
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 1 

 

A Cost Approach to Economic Analysis under Production Uncertainty 

 

by 

 

Jean-Paul Chavas 

 

Selected paper for presentation at the AAEA meeting, Long Beach, California,  

July 23-26, 2006 
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US agriculture. It finds strong empirical evidence that, in the analysis of input choices, 

expected output alone does not provide an appropriate representation of production 

uncertainty. The results provide empirical support for an output-cubical technology. This 
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of facing adverse weather conditions has declined in US agriculture over the last few 

decades.   
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A Cost Approach to Economic Analysis under Production Uncertainty 

 

1. Introduction 

Much research has been done on the microeconomics of uncertainty. Under incomplete 

risk markets, the effects of uncertainty on economic decisions have typically been investigated 

under the expected utility model (e.g., Arrow; Pratt). When applied to firm behavior, Sandmo 

and others have shown the adverse effects of uncertainty under risk aversion. This has stressed 

the joint importance of risk assessment and risk preferences. Risk assessment is typically 

presented in the context of probability assessments. And risk preferences are typically evaluated 

in the context of the expected utility model (e.g., Arrow; Pratt). However, psychologists have 

documented the presence of systematic bias in probability assessment (e.g., Camerer). And there 

is evidence that the expected utility model fails to provide an accurate representation of 

individual risk preferences (e.g., Machina). This raises two questions. First, is a probability 

assessment always required? Second, are there situations where analyzing firm behavior does not 

require knowing the decision maker's risk preferences? The objective of this paper is to explore 

these issues by analyzing firm decisions under production uncertainty.  

This paper explores the economics of input decisions made by a firm facing production 

uncertainty. The issue of investigating cost-minimizing input choices under production 

uncertainty has been analyzed by Pope and Chavas, Chambers and Quiggin, and others. Under 

risk aversion, Pope and Chavas have argued that, under risk aversion, expected output alone does 

not provide an appropriate characterization of cost minimization. Chambers and Quiggin have 

argued that, standard cost minimization still applies under a state-contingent approach, 
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irrespective of risk preferences. However, so far, the state-contingent approach has not been used 

empirically. The current challenge is to make it empirically tractable.  

This paper proposes a methodology to specify and estimate standard cost-minimizing 

input choices under production uncertainty and a state-contingent technology. The approach has 

several attractive characteristics. First, under a state-contingent approach, it does not require a 

priori risk assessments. This can be seen as an advantage when probability assessments are 

problematic and impede empirical economic analysis. Second, as argued by Chambers and 

Quiggin, the analysis applies irrespective of risk preferences. To the extent that assessing risk 

preferences is often difficult, this broadens the scope of applications of the methodology.  Third, 

the approach provides a basis for investigating the nature of the state-contingent technology. In 

particular, it allows the empirical analysis of substitution possibilities across states of nature. As 

noted by Chambers and Quiggin, previous research has commonly assumed an "output-cubical 

technology", where there is no possibility of substitution among state-contingent outputs. Our 

approach provides a basis for testing this hypothesis.  

The usefulness of the proposed methodology is illustrated in an econometric application 

to US agriculture. We find strong evidence that, in the analysis of input choices, expected output 

alone does not provide an appropriate representation of production uncertainty. The results 

indicate empirical support for an output-cubical technology. This indicates that an ex post 

analysis of stochastic technology (as commonly found in previous research) appears appropriate. 

The analysis also provides evidence that the cost of facing production risk has declined in US 

agriculture over the last few decades.   
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The paper is organized as follows. The basic model of the state-contingent approach to 

cost-minimizing input choice under production uncertainty is presented in section 2. Section 3 

investigates how the substitution among state-contingent outputs can be estimated from the cost 

function. Section 4 discusses the measurement of stochastic outputs, with the aim of closing the 

gap between theory and empirical work. Section 5 proposes a parametric specification, with an 

econometric application to US agriculture presented in section 6. Section 7 discusses the 

empirical results. Finally, section 8 presents concluding remarks.  

 

2. The model 

Consider a firm making decisions under production uncertainty. The uncertainty is 

represented by S mutually exclusive states of nature. The firm chooses n inputs x = (x1, …, xn) ∈ 

Rn to produce outputs y = (y11, …, ym1; … ; y1s, …, yms) ∈ RmS, where yis is the quantity of the i-

th output produced under the s-th state of nature, i = 1, …, m, s = 1, …, S. Under technology t, 

the stochastic production technology is represented by the 

possibility set F(t) ⊂ R n
+  × R mS

+ , where (x, y) ∈ F(t) means that outputs y can be produced using 

inputs x. The set F(t) provides a general ex ante representation of the production technology 

under production uncertainty. Throughout, we assume that, for each y, the input requirement set 

G(y, t) = {x: (x, y) ∈ F(t)} ⊂ R+
n is closed and convex.  

In general, production decisions depend on the nature of risk preferences of the decision 

maker. However, production uncertainty is typically associated with lags in the production 

process. In this context, input decisions are made first before the state of nature and the possible 

output realizations become known. Denote by w = (w1, …, wn) ∈ R n
++  the vector of prices for x. 

