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ESTIMATION OF TECUNOLOGICAL PROGRESS ON TUE BASE 

OF FLEXIBLE COST FUNCTION 

von 

J. MICHALEK, Amsterdam 

One of the most popular approaches which allows for the measurement of technological 

progress is based on the estimation of production, cost or profit function. 

There are so me important methodological requirements which one should take into 

account when the modelling of technological progress using the concept of production 

function (or its' dual form i.e. cost function) is considered. The necessary requirement is 

that technological progress should bring about a diminution of the average costs of 

production, given constant output and input price level. 

Moreover technological progress should be allowed to: 

1. affect the elasticity of substitution between two inputs, given constant output and 

input price ratio (technological progress embodied in i- factor), 

2. affect the magnitude and the rate of economies of scale (e.q. dfect of learning by 

doing), 

3. cause the bias in output- mix (technological progress output- biased), 

4. appear as an exogenous variable independent on output and price level (autonomous 

technological progress), 

5. change over time at a non - constant rate. 

However, only few empirical studies are known with application to agricuIture in which 

the effects of technological progress on the change of production technology were 

modelIed and tested statistically using above criteria. In a number of studies which dealt 

with the measurement of technological progress usually only some of these criteria are 

preselected (rather ambiguously), the rest is simply ignored. New developments in the 

establishing flexible forms as weil as the advantages stemming from duality theory made 

possible to weaken strong apriori assumptions recognized earlier as a straitjacket of 
economic analysis of technology. However, application of flexible forms for the analysis 

of producer behaviour and for the measurement of technological progress can be the 

subject to massive critique unless the appropriate theoretical requirements necessary to 

represent an optimization approach are ensured. 

In order to represent producer's optimization behaviour (Le. cost minimization approach) 

the cost function must possess the following properies: 

1. positivity i.e. the cost function is positive for positive input prices and positive level 

of output, 
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2. homogeneity i.e. the cost function is homogenous of degree one in input price, 

3. monotonicity i.e. the cost function is increasing in input prices and level of output, 

4. concavity i.e. the cost function is concave in input prices. 

Employment of flexible forms (i.e. translog. cost function) for the modelling of producer 

behaviour and technological progress does not ensure, however, that all of these 

properties will be apriori fulfilled. Some of these requirements can be ensured by the 

appropriate restrictions imposed on the parameters (i.e. homogeneity, symmetry 

restrictions), unfortunately monotonicity and concavity conditions are checked usually in 

applied work given parameters estimated i.e. ex post. If the estimated flexible form of 

the cost function, given input price ratio, fulfils all desirable properties it can be said to 

be a reasonable representation of a producer behaviour around this point. However, 

when concavity and (or) monotonicity conditions are not fulfilled the employment of a 

given expenditure function as a representative of the cost minimizing producer behaviour 
is problematic. 

First, the whole interpr.etation of the obtained results is questionable since these would 

only be valid un~er the assumption of producer's optimization behaviour (cost 

minimization or profit maximization approach). Second, if monotonicity and (or) 

concavity conditions in a dual approach are not fulfilled also a primal optimization 

problem is not retrievable (both problems are in one- to- one correspondence only under 

appropriate regularity conditions). 

Estimation of technological progress on the base of flexible form (i.e. translog cost 

. function) implies that within this framework technological progress can be considered as 

a non-systematic factor which affects the rate of elasticities of substitution and 

economies of scale, whicb can be input and output biased etc. and therefore fulfils all 

desirable requirements of its own characteristics mentioned above. 

In general one can distinguish three major assumptions which decisively impact upon 

econometricaly estimated rate of technological progress: 

1. first set assumptions regards a general specification of technology and particulary 

allowing for non-homotheticity, variable elasticity of substitution and non-constant rate 

of technological progress; 

2. second set of assumptions concerns the functional relationship between technological 

progress and other characteristics of technology i.e. allowing for technological progress 

which can be scale augmenting, input and output biased, autonomous etc.; 

3. third set of assumption concerns an assumed functional form of estimated production, 

cost, profit or price function (different functional specifications of flexible forms wh ich 

inc1ude time as a proxy for technological progress are presented in Appendix 1). 
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However, allowing for non-neutral technological progress within more general 
description of technology (as presented by flexible forms) can cause additional concavity 

problems whicb do not appear under different technological progress specification. It is 

weil known that if the production process is a subject to Hick's neutral technological 

progress tbe isoquants move towards the origin having their shapes unaffected. However, 

if tecbnological progress is not Hick's neutral and if technological progress is 

simultaneously allowed to affect the rate of economics of scale a completely different set 

of equi!ibria can occur. 

