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1. Introduction 
In the last years Linear Programming has been used more and more in 
planning farms. With growing experience, by continued application, and by 
improvement of the approaches in individual cases, effective help is given for 
decision making. With the increasing range of application, the demands made 
on the quality of results have also increased. 

1.1 Planning approach and uncertainty 
Special problems arise by the necessary estimations of values of certain 

planning data at future points of time. 
In order to conceive a planning model the farmer or the farm manager, 

who has to make decisions, requires information on the production factors 
available, for instance land, labour, capital and certain intermediate products, 
which are produced and used on the farm itself. Furthermore, information is 
required about the limitations of production resulting from the production 
factors available. 

In a Linear Programming approach the restrictions of production may be 
subdivided in the following groups (9. p. 47-49) 

(a) land use and rotation of crops 
{b) labour capacity in time periods and for special tasks 
(c) stables and storage capacity, machine capacities, money restrictions 

(e.g. liquidity or minimal income) 
{d) intermediate products (e.g. fodder and cattle, diet restrictions) 
The production activities may be sub-divided in a similar manner as follows: 
(a) marketable crop production 
{b) intermediate and secondary products and their internal transfer 
(c) marketable animal production 
( d) activities of purchase and sale 
Some of the capacities, like labour in a time period, the length of which 

depends on weather conditions, some of the technical coefficients like labour 
demands of activities and natural returns of fodder crops, further on the 
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natural returns of the activities and the prices of products and factors are 
subject to uncertain predictions. Restrictions, that means rows of the matrix 
of coefficients, in which coefficients can't be predicted with certainty and 
therefore are assumed to be stochastically variable, are called stochastic 
restrictions (9, p. 51 ). 

In practical application the internal transfer losses are taken into con­
sideration by risk allowances which correspond to the expected losses. This 
insurance effect may be justified, if the individual occurrences which lead to 
losses repeat themselves often enough and expected losses hence can be 
measured and estimated. This practice becomes questionable, however, when 
a short-term plan is conceived with a unique decision. 

Summarizing, it can be said, although not all data required for planning are 
objects of stochastical fluctuation, the following restrictions are especially 
affected: 

(a) the restrictions of financial character, like liquidity etc., 
(b) the restrictions of labour force, 
(c) the restrictions of fodder cropping and diet conditions, 

and the activities of sale and purchase, especially the objective function. 
The variability of coefficients, hence affects the objective function the 

matrix of technical coefficients and the capacities. 
Linear Programming is essentially based on the existence of determined 

vectors and a determined matrix. The method thus generates in normal cases 
a single optimal solution. This solution is optimal, provided that the event, 
described by the vectors of objective function, p, and the capacities, b, and 
by the matrix A, would occur in time of realization. 

In reality, however, there is a large number of possible events which result 
in different coefficients and elements of p, A and b. Thus, there are a lot of 
Linear Programs, the individual solutions of which are not necessarily optimal 
for another combination of data. 

If all stochastic restrictions of a program are collected (7, p. 680) to a 
partial matrix A2 of A, the problem can be written as 

max Z = p'x 

under A1x:::; b 1 and A2x:::; b2 , 

A1 ,b 1 being deterministic, A2 ,b2 being stochastically variable. 
This subdivision is not necessary from the point of view of the following 

discussion, therefore it is assumed, that all restrictions inclusive, the capacity 
coefficients and the vector of the objective function may be subjects of 
stochastical fluctuations. 

1.2 The intention of the following discussion 

The following discussion is based on the subdivision of the planning 
process (9, p. 9) in the steps information, estimation, planning and decision 
making. 

The intention is to derive a decision rule or a decision function which is 
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appropriate with respect to the object, that is the agricultural firm and with 
respect to the most commonly used method of planning a farm, that is the 
method of Linear Programming, and with respect to the special problems of 
uncertainty characterizing the agricultural production. 

It has made use of the fact, that with modern computer programs a great 
number of optimal solutions of similar Linear Programming problems may be 
generated in a relatively short time. The step 'planning' is understood as 
generating alternative approaches and solutions, the decision making as the 
process of the selection of one solution or organisation for realization. 

The results are more general. The application of the decision rule is not 
restricted to the special case of the farm as the object and not to the method 
of Linear Programming, but these aspects are not specially investigated and 
described here. 

2. The decision process 
The decision process {15) may now be defined as the selection of one organ­
isation under a set of actions under consideration, the selected action should 
be optimal in relation to a decision criterion or to a preference relation about 
a defined action space. 

2.1 The decision situation 
The events at the time of realization of the selected action are character­

ized by a set of combinations of p, A and b. Thus a space of events is defined, 

E = f Ei = (pi, Ai> bi), i = I, 10 } 

which includes all possible combinations of data. 
Especially it is possible to compute to each problem arising from a special 

event Ei0 , an optimal solution of the problem 
max Z =Pio x and Ai0 x~ bi0 , x~O. 

