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Abstract

Most existing economic analyses of optimal groundwater management use single-cell
aquifer models, which assume that an aquifer responds uniformly and instantly to ground-
water pumping. This paper demonstrates how spatially explicit aquifer response equations
from the water resources engineering literature may be embedded in a general economic
framework. Calibration of our theoretical model to published economic studies of spe-
cific aquifers demonstrates that, by averaging basin drawdown across the entire resource,
existing studies generally understate the magnitude of thegroundwater pumping external-
ity relative to spatially explicit models. For the aquifersstudied, the drawdown predicted
by single- cell models may be orders of magnitude less than that predicted by a spatially
explicit model, even at large distances from a pumping well.Our results suggest that
single-cell models may be appropriate for analyses of the welfare effects of groundwater
management policies either in small aquifers or in larger aquifers where average well spac-
ings are tens of miles or more. However, in extensive aquifers where well spacings are on
the order of a few miles or less, such as many of those of concern to groundwater managers
and policy makers, use of single-cell models may result in misleading policy implications
due to understatement of the magnitude and spatial nature ofthe groundwater externality.
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1 Introduction

Groundwater resources are a major source of agricultural, potable, and industrial water through-

out the world. In response to ongoing public concern about overextraction and rapid resource

depletion, the optimal management of groundwater resources has received much attention from

hydrologists, water resources engineers, and economists over the last several decades. Unsur-

prisingly, disciplinary studies in the engineering and economics literatures have taken quite

different approaches, both philosophically and operationally, to the analysis of how groundwa-

ter should be allocated across space and time.

Economic analyses of groundwater have focused on the externalities associated with ground-

water pumping, and on policies that could increase welfare through addressing these external-

ities. Most theoretical and empirical economic studies of optimal groundwater management

have represented groundwater dynamics using a single-cellaquifer, implying commonality

and uniform water levels throughout the resource, in both theoretical and empirical model-

ing. Early contributions derived optimization rules for the management of groundwater re-

sources [6, 8]. More recent, and influential, studies have sought to quantify the magnitude

of potential welfare gains from groundwater management using parameters from real aquifers

and comparing myopic, socially optimal, and non-cooperative strategic pumping trajectories

[5, 7, 14, 15, 18, 25]. In general, these studies have found very small or negligible gains to

optimal groundwater management, implying that from an economic standpoint – and contrary

to public opinion – intervention in this particular resource is unwarranted.

Engineering analyses of the optimal management of groundwater start with the continuity

equations that characterize groundwater flow, and then generally use finite difference, finite

element, or numerical integration methods to allow embedding of the aquifer response equa-

tions in an optimization framework [2, 4, 19, 28]. As such studies involve problem-specific

initial and boundary conditions and well locations, the recommendations of these studies are
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also limited to their respective study areas. Additionally, although some of these papers con-

sider the influence of hydrological parameters on groundwater management options [2], they

do not analyze economic concepts such as the nature and magnitude of externalities or the wel-

fare impacts of specific policies. A few studies have combined distributed parameter modeling

of groundwater with economic analysis using simulation andlinearization [22, 23]; however

these studies are also calibrated to particular groundwater basins and thus results and policy

implications are difficult to apply broadly.

In this paper, we take a different approach by incorporatinganalytical aquifer response

equations directly into an economic optimization framework. We use a relatively simple and

well known response equation for confined aquifers, the Theis equation [27]. Although this

entails several simplifying assumptions, the first-order behavior embodied in the Theis equa-

tion represents realistic groundwater flow much more closely than the single-cell aquifer mod-

els currently used in economic analyses. The advantage of using an analytic expression for

groundwater flow is that completely general economic optimality conditions can be derived

and analyzed. This allows both explicit consideration of the role of hydrologic parameters

in the optimal economic management of groundwater and a direct comparison with existing

economic models of groundwater extraction that use single-cell models. Using hydrological

parameter data for several aquifers that have been studied by economists, we show that in many

cases, the optimal pumping behavior predicted by single-cell models and our spatially explicit

model differ by a large amount. This implies that care shouldbe exercised when using single-

cell models to analyze the economic effects of alternative groundwater management policies.

The paper is organized as follows. Section 2 describes how transient flow equations for a

confined aquifer may be used to generate equations of motion for aquifer potentiometric sur-

faces when there are multiple wells and non-constant pumping.1 Section 3 derives optimality

1The material in this section is familiar to water resources engineers and is included because it is completely
unfamiliar to most economists.
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conditions for the welfare maximization problem involvingmultiple groundwater users and

spatially explicit groundwater flow. The following sectionanalyzes the steady state externality

as a function of hydrological parameters and distance from apumping well. An extension of

the model to allow economic analysis of flow in unconfined aquifers is presented in Section

5. Section 6 compares published estimates of the economic impact of the groundwater exter-

nality with estimates calculated for the same aquifers using the spatially explicit flow model

developed in this paper, and discusses the policy implications of differences in these estimates.

Finally, Section 7 concludes.

2 Transient well response to pumping

Theoretical analyses of groundwater flow in the water resources engineering and hydrology

literature are based on the physics of water flow towards a well during pumping, with water

flowing from regions of higher potential to those with lower potential.2 Theis [27] was the first

to derive an analytical solution for transient well response to pumping. In a well-known result,

he showed that for a well pumping water at a constant rateu from a confined aquifer3 with

storativityS and transmissivityT ,4 the drawdownx, at a distancer from the well, at timet

after pumping commences is given by

xt(r) =
u

4πT

∫

∞

r2S

4Tt

e−z

z
dz (1)

2See Domenico [9], Freeze and Cherry [13], or Willis and Yeh [28] for more detailed derivations of the
groundwater flow equations.