Assume that input prices w are known at the time when inputs x are chosen. Also assume that the 
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decision maker exhibits preferences that are non-satiated in income. Then, inputs x are chosen in 

a way consistent with the cost minimization problem 

C(w, y, t)  = Minx {w ⋅ x: x ∈ G(y, t)}.  (1) 

Indeed, if input choices do not minimize cost, then under income non-satiation, choosing 

x according to (1) would improve the welfare of the decision maker. Thus, cost minimizing 

behavior (as given in (1)) represents economic rationality for the firm irrespective of the nature 

of risk preferences of the decision maker. Below, we will use expression (1) as a general 

representation of input choice under production uncertainty.   

Denote xc(w, y, t) = argminx {w ⋅ x: x ∈ G(y, t)}. In general, the cost function C(w, y, t) 

= w ⋅ xc(w, y, t) is positively linearly homogeneous and concave in w. And in the case where 

C(w, �y, t) is differentiable in w, it satisfies Shephard’s lemma:   

xc(w, y, t) = �C(w, y, t)/∂w.  (2) 

Equation (2) provides a convenient framework to investigate economic behavior under 

uncertainty. Throughout the paper, we will rely on (2) as a representation of economic rationality 

for input decisions under production uncertainty. Also, we will use (2) as a means of obtaining 

information about the nature of the underlying production technology. From duality, it is well 

known that the cost function C(w, y, t) in (1) provides a convenient framework to investigate the 

nature of substitution among inputs. In particular, the Allen elasticity of substitution between 

inputs i and j is given by σij = 
)wC/)(wC/(

C
ww

C

jiji
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Below, we will be particularly interested in exploring the nature of substitution across 

states. This is at the heart of a debate about whether an ex post production function provides an 

appropriate representation of the ex ante technology under production uncertainty. This question 

has been raised by Chambers and Quiggin, who have shown that an ex post production function 

is appropriate if and only if the ex ante production technology is "output cubical" across states, 

i.e., with no possibility of substitution across states. Following Powell and Gruen, this can be 

conveniently characterized by the Allen elasticity of transformation applied across states. In this 

context, the technology is "output cubical" is the Allen elasticity of transformation between any 

yis and yis' is zero for all s � s' and for all i = 1, …, m. But how can we recover the Allen 

elasticities of transformation between outputs from the cost function (1)? This question is 

addressed in the next section.  

 

3. Elasticities of transformation and duality  

Powell and Gruen define elasticities of transformation between outputs. Such elasticities 

provide useful information about the possibility of substitution among outputs. While Powell and 

Gruen present Allen elasticities of transformation using the production function, this section uses 

duality to explore how to obtain elasticities of transformation from the cost function C(w, y, t) in 

(1).  

To develop the relevant duality results, let g ∈ R n
+  be some reference input bundle 

satisfying g � 0. Given the input requirement set G(y, t), following Luenberger and Chambers et 

al., define the directional distance function 

D(x, y, g, t) = maxβ {β: (x - β g) ∈ G(y, t)} if there is a β such that (x - β g) ∈ G(y, t)  

= -∞ otherwise.  
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The function D(x, y, g, t) measures the distance between point (x, y) and the boundary of 

the feasible set, expressed in units of the reference bundle g. Under free input disposability 

(where x ∈ G(y, t) implies that x' ∈ G(y, t) for all x' ≥ x), x ∈ G(y, t) is equivalent to D(x, y, g) � 

0. In this case, the directional distance function D(x, y, g, t) provides a complete representation 

of the technology, where D(x, y, g) = 0 is an implicit multi-output production function 

representing the boundary of the feasible region. Below, we will assume that D*(x, y, g, t) is 

twice continuously differentiable in (x, y). Also, we will make use of the “normalized” distance 

function D*(x, y, w, t) ≡ [w g] D(x, y, g, t).  

Using D*(x, y, w, t) = 0 as a multi-output production function and following Allen, and 

Powell and Gruen, the elasticity of transformation between any two outputs yi and yj can be 

defined as τij = -
ji

k

m

1k k
*

yy

y)y/D(� =
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det(K)

K c
ij , where K = �

�
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 is the bordered 

Hessian of D*(x, y, g, t) with respect to y, and K c
ij  is the (i, j)-th cofactor of K. Outputs i and j are 

said to be substitutes (complements) if τij < 0 (> 0).1 And in the two output case (m = 2), we have 

τ12 ∈ [-�, 0), where τ12 → 0 corresponds to fixed output-proportions (Powell and Gruen). In the 

general case, τij measures the responsiveness of output-mix ratio to changes in the corresponding 

marginal rate of substitution.  

Our main result is stated next (see the proof in the Appendix). 

Proposition 1: Assume that G(y, t) is a convex set and that free input disposability holds. Then, 

the Allen elasticity of transformation between outputs i and j is given by 

τij = 
ji

k
m

1k k

yy

y)yC/(� =
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det(H)

H c
ij ,  (3) 
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Equation (3) gives an evaluation of the Allen elasticity of transformation among outputs 

from the cost function. In the presence of state-contingent outputs, this provides a basis for 

investigating the possibility of substitution across states (e.g., whether or not the state-contingent 

technology is "cubical"). See below.  

