧

β

φ . 
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Table 4. Parametric and semiparametric estimates: clothing Engel curves 
0=φ  258.0=φ  (0.047) 

 1 
No 

corrections 

2 
Demographics 

3 
Demographics 

and 
endogeneity 

4 
Demographics 

5 
Demographics 

and 
endogeneity 

ols

j

∧

β  
-0.0019 

(0.0013) 

-0.0019 

(0.0013) 

-0.0018 

(0.0015) 

-0.0019 

(0.0013) 

-0.0019 

(0.0013) 
∧

jα  
 0.0017 

(0.0021) 

0.0017 

(0.0021) 

0.0021 

(0.0022) 

0.0020 

(0.0021) 

j

∧

ρ  
  0.0006 

(0.0044) 

 0.0036 

(0.0032) 

Loss    7.0E-5 

[0.0002] 

 

Ho: linear parametric form 

)1(2
EEχ  0.699 0.716 0.647 0.819 0.776 

Ho: quadratic parametric form 

)1(2
EEχ  0.833 0.835 0.831 0.866 0.867 

Notes:     is the estimate obtained from OLS regression. Standard errors are enclosed in () parentheses. 
Bootstrapped 10 % critical values in [ ] parentheses. Bootstrap standard error is reported for the 
parameter

ols

j

∧

β

φ . 
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Table 5. Parametric and semiparametric estimates: transportation Engel curves 
0=φ  258.0=φ  (0.047) 

 1 
No 

corrections 

2 
Demographics 

3 
Demographics 

and 
endogeneity 

4 
Demographics 

5 
Demographics 

and 
endogeneity 

ols

j

∧

β  
0.0657 

(0.0068) 

0.0659 

(0.0068) 

0.0619 

(0.0079) 

0.0659 

(0.0068) 

0.0662 

(0.0068) 
∧

jα  
 -0.0136 

(0.0108) 

-0.0132 

(0.0108) 

-0.0324 

(0.0109) 

-0.0332 

(0.0109) 

j

∧

ρ  
  0.0100 

(0.0061) 

 0.0273 

(0.0161) 

Loss    0.0014 

[0.0023] 

 

Ho: linear parametric form 

)1(2
EEχ  12.814 12.460 21.174 11.356 6.136 

Ho: quadratic parametric form 

)1(2
EEχ  9.424 9.492 19.934 6.553 6.150 

Notes:     is the estimate obtained from OLS regression. Standard errors are enclosed in () parentheses. 
Bootstrapped 10 % critical values in [ ] parentheses. Bootstrap standard error is reported for the 
parameter

ols

j

∧

β

φ . 
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Table 6. Parametric and semiparametric estimates: recreation Engel curves 
0=φ  258.0=φ  (0.047) 

 1 
No 

corrections 

2 
Demographics 

3 
Demographics 

and 
endogeneity 

4 
Demographics 

5 
Demographics 

and 
endogeneity 

ols

j

∧

β  
0.0026 

(0.0022) 

0.0025 

(0.0022) 

0.0092 

(0.0024) 

0.0025 

(0.0022) 

0.0049 

(0.0022) 
∧

jα  
 0.0064 

(0.0035) 

0.0064 

(0.0035) 

0.0056 

(0.0035) 

0.0056 

(0.0036) 

j

∧

ρ  
  -0.0136 

(0.0074) 

 -0.0035 

(0.0053) 

Loss    0.0014 

[0.0031] 

 

Ho: linear parametric form 

)1(2
EEχ  0.070 0.151 0.203 0.042 0.066 

Ho: quadratic parametric form 

)1(2
EEχ  0.104 0.066 0.066 0.060 0.061 

Notes:     is the estimate obtained from OLS regression. Standard errors are enclosed in () parentheses. 
Bootstrapped 10 % critical values in [ ] parentheses. Bootstrap standard error is reported for the 
parameter

ols

j

∧

β

φ . 
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Table 7. Parametric and semiparametric estimates: other Engel curves 
0=φ  258.0=φ  (0.047) 

 1 
No 

corrections 

2 
Demographics 

3 
Demographics 

and 
endogeneity 

4 
Demographics 

5 
Demographics 

and 
endogeneity 

ols

j

∧

β  
-0.210 

(0.0065) 

-0.0209 

(0.0065) 

-0.0193 

(0.0072) 

0.0209 

(0.0065) 

-0.0216 

(0.0064) 
∧

jα  
 -0.0042 

(0.0102) 

-0.0045 

(0.0102) 

0.0031 

(0.0103) 

0.0049 

(0.0102) 

j

∧

ρ  
  -0.0014 

(0.0214) 

 -0.0686 

(0.0145) 

Loss    0.0016 

[0.0043] 

 

Ho: linear parametric form 

)1(2
EEχ  1.359 1.366 0.756 2.468 1.844 

Ho: quadratic parametric form 

)1(2
EEχ  0.623 0.630 0.513 0.574 0.529 

Notes:     is the estimate obtained from OLS regression. Standard errors are enclosed in () parentheses. 
Bootstrapped 10 % critical values in [ ] parentheses. Bootstrap standard error is reported for the 
parameter

ols

j

∧

β

φ . 
 