3For analytical tractability, Theis assumed that the aquifer is horizontal, has infinite areal extent, is of constant
thickness with impermeable layers above and below, and is homogeneous and isotropic. He also assumed that the
pumping well penetrates the entire depth of the aquifer, hasan infinitesimal diameter, and that before the start of
pumping, hydraulic head is uniform throughout the aquifer.

4The storativity of a confined aquifer is the volume of water released from storage per unit of surface area per
unit decrease in the hydraulic head. Storativity is dimensionless and may be thought of as the capacitance of the
aquifer. The storativities of confined aquifers are generally in the range 0.00005 to 0.005. Aquifer transmissivity
is defined as the hydraulic conductivity of the aquifer multiplied by its thickness, where the hydraulic conductivity
is a constant of proportionality relating specific discharge from a region to the hydraulic gradient across it. The
range of values of observed transmissivities varies enormously depending on formation lithology, sedimentology,
and fracturing. In this study we consider transmissivitiesin the range from 100 ft2/day to 100,000 ft2/day, which
encompasses values generally found in aquifers used as significant water supplies.
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For simplicity of notation, we abbreviate the integral in equation (1) asw(t, r), with storativity

and transmissivity taken as constant; the functionw(t, r) is often referred to as the well func-

tion in the hydrological literature.

The Theis solution assumes a single pumping well and constant pumping rates. However, it

can easily be extended to include both pumping rates that vary through time and multiple wells

[9]. Because the underlying transient flow equations are linear in pumping rate, arithmetic

summation of independent well functions can be used to calculate the drawdown through time

at any point in the aquifer with multiple wells whose pumpingrates vary. For example, if there

areJ wells pumping at constant ratesu1, u2, . . . , uJ with well j starting to pump at timetj ,

then for a point that is at distancesr1, r2, . . . , rJ from the pumping wells, drawdown at time

t > max[t1, . . . , tJ ] is given by

xt(r1, r2, . . . , rJ) =
u1

4πT
w(t1, r1) +

u2

4πT
w(t2, r2) + · · ·+

uJ

4πT
w(tJ , rJ) (2)

Superposition may also be used for the case of a single well with pumping rates that change

through time. Consider a wellj with initial pumping rateuj
1 at time t1, changing to rates

of uj
2, u

j
3, . . . , u

j
N at timest2, t3, . . . , tN . Assuming that no pumping occurs beforet1 (so that

uj
0 = 0), the drawdown at a distancer from the pumping well at timet > tN

5 is given by

xj
t (r) =

uj
1

4πT
w(t − t1, r) +

uj
2 − uj

1

4πT
w(t − t2, r) + · · · +

uj
N − uj

N−1

4πT
w(t − tN , r) (3)

Intuitively, equation (3) is derived from equation (2) by assuming that there are a sequence of

wells pumping different amounts, but all located in exactlythe same place.6

5For t ≤ tN , equation (3) does not include well functions for which the first argument is zero or negative, as
future pumping changes do not affect the current state of theaquifer.

6Note that asr → 0, xt(r) → ∞. In order to calculate the drawdown at a given wellhead from pumping at
that well, a value ofr equivalent to the effective well radius is used.
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Following from equations (1) to (3), the drawdown at any point in an aquifer depends on

both the location and sequence ofall past pumping. Thus, correct specification of the potential

surface of the aquifer at any point in time requires that boththe location and the entire pumping

history of each well be made explicit. Equations (2) and (3) may be combined to give the

drawdown at any point in an aquifer resulting from pumping bymultiple wells with variable

pumping rates through time.

3 Optimal groundwater pumping

Consider an aquifer from which water is to be extracted byJ separate users over anN-period

time horizon. These users are spatially distributed with known, fixed locations relative to each

other and to the resource, and each owns a single well.7 Each userj = 1, . . . , J extracts wa-

ter at a rateuj
t per time period, and for simplicity we assume that pumping rates are constant

during each time period but may change between periods. The pumping lift at well j during

periodt is given byxj
t . Note that in general,xi

t 6= xj
t , as the potential surface of the aquifer

may vary across space based on the distribution and pumping rates of wells.

We define the per-period net benefit of each water user by the function f(uj
t , x

j
t), which

captures both the benefits and costs of resource extraction.For simplicity, we assume that each

water user is engaged in the same economic activity with the same scale of operation, and thus

every user has an identical benefit function (though the realized benefits in any period may

vary spatially asuj
t andxj

t vary across users). We assume thatf ≥ 0, f = 0 whenu = 0,

∂f/∂u > 0 and∂2f/∂u2 < 0. Similarly, because the pumping lift at wellj, xj
t , is defined as

a positive quantity,∂f/∂x < 0, as per-period benefits decrease as the pumping lift increases.

7We assume that both the number of resource users and their locations are exogenous. Incorporating endoge-
nous well locations is beyond the scope of the current work, but for a genetic algorithm approach to a very simple
well location problem, see Hsiao and Chang [16].
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Finally, we also assume that∂2f/∂x2 ≤ 0, so that pumping costs increase at least linearly with

depth.