 

4. Measuring stochastic outputs 

Consider a situation involving T observations on the firm. It will be convenient to think 

that different observations correspond to different time periods. In this context, we assume that 

each observation on the firm can be associated with a different technology, where “t” represents 

both time and a “technology index”, t = 1, …, T. It follows that the input requirement set G(y, t) 

allows for possible technological change across observations. The t-th observation consists in 

observing inputs xt = (x1t, …, xnt), input prices wt �= (w1t, …, wnt), and outputs (y1t, …, ymt). 

Under production uncertainty, for each t, the ex post outputs realization (y1t, …, ymt) is only one 

of the many possible realizations of outputs. The output realizations that are possible ex ante are 

yt �= (y1t1, …, ymt1; …; y1tS, …, ymtS), where yits is the quantity of the the i-th output produced at 

time t under the s-th state of nature. The problem is that, for each t, only one of the S possible 

output realizations is typically observed. With ex ante outputs being incompletely observed, this 

means that neither the cost function C(wt, yt, t) nor the input demand functions xc(wt, yt, t) are 



 9 

empirically tractable. In order to make C(wt, yt, t) and xc(wt, yt, t) empirically tractable, it is 

necessary to impose some structure on the problem. Here, we propose a method to generate all 

possible outputs y based on the T observations of the firm. 

First, we know that the ex post outputs realization (y1t, …, ymt) is one of the possible ex 

ante realizations yt �= (y1t1, …, ymt1; …; y1tS, …, ymtS) at time t. In this context, one option is to 

estimate the ex post technology relating realized outputs (y1t, …, ymt) to input use, conditional on 

the particular state of nature obtained under the t-th observation, t = 1, …, T. To make this 

approach empirically tractable, stationary assumptions are needed to establish how the states of 

nature affect outputs across observations. This is typically done by treating the states as random 

variables, and making stationary assumptions on the probability distribution generating these 

random variables. For example, in the single output case (m = 1), assuming that the states are 

independently distributed across observations, the regression of output on input use provides a 

framework to estimate an ex post production function, where the presence of heteroscedasticity 

can reflect the effects of input use on the variability of output (e.g., Antle; Just and Pope, 1978). 

This approach is convenient and has been commonly used in the analysis of stochastic 

technology. Its main limitations are three: first, by embedding the factors determining the state of 

nature into a single scalar-valued random variable and then embedding this variable in a 

technology, it imposes separability of the stochastic factors determining the state of nature (in an 

agricultural example, these would typically be viewed as random inputs such as weather and pest 

infestations) on the underlying technology; second, while it works well in a single output case, it 

can only be applied in a multioutput setting under the restrictive assumption on the technology of 

input nonjointness; and third, and perhaps most importantly, it focuses exclusively on the 

observed outputs. As such, the approach neglects the potential outputs that could have been 
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obtained had nature selected different states. Is this neglect important for economic analysis? 

Chambers and Quiggin have showed that this neglect is acceptable under an "output-cubical 

technology" exhibiting no possibility of output substitution across states. In this case, the ex ante 

technology can be expressed entirely in terms of the ex post technologies across states (see 

Chambers and Quiggin, p. 53-55).  This suggests that, in the absence of output substitution 

across states, an ex post analysis of stochastic technology is appropriate. However, one should 

keep in mind that this does not imply ex post cost minimization. Indeed, since inputs are chosen 

before the state of nature is known, their choice must be feasible ex ante, i.e. for all possible 

states of nature (and not just the particular state of nature that was observed). This means that, 

under an output cubical technology, ex post cost functions are a lower bound on the ex ante cost 

function C(wt, yt, t) (Chambers and Quiggin, p. 134-135). 

But what if the stochastic technology is not "output-cubical"? Then, there are possibilities 

of output substitution across states. In this case, as argued by Chambers and Quiggin, an ex post 

analysis of stochastic technology is inappropriate. It would neglect the effects of input choices on 

the distribution of outputs across states. For example, labor use can contribute to conserving 

water and affect the drought-resistance of a crop. Then, important output trade-offs exist across 

states of nature. Capturing these trade-offs require an ex-ante representation of the technology. 

This raises the important question: how to do this empirically? 

A natural place to start is to explore whether the output observations (y1t, …, ymt), t = 1, 

…, T, can be used to recover the ex ante technology? This is a difficult problem. The reason is 

that outputs depend on inputs, on the state of nature, as well as on the underlying technology. We 

have an identification problem. Under production uncertainty, we cannot estimate the ex ante 

technology without observing all possible outputs (meaning outputs under all possible states, and 
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not just for the realized state). And without knowing the underlying technology, we do not know 

what outputs could have been under different states of nature (at least when the technology is not 

output-cubical). Thus, under general production uncertainty, knowing the actual outputs (y1t, …, 

ymt) does not provide enough information to know the distribution of all possible outputs or the 

underlying ex ante technology. In an attempt to resolve this issue, we need to impose some a 

priori structure on the process generating the states of nature. Below, we propose a general 

methodology to recover possible ex ante outputs using actual outputs (y1t, …, ymt). We know that 