An affirmative answer on the question whether concavity properties of the used cost 

function could depend on the form and characteristic of technological progress was 

already given in some studies (comp. MORONEY/TRAPANI, 1981; BERNDT/WOOD, 

1985). It has been found that when technological progress is not neutral, the estimated 
translog cost functions is not locally concave. However, when the statistically rejected 

Hick's neutral technological progress restrietions are imposed, the estimated trans log cost 

function is found to be locally well- behaved. 

Of course local concavity properties can be imposed on the function in different ways. 

However, using these approaches one has to be aware of the trade-offs which usually 

exist between concavity conditions on one side and the flexibility of the used form on 

the other side. An example which shows that these methods often fai! to yield 

satisfactory results in practice is the study of JORGENSON & FRAUMENI (1981). After 

employing JORGENSON & FRAUMENI concavity conditions which are based in the 

Cholesky decomposition of positive definite matrix BERNDT /WOOD 1985 found that 

with data used these restrictions imply C-D representation of technology. Not only the 

estimated bias of technological progress was dramatically altered when J - F global 

concavity conditions were imposed. Additionally to the alteration of the specification of 

tecbnological progress by imposing negative semidefiniteness on the Hessian matrix 

severe restrictions on the own and cross price elasticities had to be imposed. 

Choosing therefore in practice between forms of production function and simultaneously 

baving in mind the necessity of estimation technological progress in agriculture in its 

most unrestricted form tbe relevant question which appears is: what considerations are 

relevant in the selection of one algebraic form over another using only apriori 

information, wbich is not specific to the particular data set? 

There are several criteria that can be used as the base for the choice of adequate 
functionall form in general and specific which allow to estimate technological progress in 

its more unrestricted form. These are (LAU, 1986): a) theoretical consistency, b) domain 

of applicability, c) flexibility, d) computational facility, e) factual conformity. In 

practice it means that production/cost/profit function wh ich is used for an estimation of 

technological progress should posses all these desirable characteristics. Unfortunately, 

comparison between well- known functional forms sucb as C-D, CES, translog, 

Generalized Leontief unit cost function according to above mentioned criteria has led 

LAU (1986) to tbe conclusion that there exist no algebraic functional form which 
simultaneously satisfies at least two of the most important criteria i.e. global 
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extrapolative domain of applicability and flexibility, thus in general one should not 
expect to find a algebraic form which satisfies all five criteria. 

Since the most traditional functional specifications of technology are too restrictive for 

modelling different types of technological pro'gress, an alternative would be to develop 

functional forms which are globally 'weil behaved' and still flexible enough to analyze 

the basic characteristics of technology i.e. technological progress, economics of scale, 

elasticities of substitution in their most unrestricted form. A possible solution might be 

an estimation of technological progress using generalized Barnet cost function which is 

globally concave in input prices and simultaneously accounts to flexible forms. However, 

the main disadvantages associated with this form are (comp. DIEWERT, WALES, 1987): 

1. it requires the im position of a large number of inequality constraints on the 

coefficients, 

2. apriori it requires many more parameters than other flexible forms, 

3. even with the large number of parameters it cannot be proved that such a functional 

form is completely flexible (it is quasi flexible relative to the numerary good k). 

Another possible solution to overcome this dilemma is to impose on the functional form 

certain regularity conditions without destroying its' flexibility. 

One of the recent studies of DIEWERT, WALES 1987, suggests that this is possible using 

a technique proposed by WILEY & SCHMIDT (1973) which is based on the 

decomposition of a symmetric negative semidefinite matrix as a product of minus lower 

t~iangular matrix and its transpose. Employment of this method should ensure that the 

estimated flexible cost function will always be concave in input prices and therefore it 

will possess a property of the extrapolative domain of applicability even when 

technological progress is assumed to be non - neutral and estimated function exhibits 

non-constant returns to scale. 