The infinite horizon optimization problem that maximizes benefits for the entire aquifer is

then given by

max
∞
∑

t=1

βt
J
∑

j=1

f(uj
t , x

j
t ) (4)

whereβ is the per-period discount factor, withβ < 1.8 If drawdown across the aquifer follows

the Theis equation (1), then an equation of motion describing the aquifer surface at any point in

space and time can be constructed from equations (2) and (3).Definingr(i, j) as the distance

between any two wellsi andj, the potential surface at timet + 1 at any wellj, xj
t+1, is given

by

xj
t+1 =

t
∑

n=1

J
∑

i=1

ui
n − ui

n−1

4πT
w(t − n + 1, r(i, j)) (5)

Equations (4) and (5) are a constrained optimization problem for which the associated La-

grangian is

L =
∞
∑

t=1

βt
J
∑

j=1

f(uj
t , x

j
t )

+
∞
∑

t=1

J
∑

j=1

λj
t

[(

t
∑

n=1

J
∑

i=1

ui
n − ui

n−1

4πT
w(t − n + 1, r(i, j))

)

− xj
t+1

]

(6)

The first order conditions for an interior solution are:

∂L

∂xl
s

= βs∂f(ul
s, x

l
s)

∂xl
s

− λl
s−1 = 0 (7)

8We have assumed that no pumping occurs beforet = 1.
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∂L

∂ul
s

= βs∂f(ul
s, x

l
s)

∂ul
s

+
J
∑

j=1

λj
s

4πT
w(1, r(l, j))

+
∞
∑

t=s+1

J
∑

j=1

λj
t

4πT
[w(t − s + 1, r(l, j)) − w(t − s, r(l, j))] = 0 (8)

By definition, w(0, r(l, j)) = 0 for all l and j, so that first order condition (8) may be

rewritten in more compact form as

∂L

∂ul
s

= βs ∂f(ul
s, x

l
s)

∂ul
s

+
∞
∑

t=s

J
∑

j=1

λj
t

4πT
[w(t − s + 1, r(l, j)) − w(t − s, r(l, j))] = 0 (9)

The adjoint variableλj
t is the marginal present value shadow price of the state variable at

well j at timet. For the optimization problem stated in (4) and (5),λj
t gives the change in

the present value of total benefits if the pumping lift at wellj at timet increasesby one unit;

consequently the shadow price is negative. Equivalently,λj
t can be interpreted as the marginal

present value of the groundwater pumping externality. Rearranging first order condition (7)

yields an expression forλj
t . Then, substituting forλj

t in (9) and dividing through byβs gives

the following abbreviated optimality condition:

∂f(ul
s, x

l
s)

∂ul
s

= −
∞
∑

t=s

J
∑

j=1

βt−s+1

4πT

∂f(uj
t+1, x

j
t+1)

∂xj
t+1

[w(t− s + 1, r(l, j)) − w(t− s, r(l, j))] (10)

As shown in equation (1) and discussed above, any change in pumping will have effects that

vary across both space and time, and thus both the spatial andtemporal variation of drawdown

caused by ongoing pumping must be considered in any optimal management scheme. The

difference(1/4πT )[w(t+1, r(l, j))−w(t, r(l, j))] captures the incremental drawdown caused

at wellj by an additional unit of pumping at welll between time periodst andt + 1. Equation

(10) equates the marginal benefit of pumping an additional unit of water in any period to the

discounted sum of marginal costs imposed on all wells, in allfuture periods, as a result of
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that additional unit of pumping. It is clear from (10) that the choice of optimal pumping

trajectories for a group of wells pumping from a common aquifer depends directly on both their

spatial distribution and the hydrological properties of the aquifer. The magnitude of possible

externalities across space and time is considered in the next section.

4 Analysis of pumping externalities

Given explicit spatial locations for each pumping well, an appropriate benefit function, and hy-

drological parameters, equation (10) allows solution of the optimal pumping trajectories. How-

ever, even without specifying either a benefit function or well locations, the optimal steady state

can be used to analyze how groundwater pumping externalities vary across space. Given the

model assumptions, every finite combination of constant pumping ratesu1, u2, . . . , uJ will lead

towards a steady state with associated pumping liftsx1(u1, u2, . . . , uJ), x2(u1, u2, . . . , uJ), . . . ,

xJ(u1, u2, . . . , uJ). Defining the pumping combinations at the optimal steady state asu∗ =
[

u1
∗

u2
∗

. . . uJ
∗

]

, the associated steady state pumping lifts arex1(u∗), x
2(u∗), . . . , x

J(u∗). From

(10), the steady state optimality condition for each well isthen easily obtained:

∂f(ul
∗
, xl(u∗))

∂ul
∗

= −
J
∑

j=1

∂f(uj
∗
, xj(u∗))

∂xj(u∗)

∞
∑

t=1

βt

4πT
[w(t + 1, r(l, j)) − w(t, r(l, j))] (11)

Note that because the term∂f(uj
∗
, xj(u∗))/∂xj(u∗) is time-invariant, it can be passed through

one of the summations. Using equation (7),∂f(uj
∗
, xj(u∗))/∂xj(u∗) can be interpreted as the

current value marginal shadow price of the groundwater externality at well j: it is negative

and gives the per-period loss of benefit at wellj from increasing the pumping lift by one unit.