(y1t, …, ymt) is one of the possible outputs for the t-th observation., Recall that yist �denotes the 

quantity of the i-th output produced under the s-th state of nature at time t. For the i-th output, 

assume the existence of positive numbers µis and σis, i = 1, …, m, s = 1, …, S. for each i, define a 

random variable ei for which the s-th realization is given by eis ≡ is1/�
isis )/�(y , s = 1, …, S. It 

follows that the ex ante outputs can be written as   

yist = µ it it�

ise ,  (4) 

Equation (4) defines the variable eis ≡ it1/�
itis )/�(y  as measuring the relative changes in the i-th 

output across states of nature. Thinking of (yi1t, …, yiSt) as a random variable that can take 

different values across states, this simply defines ei as a new random variable obtained from a 

deterministic transformation of the original one. This imposes no a priori restriction on the nature 

of production uncertainty. Indeed, for each t, it allows for an arbitrary distribution of the effects 

of production uncertainty on outputs. In addition, note that the term σit can be interpreted as a 

"spread parameter", allowing the spread of the distribution of the i-th output across states to vary 

across observations t. However, equation (4) does impose a stationarity restriction. It assumes 

that, except for the spread effects captured by σit, the relative effects of production uncertainty on 

each output are similar across observations t. 
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Next, assume that there exists auxiliary variables zit with the following property. When s 

is the state occurring under the t-th observation, zit satisfies 

zit = kit it�

ite ,  (5) 

i = 1, …, m, and t = 1, …, T. This establishes the variables z as proxy variables for the 

measurement of production uncertainty. Indeed, by definition of zit, for the t-th observation, the 

states of nature have the same relative effects on the i-th output as they have on zit. Below, we 

will discuss which variables appear to be good candidates for z. Assume that kit and σit can be 

consistently estimated. Assuming that all variables are positive, equation (5) can be written as 

ln(zit) = ln(kit) + σit ln(eis). This can be treated as a standard econometric model with ln(zit) as the 

dependent variable, ln(kit) as the regression line, σit ln(eit) as the error term, and σit as capturing 

possible heteroscedasticity. In the case where ln(eit) has mean zero and variance 1, then ln(kit) 

can be interpreted as the expected value of ln(zit), and σit as the standard deviation of the error 

term for the i-th output and the t-th observation. As shown by Antle, after choosing a parametric 

specification for kit and σit, a moment-based approach can be used to obtain consistent estimate 

of the parameters. See below. 

When s is the state occurring under the t-th observation, it follows from equation (5) that 

eit = it1/�
itit )/k(z .  This generates ( it1/�

i1i1 )/k(z , …,  iT1/�
iTiT )/k(z ) as estimates of T realized values 

of the random variable ei. For the t-th observation and from equation (4), this can be used to 

obtain the simulated state-contingent outputs at time t  

yt
e = {yirt:  yirt = yit irit /��

irir )/k(z /(zit/kit); r = 1, …, T; i = 1, …, m}. (6) 

t = 1, …, T. Again, note that the term σit/σir in (6) allows for the spread of the distribution of the 

i-th output across states to vary across observations. We want to stress here that µ it in (4) does 
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not play any role in the evaluation of simulated outputs yt
e in (6). To the extent that the µ it’s are 

expected to reflect the underlying technology and the associated economic tradeoffs, this means 

that our proposed scheme for evaluating ex ante outputs can be applied independently of the 

nature of the technology. Of course, the validity of the approach relies crucially on the validity of 

the stationary assumption (4) and of equation (5). 

 

5. Parametric specification 

In general, consistent estimates of kit � and σit can be used to generate simulated state-

contingent outputs yt
e from equation (6). In turn, this can be used to obtain consistent estimate of 

the cost function C(w, y, t) and of cost minimizing behavior xc(w, y, t). This section discusses 

specification issues raised in this approach. When using the state contingent outputs yt
e, the 

problem becomes one of specifying and estimating C(wt, yt
e, t) and of cost minimizing behavior 

xc(wt, yt
e, t) based on a sample of T observations. In this context, the state contingent outputs yt

e 

= {yirt: yirt = yit irit /��

irir )/k(z /(zit/kit); r = 1, …, T; i = 1, …, m} include mT variables at each time 

period t. Even when m = 1, including such a large number of explanatory variables is 

problematic. Typically, many of the elements of yt
e will tend to be correlated in the sample, 

creating serious multicollinearity problems. This makes it very difficult to estimate C(wt, yt
e, t) 

and xc(wt, yt
e, t) directly. And the collinearity problems would become even more severe when m 

> 1. This suggests a need to develop an econometric approach that can avoid such problems. The 

solution is to propose a “parsimonious” parametric specification of C(wt, yt
e, t) and xc(wt, yt

e, t) 

that would not involve “too many” parameters while still allowing the estimation of substitution 

possibilities across states.  
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This can be done in two possible ways. A first approach to a parsimonious parametric 

specification can be obtained by representing the distribution of the e's by a few parameters.  If 

the distribution belongs to a specific parametric form, then the associated parameters are 

sufficient statistics and provide all the relevant information. Alternatively, the first few central 

moments of the distribution can be used (assuming that they exist). In this context, one issue is: 

how many moments are needed to represent the distribution? If the decision maker is risk 

neutral, we know that only the first moment is relevant in the decision making process. This is 

the assumption made by Pope and Just (1996) and Moschini in their analysis of production 

uncertainty. However, if the decision maker is not risk neutral (e.g., under risk aversion), then 

the first moment is not sufficient to characterize production decisions under risk. Then, at 

minimum, the first two moments (and possibly higher moments) are needed. This issue will be 

investigated empirically below. 