However, an example will show that also this method can be regarded as too restrictive 

and therefore limited for the empirical purpose. 

In order to explain this we assume that the real cost function can be approximated by an 

non-homothetic version of translog cost function with not Hick's-neutral technological 

progress. 

lne = Qo + ~ Q( in Pi + Qy , iny + Qt' t + t ~ ~ 1ij • in Pi ' in Pj + 
1 1 J (1.1) 

+ E Q . , iny , in p. + E Qf ' in p. , t + t Q , (iny)2 + Q t' t. ,tQtt ' t2 
i Yl 1 i 1 1 yy Y ny 

where: t = time as a proxy for t.p., y = output, p = i - factor price. 

If cost function is (quasi)concave in input prices its Hessian matrix must be negative 

(semi)definite. It means that matrix S = [Sij) with off-diagonal elements: 
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and diagonal elements: 

where wi = factor i share 

is negative semidefinite, or 

8(w(c/Pi ) 

8Pj 

8(w(c/Pi ) 

8Pi 

c.{1 .. +w .• w.) 
Ij I I j 

c·{1ii+wf -wi) 

p7 
I 

the matrix of substitution elasticity (Allen- Uzawa) [Oijl defined as: 

is negative semidefinite 

where Lij are the elements of Slutsky matrix. 

(1.2) 

(1.3) 

(1.4) 

Both matrices represent the equivalent illustration of concavity of the cost function. 

Since 1.4 holds and 

l 0 .. = + 
Ij W(Wj 

(1.4.1) 

'jj+wf-Wi 
0 .. = 
Ij wf 

I 
(1.4.2) 

the eonditions for the Slutsky matrix to be negative semidefinite ean be easily expressed 

in terms of appropriate eonditions imposed on the Allen- Uzawa substitution elasticity 

Ioijl matrix. 
The neeessary eonditions for matrix [oijl to be negative semidefinite (which also ensure 
that all own-priee substitutions elastieities are negative) are that Kii is smaller than zero 

where: 

K .. = , .. + w7-.w. 
11 11 I I 

K .. < 0 
11 

(1.5) 

Suffieient eondition is that all principal minors of [Oijl matrix will alternate their signs 

such that odd-numbered prineipal minors are negative and even-numbered principal 

minors are positive. For example for a 3 x 3 symmetrie matrix of substitution elasticities 

[Ii;jl, given homogeneity restrietions, the sufficient eondition is that 
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(1.6) 

(negativity of the first principal minor is already ensured via 1.5). 

From above conditions it folio ws that: 

1. even given negative estimates of the diagonal elements of [oijl matrix it does not yet 
ensure that the cost function is concave (until 1.6 holds). 
2. from 1.5 we can see that necessary conditions for the cost function to be globally 

concave do not require that the diagonal elements of r matrix (r = fyijl are to be negative 
as it is in the case of the method proposed by WILEY, SCHMIDT (1973) in: DIEWERT, 
WALES (1987). 

In order to ensure global concavity of the cost function DIEWERT & WALES (1987) 

propose to rede fine matrix r to be negative definite and decompose it (based on Cholesky 
decomposition) such that r can be expressed as a lower triangular matrix times its 
transpose: 

r = - ['1 .. LJ ' ['1 .. LJ T IJ, IJ, 
(1.7) 

where: is the transformed lower triangular matrix with y ij lements from the cost 
function and to estimate r matrix in the form (example for 3 x 3 matrix) 

r = I 
where: 

-irl 
- i ll ''1 12 

'11 = -'1r I 

'12 = -i 11''1 12 

.2 .2 
'22 = -'11 - '22 

(1.8) 

(1.9) . 