Thus, equation (11) relates the optimal steady state marginal value of pumping at welll to the

discounted marginal cost imposed onall groundwater users by that additional unit of pumping.

As shown in (10) and (11), a marginal increase in pumping in any time period will have an

effect on pumping lifts throughout the aquifer in all futureperiods. Equation (11) defines the
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present value marginal cost imposed on userj as a result of a marginal increase in pumping

at well l as the product of the shadow price of the pumping lift and the discounted marginal

drawdowns imposed in all future time periods.

The summation
∑

∞

t=1(β
t/4πT )[w(t + 1, r(l, j)) − w(t, r(l, j))] can be interpreted as a

weighting function that determines – in the optimal steady state – the relative importance of

the spatial and temporal interaction between users. For each well sitel, the weighting function

represents the economic importance placed by userl on externalities imposed on all resource

users as a result ofl’s pumping. It is clear from (11) that as the potential influence of one well’s

pumping on another well’s drawdown decreases, so the influence of that hydrological linkage

on optimal steady state pumping at each well also decreases.

Analysis of the weighting function gives insight into the role of aquifer hydrological pa-

rameters and spatial relationships between users in determining the optimal steady state. Note

that a closely related function,
∑

∞

t=1(1/4πT )[w(t+1, r(l, j))−w(t, r(l, j))], is the total draw-

down caused at wellj by a unit of pumping at welll. However, because the optimization

problem (4) discounts future benefits, incremental future drawdowns are also discounted in the

determination of optimal pumping rates at each well.

Figures 1, 2, and 3 show contour maps of the optimal steady state weighting function at

distances of 1.5 feet (taken to be the effective well radius), half a mile, and five miles from a

pumping well, respectively. Values of the weighting function were calculated using a discount

rate of five percent, time increments of thirty days, and a constant pumping rate in each well

equal to one acre foot per year.9 A comparison of Figures 1 through 3 shows how distance from

a pumping well, transmissivity, and storativity jointly determine the economic importance of

9Two thousand time periods, equivalent to 164 years of constant pumping, were used in calculating the weight-
ing function. The difference in calculated weighting functions betweenN = 1999 andN = 2000 was in the range
of 1.4 × 10−11 to 1.4 × 10−8 across the parameter space and distances considered.
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the groundwater externality.10

Figures 1 through 3 all show a similar basic pattern of changes in the weighting function

as storativity and transmissivity change. Given a constantvalue of transmissivity, as storativity

increases, the weighting function decreases at all distances from a pumping well. This is an

intuitive result: the figures represent pumping at a constant rate, and as storativity increases,

the drawdown caused by this pumping will decrease, so that the weighting function will also

decrease. Analytically, it is straightforward to show thatthe derivative of the weighting func-

tion with respect toS is always negative. Conversely, the derivative of the weighting function

with respect toT is ambiguous in sign. This is reflected in changes in the weighting function,

given a constant storativity, as transmissivity increases. From Figures 1 through 3, at distances

of 1.5 feet and half a mile, the weighting function decreasesmonotonically as transmissivity

increases. However, at a distance of five miles, the weighting function decreases as transmis-

sivity increases for lower storativity values and first increases and then decreases for higher

storativity values. This result is related to the geometry of the cone of depression. As trans-

missivity increases, the cone of depression broadens and shallows. For points that are at a

relatively large distance from a pumping well, this may translate to an increase in drawdown,

and thus an increase in the weighting function.

From equation (1) it is clear that for well sitesj andl, w(t, r(l, l)) > w(t, r(l, j)) for all t

andj 6= l, so that any well’s own-effects of pumping are always largerthan the effects trans-

mitted to neighboring wells. This result follows immediately from the geometry of a cone of

depression, which is centered at the well head of the pumpingwell. Thus, as shown in Figures

1 through 3, for any given combination of storativity and transmissivity, the weighting func-

10Note that for the parameter space of storativity and transmissivity shown in Figures 1 through 3, the difference
between calculated values of the weighting function

∑∞
t=1

(βt/4πT )[w(t+1, r(l, j))−w(t, r(l, j))] and the total
drawdown

∑∞

t=1
(1/4πT )[w(t+1, r(l, j))−w(t, r(l, j))] varied between 9.4 percent and 15 percent at a distance

of 1.5 feet, increasing to between 27 percent and 700 percentat a distance of five miles. The increasing difference
with distance is a result of the increasing time lag for significant drawdown to be transmitted as distance increases.
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tion decreases with distance away from a pumping well. For the parameter space considered,

representing the range of hydrological parameters found inconfined aquifers commonly used

as sources of water, the own-weighting function is two to fivetimes more than the weight-

ing function at a distance of half a mile from a pumping well, and three to ninety-eight times

more than the weighting function at a distance of five miles. The largest relative variation in

weighting function with distance – approximately corresponding to the tightest, though not the

deepest, cone of depression – occurs when storativity is high and transmissivity is low.

5 Extension to optimal pumping from unconfined aquifers

The analysis presented in the previous sections assumes that the aquifer of interest is confined,

allowing the Theis solution (equation (1)) to be incorporated directly into tractable optimality

conditions describing the operation of multiple pumping wells across space and time. However,

many aquifers of interest to groundwater managers and policy makers are unconfined, with an

upper boundary that is a free surface. Because transient flowin an unconfined aquifer involves

interaction between flow in the saturated and unsaturated zones and a dynamically moving

boundary (the water table), most solutions for transient unconfined flow involve complex nu-

merical methods [28]. In general, such numerical solution concepts are difficult to incorporate

in an economic framework that seeks to analyze optimal groundwater extraction at a general

level.