 21



References 

Banks, J., R. Blundell, and A. Lewbel. “Quadratic Engel Curves and Consumer 
Demand.” Review of Economics and Statistics 79(1997):527-539. 

 
Bierens, H. and H. A. Pott-Buter. “Specification of Household Expenditure Functions and 

Equivalence Scales by Nonparametric Regression.” Econometric Reviews 
9(1990):123-210. 

 
Blackorby, C. and D. Donaldson. “Adult equivalence scales and the economic 

implementation of interpersonal comparisons of well-being.” Social Choice and 
Welfare 10(1993) 333-361. 

 
Blundell R, Duncan A, Pendakur K. “Semiparametric estimation of consumer demand.” 

Journal of Applied Econometrics 13(1998): 435-461. 
 
Blundell R, Pashardes P, Weber G. “What do we learn about consumer demand patterns 

from micro data?” American Economic Review 83(1993): 570-597. 
 
Deaton, A. S., and Muellbauer, J. “An Almost Ideal Demand System.” American 

Economic Review 70(1980): 312-336. 
 
Ellison, G., and Ellison, S.F., “A simple framework for nonparametric specification 

testing.” Journal of Econometrics 96(2000):1-23. 
 
Engel, E. “Die Productions- und Consumptions verhaeltnisse des Koenigsreichs 

Sachsen.” reprinted with Engel Anlage I(1895):1-54. 
 
Gozalo, P. “Nonparametric bootstrap analysis with applications to demographic effects in 

demand functions.” Journal of Econometrics 81(1997):357-393. 
 
Hardle W. “Applied Nonparametric Regression. Cambridge University Press: New 

York(1993). 
 
Hausman, J., W. Newey, H. Ichimura and J. Powell. “Identification and estimation of 

polynomial errors in variables models.” Journal of Econometrics 50(1991):273-
296. 

 
Hausman, J.A., W. K. Newey, and J. L. Powell. “Nonlinear Errors in Variables: 

Estimation of Some Engel Curves.” Journal of Econometrics 65(1995):205- 253. 
 
Hardle, W. and J. Marron. “Semiparametric comparison of regression curves.” Annals of 

Statistics 18 (1990):63-89. 
 
Holly, A., and J. Sargan. “Testing for Exogeneity in a Limited Information Framework.” 

Cahiers de Recherches Economiques, No, 8204. Universite dc Lausanne 1982. 

 22



 23

 
Jorgenson. D,, L. Christensen, and L. Lau. “Transcendental Logarithmic Utility 

Functions.” American Economic Review 65(1975):367-383. 
 
Leser, C. “Forms of Engel functions.” Econometrica 31(1963):694-703. 
 
Lewbel, A. “The Rank of Demand Systems: Theory and Nonparametric Estimation.” 

Econometrica 59(1991):711-730. 
 
Nadaraya, E. “On Estimating Regression.” Theory of Probability and its Applications 

9(1964):141-142. 
 
Pendakur, K. “Estimates and Tests of Base-Independent Equivalence Scales.” Journal of 

Econometrics 88(1999):1-40. 
 
Pinkse, C. and P. Robinson. “Pooling nonparametric estimates of regression functions 

with a similar shape.” in G. Maddala, P. Phillips and T. N. Srinivasan (eds), 
Advances in Econometrics and Quantitative Economics (1995):172-195. 

 
Pollak, R. A., and Wales, T. J. “Estimation of Complete Demand Systems from 

Household Budget Data.” American Economic Review 68(1978):348-359. 
 
Robinson, P. “Root-N-consistent semiparametric regression.” Econometrica 56(1988): 

931-954. 
 
U.S. House of Representatives, Committee on Ways and Means. Where Your Money 

Goes. The 1994-1995 Green Book, Washington D.C, U.S. Government Printers 
(1994). 

 
Watson, G. “Smooth Regression Analysis.” Sankhya 26(1964):359-372. 
 
Working, H. “Statistical Laws of Family Expenditures.” Journal of the American 

Statistical Association 38(1943):43-56. 
 
Yatchew, A. “Semiparametric Regression for the Applied Econometrician.” Themes in 

Modern Econometrics, ed. P.C.B. Phillips, Cambridge University Press (2003). 
 
Zheng, J. “A consistent test of functional form via nonparametric estimation techniques.” 

Journal of Econometrics 75(1996):263-289. 
 