This solutions should be called Xi0 • 

These optimal solutions, computed for the different events of the space of 
events, form a meaningful action space. 

2.2 Conclusions for an appropriate decision rule 
The following consequences arise from the fact, that an organisation could 

be realized or an action selected, which is wrong with respect to the actual 
event in the time of realization, because it is not optimal with respect to this 
event. 

(I) Because of lower prices and lower natural returns losses may arise; 
on the other hand by underestimating prices or returns, additional 
profits may arise. 

(2) If the actual technical coefficients or capacities differ from those of 
the planning approach, a lack of production factors like fodder or 
labour may arise. Of course, unexpected occurrences can lead to 
unused capacities. 

Under these circumstances and if one is able to realize only one of the 
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actions, a preference relation is required, which should take into consider­
ation the following aspects, 

(I) 

(2) 

(3) 

(4) 

(5) 

profits not made cause a regret, but in serious cases they can 
endanger the existence of the farm. The lost profits under different 
conditions from those on which the plan is based should be regarded 
as a disadvantage of the organisation, 
additional profits under the same conditions may diminish risk, they 
should be regarded as an advantage of the organisation, 
the lack of factors causes additional costs due to their purchase and 
due to higher prices, 
excess factors might cause extra costs, e.g. storage costs, they might 
cause additional income, e.g. the sale of fodder or the use of labour 
out of the farm, or they can be completely neutral like labour, 
which cannot be used elsewhere, 
the additional profits or expenses, which arise due to wrong actions, 
cannot be compared according to their absolute value, but only in 
relation to a standard value characterizing each organisation. 

2.3 Special aspects 
2.31 Infeasibility costs 

As a result of the fact that a lack of production factors can be caused by 
wrong estimation of technical co-efficients or capacities, organisations may 
have been realized, which violate a restriction, which hiis actually occurred. 
The costs to overcome the lack are called 'infeasibility costs' or 'penalty 
costs' (7. p. 680; 14, p. 463). 

Often these costs may be higher than the planned costs of procurement. 
Under certain circumstances it is impossible to procure lacking factors, this 
corresponds to infinitely high infeasibility costs. In practice it will often be 
impossible to determine the actual prices of lacking factors, so that th~ 
infeasibility costs are to be inserted as parameters of an individual attitude to 
risk into the preference relation. In cases in which they can be regarded as 
factor prices, they also depend on the economic environment and it is 
reasonable to complement the definition of events by a vector k of the 
infeasibility costs, so that 

2.32 The probability of events 
In order to widen the range of application it is necessary to make 

assumptions or statements on the probability structure on the set of events. 
In the sense of this discussion it is not important whether these probabilities 
are measured as objective distributions or guessed as degrees of belief (9, p. 
35). In order to use all information available and with respect to the fact that 
a unique decision is to be made it is assumed-in the sense of a 'degree of 
belief-hypothesis-that for each event Ei of the set E exists a probability 1Ti 

with ~1Ti = 1 and that the events are statistically independent. The latter is at 
first a1problem of defining the space of events. 
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3. An appropriate decision rule 
3.1 General remarks 

329 

In the preceding chapters the characteristics of the decision problem were 
given. Some general remarks have to be made of the action space and of the 
principle used to get an appropriate decision rule. 

3.11 Various action spaces 
An action xi is understood as a plan of organisation, the components of 

which are the levels of realization of various production alternatives. The 
action xi should be a feasible solution of the problem Ax~ b under certain 
assumptions about the constellation of data in p, A and b. In general there 
should not be made special assumptions on the source of the knowledge of 
these actions. Thus various action spaces A are conceivable. Preferred is the 
one formed by those actions which are optimal with respect to the events 
under consideration. The task of the preference functions, called H(x), to be 
determined on the action space A, is the selection of optimal organisations 
according to A and H. 

3.12 The preference function or decision rule 
The decision rule should be constituted in a manner such that the optimal 

organisation maximizes the function. It consists of three additive components 
F(x), K(x), N(x), which correspond to varying aspects of the problem of 
decisions under uncertain conditions, outlined above. 

(1) The part F(x) takes into account the costs of regret, which are the 
profits not made or additionally made by the possibly wrong 
organisations, expected on all events under consideration for the 
time of realization. It is a function of the actions xi as variables and 
with the vectors of objective function (pi) and the probabilities of 
events (1Ti) as constants. 

(2) The part K(x) describes the expected infeasibility costs of action xi 
on all events, with Ai> bi> ki and the probabilities 1Ti as constants. 

(3) The part N(x) evaluates the standard value characterizing each organ­
isation. It is important to make the amounts of F(x) and K(x) 
comparable for different actions. The functional dependence is 
similar to that of F(x). 