Early studies of transient flow in unconfined aquifers (e.g. Boulton [3], Neuman [20]) sug-

gested that early-time behavior in such systems undergoingpumping follows the Theis solution

with relevant hydrological parametersT andS (the transmissivity and storativity, respectively),

whereas late-time behavior follows the Theis solution withhydrological parametersT andSy

(the specific yield, replacing storativity).11 At intermediate times, the drawdown behavior in

11For an unconfined aquifer, the specific yield is defined as the volume of water drained by desaturation of the
aquifer from a column of unit base area. In unconfined aquifers, storativity and specific yield broadly refer to
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an unconfined aquifer is between early- and late-time solutions, where the transition between

behaviors is defined by several other parameters of the system being studied, such as thickness

of the saturated aquifer. With the additional assumption that the depth of water in the aquifer

is large compared to observed drawdowns, superposition maybe applied as in equation (2) to

calculate drawdown from multiple wells [28].

The processes by which water is released from storage in unconfined aquifers are different

from those operating in confined aquifers. In a confined aquifer, the amount of water released

from storage depends on the compressibility of water and theporous media, and not pore space.

Conversely, in an unconfined aquifer, water is released by gravity from saturated pore space

in response to water level gradients in the aquifer. As a result, encountered values of specific

yield, Sy, are in the range 0.05 to 0.3, which is much larger than the range of storativity values

for confined aquifers. As specific yields govern the behaviorof unconfined aquifers over longer

timescales, we can use them to calculate steady state weighting functions as before by replac-

ing values of storativity with specific yield as appropriate. Note that in doing so, we ignore

short-term behavior where water table drawdown follows theTheis solution with parametersS

andT . Because storativity values are always much smaller than specific yields, this assumption

means that our estimates of the unconfined steady state weighting function may be thought of

as lower bounds.

Figures 4, 5, and 6 show contour maps of the optimal steady state weighting function for

an unconfined aquifer at distances of 1.5 feet (taken to be theeffective well radius), half a mile,

and five miles from a pumping well, respectively. As in the previous figures, values of the

weighting function were calculated using a discount rate offive percent, time increments of

thirty days, and a constant pumping rate in each well equal toone acre foot per year.12 The

water released from storage by different processes.
12As with confined aquifers, two thousand time periods were used in calculating the weighting function. The

difference in calculated weighting functions betweenN = 1999 andN = 2000 was in the range of1.5 × 10−12

to 1.4 × 10−8 across the parameter space and distances considered.
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calculated weighting functions for unconfined aquifers show a very similar basic pattern to that

seen in Figures 1 through 3 for confined aquifers. For any given transmissivity, the steady state

weighting function decreases as specific yield increases, and weighting functions decrease with

distance from the pumping well. Because specific yields found in unconfined aquifers are much

larger in value than storativities found in confined aquifers, at any particular transmissivity and

distance from a pumping well, the weighting function in an unconfined aquifer will be less than

that in a confined aquifer. The relative difference between aquifer types is largest at the largest

distances. Overall, this means that the spatial extent of the groundwater externality is less in

unconfined aquifers than it is in confined aquifers.

6 Modeling and policy implications

Most economic studies of optimal groundwater management have relied on single-cell aquifer

models (for example, Burness and Brill [7], Feinerman and Knapp [12], and Gisser and Sanchez

[15] among many others; see Koundouri [18] for a comprehensive overview). Single-cell

aquifers are lumped parameter models in which the state of the groundwater resource is cap-

tured by a single parameter, usually either the total volumeof water remaining in the aquifer

or the pumping lift. Implicit in the single-cell aquifer aretwo related assumptions about the

nature of both the groundwater resource and of pumping externalities. First, because only one

parameter describes the resource state, the pumping lift inthe aquifer is assumed to be constant

at every point in the aquifer. Second, spatial location of wells does not matter, and a unit of

water withdrawn from the aquifer will have the same marginalimpact at every point in the

aquifer – including the well at which that pumping occurs.

Despite modeling groundwater as a common property resource, economic analyses gener-

ally suggest that the quantitative difference between myopic and socially optimal groundwater

management outcomes is either very small or negligible. Thus, in contrast to the everyday
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perception of groundwater overextraction and depletion, existing empirical studies imply that

there is littleeconomicrationale for public intervention in groundwater management. However,

the validity of this conclusion depends critically on the extent to which single-cell models ac-

curately reflect the responses of real aquifers – with features such as cones of depression, well

interference, and heterogeneous well distributions across space – to pumping. In this paper, we

have developed an economic model of groundwater managementthat explicitly incorporates

the spatial nature of the groundwater pumping externality.Does such a model produce implica-

tions for groundwater management policy different to thoseemerging from single-cell models?