A second approach to a parsimonious parametric specification involves working with a 

coarsened partition of the state space. To see that, for the i-th output and the t-th observation, 

define (Ki-1) values bikt satisfying bi1t < bi2t < … < bi,Ki-1,t. For each i and t, this establishes Ki 

intervals, Vi1t = [-∞, bi1t], Vikt = (bi,k-1,t, bikt], k = 2, …, Ki-1, and Vi,Ki,t = (bi,Ki,t, +∞], i = 1, …, m, 

t = 1 , …, T. Assume that the partitions are chosen such that there is at least one observation yirt 

satisfying yirt ∈ Vikt for each i, k and t. Define the indicator variables 

Iikrt  = 1 if yirt ∈ Vikt,  

 = 0 otherwise. 

Let yikt = (� T
1r=  Iikrt yirt)/(� T

1r=  Iikrt) denote the conditional mean of yirt in the k-th partition 

related to the i-th output at time t. Define yt
K = {yikt: k = 1, … Ki-1; i = 1, …, m}. Next, consider 

specifying the cost function as C(wt, yt
K, t) and the input demand functions as xc(wt, yt

K, t). The 
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choice of the state partition provides some flexibility for capturing the economic tradeoffs 

between outputs across states. At one extreme, for each i and k, the finest partition would be 

obtained if Ki = T, generating a single observation at time t in each element of the partition. This 

would be very flexible. However, as noted above, under production uncertainty, it is not practical 

(it involves too many parameters to estimate).  

At the other extreme, the coarsest partition would be obtained if Ki = 1 for each i. This 

would help reduce greatly the number of parameters to estimate. However, this appears too 

restrictive for at least three reasons. First, it would amount to replacing the distribution of each 

yirt across states by its corresponding unconditional means (� T
1r=  yirt)/T. Since the mean is in 

general not a sufficient statistic for most distributions, this would likely involve important loss of 

information. Second, if the decision maker is risk neutral, then it could be argued that the mean is 

the only relevant variable that would influence the decision making process (as assumed by Pope 

and Just (1996) and Moschini). However, this would not apply under risk aversion. To the extent 

that there is considerable evidence that most decision makers are risk averse, this would fail to 

capture the effects of risk and risk aversion on production behavior. Third, using unconditional 

means as representations of production uncertainty would make it impossible to estimate 

econometrically the elasticity of substitution across states. We are interested here in estimating 

such elasticities. This alone would rule out the use of unconditional means (� T
1r=  yirt)/T in the 

representation of output uncertainty.  

If either Ki = 1 and Ki = T appears undesirable, this suggests that a reasonable choice of 

partitions would satisfy 1 < Ki < T. In general, this choice involves tradeoffs between providing a 

flexible representation of the underlying technology (with flexibility improving as the Ki’s 
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increase) and parsimony and ease of estimation (where estimating the model becomes easier as 

the Ki’s decrease). The approach is illustrated below in an empirical application.  

 

6. An Econometric Application 

 Consider the case of where the state space is partitioned to give yt
K = {yikt: yikt = (� T

1r=  

Iikrt yirt)/(� T
1r=  Iikrt); k = 1, …, Ki; i = 1, …, m}. We focus our discussion on the case of the 

generalized Leontief cost function (see Diewert; Lopez) 

C(wt, yt
K, t) = h(yt

K, t) [�i �j αij wit
1/2 wjt

1/2] + �j wjt gj(yt
K, t) (7) 

where αij = αji  for all i ≠ j, yt
K = {yikt: yikt = (� T

1r=  Iikrt yirt)/(� T
1r=  Iikrt); k = 1, …, Ki; i = 1, …, m}, 

and h(yt
K, t) and gj(yt

K, t) take some parametric form (see below). Diewert has shown that this 

specification is flexible in the sense that it does not impose a priori restrictions on the 

possibilities of substitution among inputs. It includes as a special case a Leontief technology 

when αij = 0 for all i ≠ j, and a homothetic technology when gj(yt
K, t) = 0, j = 1, …, n (Shephard). 

The possibilities of substitution among outputs are captured by the functions h(yt
K, t) and gj(yt

K, 

t). Under production uncertainty, this involves possible substitution both among the m different 

outputs as well as across states of nature.  

Then, we consider the following specification for h(⋅): 

h(⋅) = �i �k βik yikt + �i,i’ �k�k’ βii’,kk’ yikt yi'k’t],   (8) 

subject to the normalization rule βi1 = 1, with βii’,kk’ = βi’i,k’k for all i ≠ i’ and k ≠ k’. Note that the 

parameters βii’,kk’ in (8) capture the possibilities of substitution among different outputs (for i ≠ 

i’) as well as different states (for k ≠ k’). We consider the following specification for gj(⋅): 

gi(⋅) = γ0i + γti t, i = 1, .., n. (9) 
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Finally, using Shephard’s lemma (2), under the specifications (7), (8) and (9), the cost 

minimizing input demand functions under production uncertainty take the form 

xit
c(wt, yt

K, t) = h(yt
K, t) [�j αij (wjt/wit)1/2] + gi(yt

K, t),  (10) 

i = 1, …, n, t = 1, …, T.  