Since (1.9) holds this method implies that all estimated elements of the r matrix must be 

negative, what is a much stronger condition compared to (1.5). 
An im position of the negative values on the diagonal elements T of the r matrix in the 

case when in the free estimation Tij show statistically significant positive signs can lead 
to problems of estimation, especially when the gradient methods are used. In this case 

most what we can obtain by employing the method "proposed in DIEWERT & WALES 
(1987) are the parameter estimates which will tend to zero (the change of the statistically 
significant sign of the parameter is imposed). This, however, reduces appropriate 
elasticities of substitution to 1 and our function to C-D form with significant loss of fit. 
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For an illustration of this problem we used the data of bookkeeping farms from 

Schleswig-Holstein (West-Germany) over the period 1961/62 - 1983/84 in order to 

estimate the non-homothetic version of translog cost function with Hick's non-neutral 
technological progress (given as in 1.1). 

Since estimated translog function was not well-behaved for a certain range of input 

prices, in order to ensure global concavity of the cost function the method proposed by 
WILEY/SCHMIDT (1973) in DIEWERT & WALES (1987) was employed. 

The unrestricted estimates of the cost function show a positive statistically significant 

value of the diagonal element of r matrix «(u) 
where: 1 U = 1U and 111 = 0.1591, t = 17.2 and very high R2 coefficient of the 

estimated budget share equation w1 (graph 1). Important is that even for such a high 

positive value of 111 estimated within a function which allows for Hick's non-neutral 
technological progress 

Graph 1: U mestricted estimation of the budget share wl 

PLOT ()f" ACTUAL<*> AHO FITTEO<+> YALUES 

10 ACTUAL FITTED 
R2=O.9521 

RESIDUAL 
2 0.240(1 0.2334 0.00&& 
3 0.2100 0.2080 0.0020 
4 0.1700 0.1&98 0.0002 
5 0.1700 0.1706 -0.0006 
(; 0.1900 0.2027 -0.0127 
7 0.1800 0.1954 -0.0154 

B 0.1&00 0.1&67 -0.0067 
9 0.1600 0.1548 Q.0052 
10 (1.1900 0.1903 -0.0003 
11 0.2100 0.2139 -0.0039 
12 0.2000 0.1967 0.0033 
13 0.2300 0.2186 0.0114 
14 0.2500 0.2337 0.01&3 
15 0.2200 0.2089 0.0111 
1& 0.1900 0.1840 0.00&0 
17 0.1900 0 .. 1844 0.0056 
18 0.1900 (1.1966 -0.00&6 
19 0.2100 0.2177 -0.00·'7 

20 0.2700 0.2725 -0.0025 
21 0.2900 0.2937 -0.0037 

2Z 0.2&00 0.2&32 -0.0032 

23 0.2300 0.2356 -0.0056 
24 0.2100 0.2114 -0.0014 

the appropriate cost function is concave for the range of the budget shares given by eq. 

1.5-1.6. 

In our next step we imposed the statistically rejected hypothesis of Hick's neutrality of 

technological progress on the estimated cost function in order to compare the number of 

historical price ratios for which both estimated cost functions were locally concave. After 
imposing Hick's-neutral specification of technological progress the number of 

observations for wh ich estimated cost function was locally concave increased by 44 %. 
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Further, in .order t.o ensure that estimated C.ost functi.on will be c.oncave f.or all range .of 
input prices we dec.omp.osed matrix r = [Tji] acc.ording tQ the meth.od pr.oP.osed by 
SCHMIDT & WILEY in: DIEWERT & WALES (1987). As expected, because the free 
estimate .of the diag.onal element .of the matrix was .originally PQsitive and statistically 
significant after imp.osing restricti.ons 1.8-1.9 new estimated value .of T 11 where T 11 = 
T112 appeared t.o be alm.ost zer.o (T11 = 2.89 E-08). Additi.onal expense .of the restricti.ons 
imp.osed .on the C.ost functi.on in [LI] was a significant 1.055 .of fit .of the estimated budget 
share. Fr.om R2 = 0.9521, g.o.odness .of fit decreased t.o R2 = 0.3237 (graph 2). 

