

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Effect of Planting Density, Fertilizer Level, and Number of Seedlings per Hole on Yield of *Coix Lachryrma-jobi* L.

Zhiqin SONG¹, Maohong AO^{2*}, Gang SHEN², Pengfei LIU²

1. Guizhou Institute of Modern Chinese Medicinal Materials, Guiyang 550006, China; 2. Guizhou Subtropical Crop Institute, Guizhou 562400, China

Abstract In order to study high yield cultivation technology for *Coix Lachryrma-jobi* L., and discuss the effect of planting density, fertilizer level, and number of seedlings per hole on yield of *Coix Lachryrma-jobi* L., this paper took domesticated variety Xingren Small White Shell of *Coix Lachryrma-jobi* L. as an example. Using $L_9(3^4)$ orthogonal design, it selected optimum combination of planting density, fertilizer level, and number of seedlings per hole to guide planting of *Coix Lachryrma-jobi* L. Experiment indicated that the optimum planting density (spacing in the rows and spacing between rows) of *Coix Lachryrma-jobi* L. is 40 cm x 80 cm; the optimum fertilizer level is pure nitrogen 15 kg, pure phosphorus 15 kg and pure potassium 15 kg per mu; the optimum number of seedlings per hole is 5 seedlings per hole. Through variance analysis, it indicated that planting density exerts significance effect on the yield of *Coix Lachryrma-jobi* L.

Key words *Coix Lachryrma-jobi* L., Orthogonal design, Planting density, Fertilizer level, Number of seedlings per hole

1 Introduction

Coix Lachryrma-jobi L. is an annual or perennial Gramineae C4 herb plant. Its common names include coix seed, Job's tears (Australia), adlay (Philippines), sila (Fiji), and ma yuen (China)^[1]. It is an important medicinal and edible plant resource. As medicinal material, *Coix Lachryrma-jobi* L. has sweet, bland, and slightly cold properties. It has functions of inducing diuresis for removing edema, invigorating the spleen and dispelling dampness, and clearing heat and discharging pus. As edible material, *Coix Lachryrma-jobi* L. contains higher calorie than rice and wheat, and it is rich in fat, variety of amino acids, and vitamin B₁, vitamin B₂, Ca, P, Mg, K, has high nutritive value, and can be rated as king of Gramineae crops^[2]. Guizhou Qianxinan Buyei and Miao Autonomous Prefecture is the major area of planting *Coix Lachryrma-jobi* L. The planting area remains in 300000 mu approximately. *Coix Lachryrma-jobi* L. is the major characteristic cash crop in local area. In order to study high yield cultivation technology for *Coix Lachryrma-jobi* L., and discuss the effect of planting density, fertilizer level, and number of seedlings per hole on yield of *Coix Lachryrma-jobi* L., and select optimum combination of these factors, and guide production and planting, we took domesticated variety Xingren Small White Shell of *Coix Lachryrma-jobi* L. as an example. Using $L_9(3^4)$ orthogonal design, we studied the effect of planting density, fertilizer level, and number of seedlings per hole on yield of *Coix Lachryrma-jobi* L. It is expected to provide reference for high yield cultivation technology.

of *Coix Lachryrma-jobi* L.

2 Materials and methods

2.1 General information of experimental site The experimental site is situated in Tuando Village in Xingren County of southwest Guizhou and the geographical position is E105°23.266', N25°22.687, the altitude is 1260 m. It is dry slope land, sandy soil, fertility is moderate. The *Coix Lachryrma-jobi* L. land is continuous cropping land.

2.2 Experimental materials We took domesticated variety Xingren Small White Shell of *Coix Lachryrma-jobi* L. planted in southwest Guizhou as experimental material.

2.3 Experimental methods

2.3.1 Experiment design. The experiment adopted $L_9(3^4)$ orthogonal design. Experimental factors are planting density (A), fertilizer level (B), number of seedlings per hole (C), and each factor is arranged at three levels^[3]. Namely, A₁, A₂, and A₃; B₁, B₂, and B₃; C₁, C₂, and C₃. For spacing in the rows x row spacing, A₁ is 40 cm x 40 cm, A₂ is 40 cm x 60 cm, and A₃ is 40 cm x 80 cm. B₁ is 25 kg pure nitrogen, 25 kg pure phosphorus, and 25 kg pure potassium (calculated at 667 m², the same below); B₂ is 20 kg pure nitrogen, 20 kg pure phosphorus, and 20 kg pure potassium; B₃ is 15 kg pure nitrogen, 15 kg pure phosphorus, and 15 kg pure potassium. C₁ is 3 seedlings per hole, C₂ is 5 seedlings per hole, and C₃ is 7 seedlings per hole. The above three factors at three levels form 9 orthogonal processing. According to $L_9(3^4)$ orthogonal layout design (as listed in Table 1), each processes 3 repetitions, obtaining a total of 27 plots, randomly distributed with area of 24 m².