 

7. Econometric Results 

In this section, the above model is applied to US agriculture. Annual data on US 

agriculture were obtained from the US Department of Agriculture. They include price and 

quantity data for four inputs (labor, capital, material and land) and one aggregate output for the 

period 1949 to 1999 (see Ball et al.). Thus, by working with an aggregate output, the analysis 

presented below focuses on the single output case, with m = 1.  

The evaluation of production uncertainty requires an empirical basis to estimate equation 

(5). We use a crop yield index as the auxiliary variable z capturing production uncertainty. This 

seems reasonable: once acreage decisions are made, production uncertainty manifest itself 

entirely through yield effects. As a result, yield fluctuations are due in large part to unpredictable 

weather effects and pest damages. First, we measure z as a yield index, calculated from annual 

data on "yield per acre planted" for the major US crops (corn, wheat and soybeans). Second, we 

ran a regression ln(zt) = ln(kt) + σt ln(et), with the regression line ln(kt) including selected 

explanatory variables. The explanatory variables are a time trend (to capture technological 

progress over time) and relative prices for inputs and outputs (to capture the effects of changing 

market conditions on yield). After controlling for technological change and price effects, the 

error term of the regression is interpreted as reflecting production uncertainty. We investigated 

whether the variance of the error term changed over time. Using a Lagrange multiplier test 
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(based on squared residuals regressed on squared fitted values), we failed to find statistical 

evidence of heteroscedasticity (the p-value for the test was 0.67). As a result, we proceeded with 

assuming that the variance σt
2 was constant over time. With a constant variance σ2, we obtained 

consistent estimates of et = exp[(ln(zt) – ln(kt))/σ], t = 1, …, T. Under a stationarity assumption 

(as discussed above), we used these estimates to generate the state-contingent outputs in equation 

(3).   

Next, we used the specification of cost-minimizing input demands given in (10). The 

specification was estimated for K = 2. This can be interpreted as considering two states of nature, 

e.g., "bad weather" (k = 1) and "good weather" (k = 2). While this is a rather coarse 

representation of the state space, it will be convenient for the investigation reported in this 

paper.2  

We first estimated equations (10) with four inputs: labor, capital, material, and land. 

However, the estimates showed that the cost function was not concave in capital price (i.e., the 

demand for capital was found to upward sloping, which is inconsistent with cost minimization). 

We interpreted this as indirect evidence that the demand for capital may involve significant 

dynamics that are not captured in (10). This suggested the need either to address dynamics 

explicitly, or alternatively to conduct the analysis conditional on capital. To the extent that the 

dynamics of capital can be complex, we opted for the second option. As a result, the empirical 

analysis presented below focuses on the demand for three inputs, labor, material and land, taking 

capital as given. In this specification, we introduced the effects of capital on the demand for 

other inputs by letting the γ0i in (9) to vary with capital, with γ0i = γai + γbi Capital. Associating i = 

1 with labor, i = 2 with material, and i = 3 with land, equation (10) was estimated by maximum 

likelihood. The resulting parameter estimates are presented in Table 1. To take into consideration 
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possible heteroscedasticity, the standard errors in Table 1 are White-corrected robust standard 

errors.  

Table 1 shows that the model provides a good fit to the data. The R-square varies 

between 0.934 for material to 0.991 for labor. Most parameters are statistically different from 

zero at the 5 percent significance level. With β1 = 1 by normalization, note that the estimate of β2 

(0.9855) is not statistically different from 1. Also, the coefficient β12 is found to be negative and 

statistically significant. The null hypothesis that β12 = 0 is strongly rejected at the 1 percent 

significance level. This indicates the presence of significant interactions across states of nature. 

Note that a cost specification that would depend only on expected output would be obtained as a 

special case with β2 = 1 and β12 = 0. Using a Wald test, this hypothesis is strongly rejected at the 

1 percent level. This indicates that, under uncertainty, a cost specification that would depend 

only on expected output is inappropriate.3 As discussed above, this has at least two implications. 

First, if decision makers are risk averse under incomplete markets, then focusing on expected 

output alone fails to capture the role of risk management in input choice. Second, even if firm 

managers are risk neutral, our result indicates that focusing narrowly on expected output is not 

enough to provide a complete characterization of the stochastic technology and its implications 

for production behavior. On the one hand, it should not be a surprise to find out that the mean of 

a distribution is in general not a sufficient statistics for representing the whole distribution. On 

the other hand, our empirical findings show that this lack of sufficiency is empirically relevant 

when characterizing cost minimizing behavior.   

The parameter estimates for the α's reported in Table 1 indicate that price effects are 

statistically significant. These price effects are found to be consistent with production theory: the 

cost function is concave in input prices. Evaluated at sample means, the price elasticities of input 
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demands are reported in Table 2. As expected, input demands are downward sloping. The price 

elasticities of land are found to small. This is consistent with land being close to being a fixed 

factor in agriculture. The price elasticities of labor and material are larger but remain inelastic, 

with an own-price elasticity of -0.387 for labor and -0.299 for material. The cross-price elasticity 

between labor and material is positive, indicating that they are substitute inputs. The parameter 

estimates for the γ's indicate that technological progress has been biased against labor (with γt1 < 

0 corresponding labor-saving technical change)) and in favor of material (with γt3 > 0 identifying 

material-using technical change).  