A simple way to compare single-cell aquifer models with the spatially explicit model pre-

sented in this paper is to consider a steady state weighting function, analagous to that derived in

Section 4, for the single-cell aquifer. Recall that the function
∑

∞

t=1(β
t/4πT )[w(t+1, r(l, j))−

w(t, r(l, j))] represents the weight placed on the marginal pumping externality imposed by user

l’s pumping on userj in the steady state optimality condition (11), and is the sumof discounted

incremental drawdowns. In a confined single-cell aquifer with surface areaA and storativity

S, the potential surface will beinstantaneouslylowered by an amount equal to1/AS when one

unit of water is pumped [11]. Thus, all effects from drawdownare transmitted throughout the

aquifer in the following period, and only one future period needs to be considered, so that the

single-cell optimal steady state weighting function for a confined aquifer is given byβ/AS,

whereβ is the per-period discount factor.13 Similarly, for an unconfined aquifer, the single-cell

steady state weighting function is given byβ/ASy.

Table 1 shows storativities or specific yields and calculated values ofβ/AS or β/ASy for

six aquifers that have been previously analyzed using single-cell models. These range from

3.81 × 10−5 to 9.90 × 10−3 for confined aquifers and from1.48 × 10−6 to 1.06 × 10−5 for

unconfined aquifers. Because a pumping rate of one acre foot per year was used to generate

13For example, see Rubio and Casino [25]. Published literature generally uses pumping rates of acre feet per
year and time periods of years.
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the values in both Table 1 and Figures 1 through 6, the values of weighting functions may

be compared directly. It is clear that in general, a spatially explicit groundwater model pre-

dicts that at the optimal steady state, groundwater users place a much higher weight on the

effects of their pumping on their neighbors. This follows directly from the larger drawdowns

modeled across space using equation (1) rather than a single-cell aquifer model. Perhaps sur-

prisingly, however, even at a distance of five miles from a pumping well, the predicted effects

of the groundwater pumping externality are generally much larger for the spatially explicit

model than for the single-cell model, which assumes uniformdrawdown across the entire

aquifer. This result is driven by the large length-scale of some of the aquifers modeled as

single cells. For example, the unconfined single-cell Roswell Basin is taken to have a surface

area of 790,000 acres (1,200 square miles) [14], the Kern County unconfined aquifer to have

a surface area of 1,290,000 acres (2,000 square miles) [12],and the Texas High Plains aquifer

a surface area of 4,300,000 acres (6,700 square miles) [21].When aquifers of this size are

modeled using the single-cell assumption, the drawdown resulting from each marginal unit of

pumping is spread over an extremely large area (as shown in Table 1).

In order to undertake a more precise comparison between single-cell and spatially explicit

models, it is necessary to define aquifer transmissivities.Although some studies view single-

cell aquifers as having an infinite transmissivity, strictly speaking transmissivity has no phys-

ical meaning in a single-cell aquifer. This is because the state of a single-cell aquifer is fully

described by a single parameter (volume or depth to water), so that there is no length-scale

defined. As a result, most economic studies using single-cell models do not report transmis-

sivity estimates. However, as many of the groundwater basins in Table 1 have been studied

extensively by hydrologists as well as economists, it is possible to estimate transmissivity for

them [24, 26]. With a relevant range of transmissivity defined, the ratio of spatially explicit to

single-cell weighting functions,
∑

∞

t=1(β
t/4πT )[w(t+1, r(l, j))−w(t, r(l, j))]/(β/AS(y)) can

then be calculated and is an estimate of the extent to which a single-cell aquifer model over- or
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understates the economic importance of the externality dueto groundwater pumping.14 Table

2 shows values for transmissivity and weighting function ratios for four of the aquifers con-

sidered in Table 1. For these aquifers, the importance of theexternality implied by spatially

explicit and single-cell models varies dramatically.

For the confined carbonate-rock aquifer of the Roswell Basinin New Mexico, a single-cell

model understates by a large amount the economic impact of the groundwater pumping exter-

nality at all relevant distances (Table 2). Once again, the pattern observed as distance from

a well increases follows the basic geometry of a cone of depression: the greatest difference

between spatially explicit and single-cell models is at thewellhead of a pumping well. For

example, the spatially explicit model predicts that the impact on the steady state optimality

condition of the groundwater pumping externality is 120 to 824 times more at the wellhead

than the single-cell model. At a distance of five miles, the spatially explicit weighting func-

tion is still 24 to 218 times larger than the single-cell weighting function. Even at a distance

of twenty miles from a pumping well, the economic impact of the drawdown predicted by a

spatially explicit model is 11 to 132 times more than that predicted by a single-cell model.

Conversely, for the confined Crow Creek Valley aquifer in Montana, the agreement between

spatially explicit and single-cell models is much closer. At the wellhead of a pumping well,

the estimated impact of pumping is 1.78 times greater with a spatially explicit model than with

a single-cell model. At a distance of half a mile, the impact predicted by a single-cell model

is nearly fifty percent larger than that predicted by the spatially explicit model, and as distance

increases further, a single-cell model overstates the externality compared to a spatially explicit

model even more. What explains the major difference betweenresults for the Crow Creek Val-

ley aquifer and Roswell Basin aquifers, given that their transmissivities are in the same range?

14Note that an annualized discount rate of five percent is used in both calculations, but a time period of thirty
days was used for the spatially explicit model and a time period of one year was used for the single-cell model,
so that the per-period discount factorsβ in the numerator and denominator of the weighting function ratio are not
equal.
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With a surface area of 60,000 acres (94 square miles) the CrowCreek Valley aquifer is quite

small [29], so that the assumption that effects of pumping anwhere within the aquifer are trans-

mitted equally everywhere in the aquifer is approximately correct. Results from the spatially

explicit model suggest that this assumption is not valid forthe confined portion of the much

larger Roswell Basin aquifer system.