Graph 2: C.oncavity restricted estimati.on .of the budget share wl 

ID ACTUAL 
2 .0.24.0.0 
3 .0.21.0.0 
4 0.170.0 
5 .0.170.0 
6 .0.1900 
7 .0.1800 
8 0.1&.0.0 
9 0.1&00 
1.0 0.1900 
11 0.21.0.0 
12 0.2000 
13 .0.2300 
14 0.2500 
15 0.2200 
1& 0.1900 
17 0.1900 
18 .0.19.0.0 
19 .0.2100 
20 0.27.0.0 
21 0.29.0.0 
22 0.2&00 
23 .0.230.0 
24 0.21.0.0 

-.. 
PL.oT .o~ ACTUAL(*> AND ~ITTED(+> VALUES 

nTTED 
.0.19&2 
.0.19&5 
0.1931 
.0.18&7 
.0.183.0 
0.1834 
0.193& 
.0.1977 
0.2041 
0.2153 
0.2187 
0.213& 
0.2090 
0.2139 
0.2.03.0 
.0.1981 
0.2.085 
0.2184 
.0.2200 
.0.2232 
0.2107 
.0.224& 
0.2225 

• *-. ..... 
* ..... 

RESIDUAL 
O.o4~8 
.0 • .0135 

-('.0231 
-.0 • .01&7 

0.0070 
-0.0034 
-0.033& 
-.0 • .0377 
-.0.0141 
-.0 • .0.053 
-0.0187 

.0.01&4 
0.041Q 
.0.0061 

-.0 • .0130 
-.o • .oOBI 
-.0 • .0185 
-.o.ooB4 

.0 • .05.00 

.o • .o&&B 

.0.0493 

.0 • .0.054 
-.0 • .0125 

We conc1ude that the methodproposed by SCHMIDT & WILEY in DIEWERT & WALES 
(1987) similar t.o the .other meth.ods which are based .on the Ch.olesky dec.omp.ositi.on .of 
the negative definite matrix (c.omp. JORGENSON, FRAUMENI, 1981), can substantially 

affect flexibility .of the estimated functi.on. H.owever, since the measurement .of 
techn.oI.ogical pr.ogress in its m.ost unrestricted f.orm simultane.ously requires the 

maintenance .of the principal pr.operties .of the estimated C.ost functi.on, the basic dilemma 
which exists between the m.odelling .of unrestricted f.orm of technological progress and 

maintenance of concavity of the C.ost functi.on has t.o be solved via further development 
of the functional forms which are at the same time globa1ly theoretically consistent and 

flexible. 
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Appendix 

Time (t) as a proxy for technologieal progress in different 
specifications of flexible cost functions: 

The Translog Cost Functlon 

In C (p,y,t) = ao + I: a t . In Pt + ay · In y + at . t 

+ (1/2) E I: a ij . In Pi . In Pj 

where: 

+ E aiy . In Pt . In y + I: alt . t . In Pi 

+ (1/2) ayy . In y . In y + ayt . In y . t 

+ (1/2) au . t2, 

alj = ajl for all i, j. 

In C (p,y,t)= ao' + I: a l '. In Pit + 1/2 I: E r' ij . In Pt . In Pj 

where: 

+ Cly ' ·In Yt + 1/2 r'yyl(ln y)2 + E r'yt ·In Yt In Pit 

CI' t • Clt + Clt . t 
, 

CI 0 • Clo + Clo • t 

r' tj= r'j + r tj . t (2) 

CI'y.Cly +Cly.t 

r'vv- ryy + ryy . t 

r'yt. ryi + ryt . t 

Tbe Generalized Leontief Cast Functjon 

c (p, y, t) - E Ebij . Pt'· p/" y + E b; . P; + E b lt . PI . t . 1'3) 

+ bt . (I: Clt . Pi) . t + byy ' (I: Pi . Pt) . y2 

+ btt • (E r t . Pt) . t2 • y 

A Generalize4 McFadden Cast Funetion (4) 

C (p, y, t) = gl (p). y + E bli . Pt' y + I: bt . Pt + E btt · Pi' 

t· Y + bt . (I: Cl i . Pt) . t + byy ' (E Pt . pt)2 + 

btt • (E r t 'Pt) ·t2 • y 

where: gl(p). (1/2)p," . I: E c lj . Pt . Pj 

(I) 
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