Using equation (3) and the parameter estimates reported in Table 1, the elasticity of 

transformation between states was estimated. Evaluated at sample means, the elasticity of 

transformation was calculated to be τ12 = -0.001. This is very close to zero. Recall that τ12 = 0 

corresponds to an output-cubical technology with zero possibility for substitution between states. 

This indicates that the possibility of output substitution between states is extremely limited. We 

interpret this as empirical evidence in favor of an output-cubical technology. In other words, our 

analysis supports the validity of the ex post analyses of stochastic technology commonly found 

in previous research (e.g., Antle; Just and Pope, 1978).  

Finally, the parameter estimates were used to evaluate the marginal cost of outputs MCkt 

= ∂C/∂ykt for state k at time t. Recall that k = 1 corresponds to "bad weather" while k = 2 

corresponds to "good weather". Figure 1 reports the evolution of the relative marginal cost MC1t/ 

MC2t over the period 1970-1999.  It shows that the marginal cost of production tends to higher 

under "bad weather" (compared to "good weather"). It also shows two interesting characteristics. 

First, the relative marginal cost MC1t/ MC2t has been declining over the last few decades. It 

means that the marginal cost of production under adverse weather conditions is not as high as it 
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used to be. Second, the variability in the relative marginal cost MC1t/ MC2t has declined over 

time. In particular, the relative marginal cost is much more stable in the 1990's than it was in the 

1970's. These findings reflect the nature of the underlying technology under production 

uncertainty. They hold irrespective of risk preferences. In this context, this provides evidence 

that the cost of facing production risk has declined in US agriculture over the last few decades.   

 

8. Concluding Remarks 

This paper investigated production uncertainty when input decisions are made before 

uncertain outputs are known. Using a state-contingent approach, we developed a methodology to 

specify ands estimate cost-minimizing input choices. The proposed approach exhibits at least 

two attractive characteristics. First, it does not require a probability assessment of the unknown 

outputs. This can be useful when such probability assessments are difficult to make. Second, it 

does not depend on the risk preferences of the decision maker. Given the current controversies 

about the validity of the expected utility model, this provides a framework to conduct economic 

analysis while avoiding such controversies. In addition, this appears useful when one realizes 

that risk preferences can be somewhat difficult to assess empirically and that they typically vary 

across individuals.  

In this context, the challenge was to develop a methodology that is empirically tractable. 

The main issue arises from the fact that, at each time period, only one of the many possible states 

is typically observable. Our methodology proposes to measure all possible states, relying on 

auxiliary variables that can be used to simulate these states under stationarity conditions. This 

provides a framework to conduct econometric analysis of cost-minimizing behavior under a 
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general state-contingent technology. The empirical tractability of the approach was illustrated in 

an empirical application to US agriculture.  

The application demonstrates that an econometric analysis of state-contingent technology 

is possible and useful. Two important results were obtained. First, we found strong evidence that 

restricting the analysis of input choice to include only expected output is not appropriate. This 

reflects the fact, under risk aversion, the role of risk management in input choice can be 

important. More generally, this stresses the point that, for a general stochastic technology, mean 

output is not a sufficient statistic for the distribution of outputs. Second, we found econometric 

evidence that the possibility of substitution between states is very limited. We interpret this as 

evidence in favor of an "output-cubical" technology. This indicates that an ex post analysis of 

stochastic technology (as commonly found in previous research) appears appropriate. Finally, 

our analysis provides evidence that the cost of facing adverse weather conditions has declined in 

US agriculture over the last few decades.   

Although our proposed approach is empirically tractable, it is also the subject of 

limitations. First, our measurement of state-contingent outputs requires stationarity assumptions. 

It would be useful for future research to explore whether our stationarity assumption could be 

relaxed. Second, our empirical analysis has neglected econometric issues related to simultaneity 

bias and measurement errors. Further research on these issues is needed. Finally, our 

econometric estimation was limited to two states of nature. This clearly appears restrictive. In 

principle, our methodology can handle any number of states. However, collinearity problems are 

likely to arise when the number is states is large (due to the associated increase in the number of 

parameters to estimate). By reducing the econometrician's ability to obtain reliable parameter 

estimates, collinearity problems remain a challenge for future econometric use of the state-
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contingent approach.  
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Table 1: Parameter estimates 

        
Parameter Estimate Standard error P-value 

β2 0.9855 0.3824 0.013 
β12 -0.0071 0.0012 0.000 
α11 -0.5172 0.1248 0.000 
α22 -0.5887 0.1173 0.000 
α33 -0.0172 0.0070 0.018 
α12 0.4689 0.1694 0.008 
α13 -0.0089 0.0114 0.441 
α23 0.0286 0.0211 0.183 
γa1 163.0669 21.3335 0.000 
γa2 68.0519 9.0431 0.000 
γa3 86.9531 1.1305 0.000 
γt1 -1.1908 0.2480 0.000 
γt2 0.2214 0.2288 0.338 
γt3 -0.4277 0.0186 0.000 
γb1 -1.3516 0.2354 0.000 
γb2 1.2207 0.4069 0.004 
γb3 -0.1078 0.0305 0.001 

  
Note:  Log Likelihood = -349.8972  

Number of Observations = 51 
R-square = 0.992 for labor, 0.934 for material, and 0.985 for land.  