For unconfined aquifers, the difference between estimates of the economic impact of the

groundwater externality are even larger at small distances(Table 2). In particular, except at

large distances from a pumping well, the impact of the externality predicted using a spatially

explicit model may be several orders of magnitude larger than that predicted using a single-cell

model. As before, the spatially explicit weighting function decreases with distance. In compar-

ison to the relevant single-cell weighting function, for the two aquifers considered (the Roswell

Basin in New Mexico and the Texas High Plains Aquifer) the spatially explicit weighting func-

tion is 1577 to 46208 times larger at the wellhead, 391 to 8170times larger at a distance of

half a mile, and 11 to 110 times larger at a distance of ten miles. Finally, at a distance from

a pumping well of twenty miles, the single-cell weighting function may be either smaller or

larger than the spatially explicit weighting function.

One of the major empirical findings of studies of the economics of groundwater extraction

is that the ability of any public intervention – such as pumping taxes, pumping quotas, or basin

adjudication – to increase social welfare is very limited [15, 18]. This finding follows directly

from the very small estimated impact of the groundwater externality in single-cell aquifer mod-

els. This paper demonstrates that when groundwater is modeled as a spatially explicit resource,

using equations from the engineering literature that describe the transient response of aquifers

to pumping and the resulting gradients in potential, estimated externality impacts may be or-

ders of magnitude higher than those calculated with single-cell models. If this is the case,

then the user costs associated with ongoing pumping of groundwater, which are negligible in
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single-cell models, will also be significant in spatially explicit models. Thus, at least in the

case of large aquifers where wells are spaced a few miles apart or less, it is likely that when a

spatially explicit model is used for economic analysis, there may be large welfare gains from

optimal groundwater management when compared with myopic or non-cooperative strategic

outcomes. On the other hand, for small aquifers of limited areal extent, single-cell models may

be adequate for rough calculations of the welfare effects ofchanges in groundwater manage-

ment policy.

Note that the location at which single-cell models underestimate drawdown most when

compared with a spatially explicit model is at the wellhead.In an economic optimization

framework that includes non-cooperative strategic behavior by individual pumpers (rather than

myopia), simple intuition might suggest that if the externality from one’s own pumping is

largest at one’s own wellhead, then knowledge of this would reduce the overall externality; it

is possible that this reduction would be enough once again toclose the gap between scenarios

with and without socially optimal policies in place. In an aquifer with a very small number of

users, this may well be the case, but if there are hundreds or thousands of well users, then even

with a spatially explicit model, the contribution of each individual to the externality is small. If

mostusers of an aquifer are influencing each other more than a single-cell model would suggest

(for example, as shown in Table 2 for the large aquifers, for well spacings of the order of ten

miles or less), then it still possible to have large gains from optimal groundwater management.

Further investigation of the welfare gains from managementin a spatially explicit groundwater

model requires the location of well sites in relation to eachother in space, and is left to future

work.
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7 Conclusion

Most existing analyses of optimal groundwater management in the economic literature use

single-cell aquifer models, which assume that an aquifer responds uniformly and instantly to

groundwater pumping. This paper demonstrates how spatially explicit aquifer response equa-

tions from the water resources engineering literature may be embedded in a general economic

framework. Using this framework, we develop and describe ananalytical expression that is the

sum of discounted future economic impacts of the marginal groundwater externality imposed

by one groundwater user on all users. Because this analytical expression represents a weight-

ing function in the steady state optimality conditions, it links relevant hydrological parameters

and distance from a pumping well to the marginal benefits and costs of groundwater use.

The model presented in this paper may be compared with the results of existing economic

studies in specific aquifers. Comparison of the economic impacts of groundwater pumping

implied by single-cell and spatially explicit models suggests that for many aquifers, single-cell

models understate the groundwater pumping externality relative to a spatially explicit model.

In particular, in aquifers that have large surface areas, such as the Roswell Basin in New Mex-

ico or the Texas High Plains Aquifer, estimated externalityimpacts with a spatially explicit

model may be thousands or tens of thousands of times more thanthose calculated with a

single-cell model. Our results suggest that single-cell models may be appropriate for analy-

ses of the welfare effects of groundwater management policies either in small aquifers or in

larger aquifers were average well spacings are tens of milesor more. However, in extensive

aquifers where well spacings are on the order of a few miles orless, such as many of those of

concern to groundwater managers and policy makers, use of single-cell models may result in

misleading policy implications due to understatement of the magnitude and spatial nature of

the groundwater externality.
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Table 1 Estimated steady state weighting functions based onsingle-cell aquifer models in ex-
isting studies

Study site Aquifer type S or Sy Weighting function
[Citation(s)] β/AS or β/ASy

a

Roswell Basin, NM Confined 0.0001 − 0.005b 3.81 × 10−5

[14]

Crow Creek Valley, MT Confined 0.0016 9.90 × 10−3

[29]

Roswell Basin, NM Unconfined 0.15 7.05 × 10−6 − 7.94 × 10−6

[1, 14, 15, 18]

High Plains Aquifer, TX Unconfined 0.15 1.48 × 10−6

[17, 21]