2.3.2 Experiment method. Using direct seeding technology, we sowed in the manner of bunch planting in the middle of April. When 2–3 leaves appear, we thinned out excessive seedlings according to experiment design, and each hole keeps different number of seedlings. In accordance with fertilizer demand of *Coix*

Received: April 23, 2015 Accepted: June 20, 2015

Supported by Key Agricultural Project of Guizhou Province (NY (2011) 3093); Guizhou Provincial Science Foundation (J (2013) 2192); National Spark Plan Project (2013GA820001); Joint Fund Project of Guizhou Academy of Agricultural Sciences (LH (2014) 7692).

* Corresponding author. E-mail: aomaohong@126.com

Lachryma-jobi L., fertilizer was applied in 4 times^[4]: base manure accounts for 30% of total fertilizer, the first time fertilizer application (when 4–5 leaves appear) accounts for 20% of total fertilizer, the second time fertilizer application (at the jointing stage) accounts for 40% of total fertilizer, the third time fertilizer application (in the flowering period) accounts for 10% of total fertilizer. In the breeding period, it is required to pay attention to field management and prevention and control of plant diseases and insect pests. It is required to strengthen record of field observation, and make record of period of emergence, period of heading, period of flowering, and mature period of processing plots. In the mature period, we randomly sampled 10 holes in experiment plots to test seeds, and make record of tillering rate, plant height, number of ears per hole, number of grains per ear, and weight of thousand grains.

Table 1 Design of $L_9(3^4)$ orthogonal layout

Level	Factor		
	Planting density (A)	Fertilizer level (B)	Number of seedlings (C)
1	A ₁	B ₁	C ₁
2	A ₂	B ₂	C ₂
3	A ₃	B ₃	C ₃

2.3.3 Data analysis. We made variance analysis using DPS data processing software.

3 Results and analyses

3.1 Variance analysis of orthogonal experiment^[5] Yield of combination of orthogonal experiment with different planting density, fertilizer level and number of seedlings is listed in Table 2. From the extreme difference in Table 2, it indicates that the action of effect of factors on the yield is A > C > B, namely planting density > number of seedlings per hole > fertilizer level. Through variance analysis in Table 3, we know that there is significant difference ($P < 0.05$) in the effect of factor A, namely, the planting density, on the yield; there is no significant difference in the effect of factor B and C on the yield, showing the dominant factor influencing the yield of *Coix Lachryma-jobi L.* is planting density. Combining the extreme difference analysis in Table 2, it is known that the optimum combination of planting is A₃ B₃ C₂, namely, the planting density is 40 cm x 80 cm, the fertilizer level is pure nitrogen 15 kg, pure phosphorus 15 kg, and pure potassium 15 kg, and the number of seedlings per hole is 5.

Table 2 Yield of combination of orthogonal experiment with different planting density, fertilizer level and number of seedlings

Experiment plot	A	B	B	D	Yield//kg (converted into yield per mu)
1	1	1	1	1	300
2	1	2	2	2	303
3	1	3	3	3	285
4	2	1	3	3	304
5	2	2	2	1	285
6	2	3	1	2	315
7	3	1	3	2	310
8	3	2	1	3	325
9	3	3	2	1	350
Mean value K1	296.00	304.67	313.33	311.67	
Mean value K1	301.33	304.33	319.00	309.33	
Mean value K1	328.33	316.67	293.33	304.67	
R	32.33	12.33	25.67	7.00	

Table 3 Variance analysis of combination of orthogonal experiment with different planting density, fertilizer level and number of seedlings

Source	Partial regression square sum	Degree of freedom	F ratio	Critical value of F	Significance level
A	1802.89	2	23.653	19.00	P < 0.05
B	296.22	2	3.886	19.00	P > 0.05
C	1 090.89	2	14.312	19.00	P > 0.05
Error	76.22				
$F_{0.05(2,2)} = 19.00$					

3.2 The effect of planting density on economic properties of *Coix Lachryma-jobi L.* In the condition of different planting density, taking 5 seedlings per hole as plot of seed test, we selected 10 holes to make random seed test, the test results are listed in Table 4. From Table 4, we can see that with constant decrease of planting density, although the number of seedlings per mu is reduced, the tillering rate, number of ears per hole, and number of grains per ear have increase. Therefore, in the planting process of *Coix Lachryma-jobi L.*, it is required to properly reduce the planting density. Lower planting density will bring better ventilation and sunshine penetration, higher tillering rate, and more effective number of ears, side branches and grains, so as to significantly increase the yield of *Coix Lachryma-jobi L.*

Table 4 The effect of planting density on economic properties of *Coix Lachryma-jobi L.*

Planting density	Basic number of seedlings $10^4/667m^2$	Tillering rate %	Plant height cm	Number of ears/hole	Number of grains per ear	Weight of thousand grains//g
A ₁	2.08	256.66	1.78	12.25	156.55	90.56
A ₂	1.39	325.58	1.68	15.67	202.68	90.58
A ₃	1.04	398.67	1.85	17.68	238.87	92.98