    
 
  
 
 

Table 2: Price Elasticities  
 
Price Elasticities Price of Labor  Price of Material Price of Land 
Quantity of Labor -0.387 0.392 -0.015  

 
Quantity of Material 0.260 -0.299 0.039  

 
Quantity of Land -0.003 0.013 -0.010  
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Figure 1: Relative marginal cost of outputs
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Appendix 

Proof of Proposition 1: Under free input disposability and the convexity of the set G(y, t), the 

cost function C(w, y, t) in (1) and the distance functions D(x, y, g, t) satisfy the following duality 

relationships (see Luenberger; Chambers et al.) 

C(w, y, t) = w xc(w, y, t) = infx�0 {w x - D(x, y, g, t) w g},  (A1) 

and 

D(x, y, g, t) = infw�0 {[w x - C(w, y, t)]/(w g)}, (A2) 

which has wc(x, y, g, t) for solution. Given D*(x, y, w, t) ≡ [w g] D(x, y, g, t) and under 

differentiability, the envelope theorem applied to (A1) and (A2) yields that 
w
C

∂
∂

 = xc (Shephard’s 

lemma) and 
x

D*

∂
∂

= wc. It follows that 
w
C

∂
∂

(w, y, t) = 
w
C

∂
∂

[
x

D*

∂
∂

 (
w
C

∂
∂

, y, w, t), y, t]. 

Differentiating with respect to w yields 

2

2

w
C

∂
∂

= 2

2

w
C

∂
∂

 2

*2

x
D

∂
∂

 2

2

w
C

∂
∂

.  (A3) 

Similarly differentiating 
x

D*

∂
∂

(x, y, w, t) = 
x

D*

∂
∂

[
w
C

∂
∂

(
x

D*

∂
∂

, y, t), y, w, t] with respect to x yields 

2

*2

x
D

∂
∂

= 2

*2

x
D

∂
∂

 2

2

w
C

∂
∂

 2

*2

x
D

∂
∂

.  (A4) 

Equations (A3) and (A4) establish that 2

2

w
C

∂
∂

 and 2

*2

x
D

∂
∂

 are generalized inverses of each 

other, with 
+

��
	



��
�




∂
∂

2

2

w
C

 = 2

*2

x
D

∂
∂

 (where the superscript "+" denotes the generalized inverse). In 

addition, applying the envelope theorem to (A1) gives  

y
C

∂
∂

(w, y, t) = -
y

D*

∂
∂

(xc, y, w, t).  (A5) 
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Differentiating 
y

D*

∂
∂

(x, y, w, t) = -
y
C

∂
∂

[
x

D*

∂
∂

(x, y, w, t), y, t] with respect to x and y gives  

xy
D*2

∂∂
∂

 = -
wy
C2

∂∂
∂

 2

*2

x
D

∂
∂

,  (A6) 

2

*2

y
D

∂
∂

 = - 2

2

y
C

∂
∂

 - 
wy
C2

∂∂
∂

yx
D*2

∂∂
∂

.  (A7) 

It follows that  

2

*2

y
D

∂
∂

 = - 2

2

y
C

∂
∂

 + 
wy
C2

∂∂
∂

 2

*2

x
D

∂
∂

 
yw

C2

∂∂
∂

. (A8) 

Substituting (A5) and (A8) into the definition τij = -
ji

k

m

1k k
*

yy

y)y/D(� =
∂∂

det(K)

K c
ij  (where K = 

�
�

�
�
�

�

∂∂
∂∂∂∂

0y/D
y)/D(y/D

*

T*2*2

 and K c
ij  is the (i, j)-th cofactor of K) yields the desired results.  
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Footnotes 

                                                 
1 The Allen elasticity of transformation can also be defined from the revenue function R(p, x, t) = 

p y*(p, x, t) = maxy {P y: (-x, y) ∈ F},  where p > 0 is the vector of output prices and y*(p, x, t) are 

the revenue maximizing output supplies. Then, the Allen elasticity of transformation between 

outputs i and j is given by τij = 
)pR/)(pR/(

R
pp

R

jiji

2

∂∂∂∂∂∂
∂

, or using the envelope theorem, τij = 

*
j

*
ij

*
i

yy
R

p
y

∂
∂

.  

2 Some experimentation with finer representations of the state space indicated that collinearity 

problems can arise rather quickly. These problems should be kept in mind. As collinearity 

reduces our ability to obtain reliable parameter estimates, it places some limits on how many 

states can be realistically analyzed econometrically using a state-contingent approach. 

3 We also investigated this same hypothesis using a moment-based approach, where the cost 

function C(⋅) was specified to depend on both the mean and the variance of output (the variance 

being evaluated using our state contingent approach). The null hypothesis that the variance effect 

was zero was also strongly rejected at the 1 percent significance level. Again, this provides 

evidence that expected output alone does not provide an appropriate representation of production 

uncertainty under cost minimizing behavior.   