Ogallala Aquifer, NM Unconfined 0.15 1.06 × 10−5

[5, 7]

Kern County, CA Unconfined 0.10 7.38 × 10−6

[11, 12]

aIn calculating the implied weighting function,A was taken as the reported surface area of the aquifer, and a
pumping rate of one acre foot per year was used. It was assumed– as is the case in existing all single-cell models
– that all drawdown occurred instantaneously, so that only one time period needs to be considered. An annual
discount rate of five percent was used.

bGisser and Mercado [14] report that storativity of the confined carbonate aquifer in the Pecos Basin is ‘negligible’.
The reported range of storativities are for the equivalent San Andres formation in the nearby Upper Rio Hondo
Basin, NM [10].
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Table 2 Comparison of steady state weighting functions for single-cell and spatially explicit
aquifer models

Study site Transmissivity Distance
∑

∞

t=1
βt

4πT
[w(t + 1, r(l, j)) − w(t, r(l, j))]a

(ft2/day) r(l, j) β/AS(y)

Roswell Basin, NM 8000 − 50000b Wellhead 120 − 824
Confined 0.5 miles 47 − 360

5 miles 24 − 218
10 milesc 18 − 174
20 miles 11 − 132

Crow Creek Valley, MTd 13000 Wellhead 1.78
Confined 0.5 miles 0.68

5 miles 0.35

Roswell Basin, NM 5000 − 15000e Wellhead 1577 − 5036f

Unconfined 0.5 miles 391 − 1036f

5 miles 67 − 93f

10 miles 11 − 22f

20 miles 0.27 − 2.34f

High Plains Aquifer, TX 2500 − 60000g Wellhead 2263 − 46208
Unconfined 0.5 miles 671 − 8170

5 miles 203 − 442
10 miles 25 − 110
20 miles 0.14 − 27

aCalculated using values of storativity for the confined aquifers and specific yield for the unconfined aquifers.
bTaken from Robson and Banta [24] as the general range for the confined carbonate-rock aquifer in the Roswell
Basin Aquifer System.

cWeighting functions for values ofr(l, j) of ten and twenty miles are reported, but not graphed, for theRoswell
Basin aquifers and Texas High Plains aquifer, which have relevant surface areas of 1,200 square miles and 6,700
square miles, respectively [14, 21].

dTransmissivity value reported in Worthingtonet al. [29]. Because the surface area of the Crow Creek Valley
aquifer is less than one hundred square miles, values ofr(l, j) greater than five miles are not considered.

eTaken from Robson and Banta [24] as the general range for the unconfined alluvial aquifer in the Roswell Basin
Aquifer System.

f Lower bound of range calculated using higher estimate of7.94×10−6 and upper bound of range calculated using
lower estimate of7.05 × 10−6 from Table 1.

gTransmissivity range calculated using reported general ranges of hydraulic conductivities (25 to 100 feet per day)
and saturated thicknesses (100 to 600 feet) for the High Plains aquifer in Texas and Oklahoma [26].
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Figure 1 Contour map of the steady state weighting function at the wellhead,
∑

∞

t=1(β
t/4πT )[w(t + 1, r(l, j))−w(t, r(l, j))], for the range of hydrological parameters com-

monly found in confined aquifers. In this figure the effectivewell radius, and thusr(l, j), is
assumed to be 1.5 feet. The weighting function was calculated using a discount rate of five
percent, time increments of thirty days, and a constant pumping rate in each well equal to one
acre foot per year.
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Figure 2 Contour map of the steady state weighting function at a distance of half a mile,
∑

∞

t=1(β
t/4πT )[w(t + 1, r(l, j))−w(t, r(l, j))], for the range of hydrological parameters com-

monly found in confined aquifers. In this figurer(l, j) is assumed to be half a mile. Parameters
used are the same as those in Figure 1.
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Figure 3 Contour map of the steady state weighting function at a distance of five miles,
∑

∞

t=1(β
t/4πT )[w(t + 1, r(l, j))−w(t, r(l, j))], for the range of hydrological parameters com-

monly found in confined aquifers. In this figurer(l, j) is assumed to be five miles. Parameters
used are the same as those in Figure 1.
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Figure 4 Contour map of the lower bound of the steady state weighting function at the wellhead,
∑

∞

t=1(β
t/4πT )[w(t + 1, r(l, j))−w(t, r(l, j))], for the range of hydrological parameters com-

monly found in unconfined aquifers. In this figure the effective well radius, and thusr(l, j),
is assumed to be 1.5 feet. The weighting function was calculated using a discount rate of five
percent, time increments of thirty days, and a constant pumping rate in each well equal to one
acre foot per year.
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Figure 5 Contour map of the lower bound of the steady state weighting function at a distance
of half a mile,

∑

∞

t=1(β
t/4πT )[w(t + 1, r(l, j)) − w(t, r(l, j))], for the range of hydrological

parameters commonly found in unconfined aquifers. In this figurer(l, j) is assumed to be half
a mile. Parameters used are the same as those in Figure 4.
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Figure 6 Contour map of the lower bound of the steady state weighting function at a distance
of five miles,

∑

∞

t=1(β
t/4πT )[w(t + 1, r(l, j)) − w(t, r(l, j))], for the range of hydrological

parameters commonly found in unconfined aquifers. In this figurer(l, j) is assumed to be five
miles. Parameters used are the same as those in Figure 4.
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