The preference function H(x) consisting of these elementary parts would 
be in general terms 

H(xj) = N(xj) + F(xj) + c K(xj) 

with c as a constant which has the values 0 and 1 according to whether the 
infeasibility costs are neglected or not. 

With respect to an action space A an organisation xi is preferable to xk if 
H(xi) ~ H(xk). The rule becomes operational if the symbols N(x), F(x) and 
K(xJ are thought of as special functions. 
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3 .2 The specification of the components of H( x) 
The further discussion will examine special assumptions about N, F and K, 

which lead to varying decision rules. 

In most cases different functions correspond to different attitudes to risk. 
In the following discussion it is assumed, that the action space is defined by 
actions which are optimal with respect to the different elements of the finite 
space of events. 

3.21 The part of the expected costs of regret 

Under the assumption event Eio would occur, an optimal solution of the 
deterministic Linear Program 

max Z = Pio x under the conditions Ai
0
x ~bi0 and 

x~exists 
Cases of degeneration, unbounded or infeasible solutions should be excluded. 
If a different event occurs then more or less profits may result. There are two 
possibilities to evaluate the expected deviations. 

(a) The expected costs of regret might be computed by comparing the 
results of an organisation Xio if all events would occur corresponding 
to their probability. This means 

F(Xi0 ) = ~ 1Ti 0 (piXi0 • PioXio) 
I 

is to be computed, with 0 as an operator symbol discussed later. This 
value should be called the risk of the decision. 

(b) The expected costs of regret might be computed by comparing the 
results of organisation xio if all events would occur and the corres­
ponding optimal action would have been selected. This means 

F(x· ) = L1T· 0 (p·x· - p· x· ) •o i • I t •o •o 

is to be computed. This value should be called the error of decision. 
The operator symbol 0 (y) may be thought of as one of the functions 

(3,14) 

I) 0(y) = y, II) 0(y) = y3 , 

l y2 if y< 0 
N) O(y) =io else 

(among other possibilities). 

V) 0(y) -/y/, 

III) O(y) = Jy if y < 0 
[o else 

VI) 0(y) = y2 

In the cases V and VI it is assumed, that positive and negative deviations 
from the planning data are risks of the same manner. 

If y is a profit variable it is reasonable to think of the risk-diminishing 
aspects of positive deviations. This aspect becomes meaningful if un­
symmetric distributions are used to describe the probabilistic structure on the 
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space of events. Therefore in the following discussion 0 (y) = y is to be the 
preferred type of measure. Under this statement the risk of decision becomes 

F {Xi0 ) = {E(p) - Pio) Xi0 

where E(p) ~1TiPi applies, the error of decision becomes 

where E(Z) 

1 

F(Xi0 ) = E(Z) - Pi0 Xio 

~ 1Ti Pi Xi applies. 
i 

3.22 The part of the expected infeasibility costs 
If action Xio were realized and event Ek occurred then the vector 

rk (Xio) = Ak Xio - bk 

is a measure of the possibility of realization of organisation Xio· The organ­
isation is realizable if rk(Xi0 ) ~ 0. If there are positive components of rk, 
then it means, that restrictions have been violated and additional amounts of 
factors must be purchased. 
Defining (3, p. 83) 

1 ~a-b if a > b applies. 
a 7 b - (a-b+/a-b/) -

2 O if a ~ b applies. 

and with kk as the vector of infeasibility costs corresponding to event Ek, 
then 

K(Xi0 ) = ~7Tkk~ (AkXi0 7 bk) 
k 

are the expected infeasibility costs provided that action Xio was realized. 

3.23 The standard value N(x) 

Rational reasons for the choice of certain functions to compute a standard 
value do not exist. The following however, are reasonable characteristics for 
the organisation: 

(a) the average incomes or profits which may be achieved over a number 
of years with a constant organisation, that means N(Xi0 ) = E(p )Xio 

{b) the incomes or profits which may be achieved under most favourable 
conditions, that means N(Xi0 ) = Pio Xi0 • 

(c) the incomes or profits, which may be achieved under most 
favourable conditions, weighted with the probability of the corres­
ponding events, that means N(Xi0 ) = 1T~i0Xi0 , where 1T~0 is the sum 
of the probabilities of those events whose objective vector is Pio. 

3.3 Synthesis of the decision rule H(x) 
Combining the alternatives for the additive parts of the preference 

function a number of decision rules results, which differ from each other in 
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form and content and generate different optimal decisions. The following 
rules are conceivable. They have the general form 

H(xj) = a . E(Z) + v'xi - K(xj) 

where the vector v' can be defined in a different manner. 

If a = 0 applies, alternatively 

v = E(p) or v = (2E(p)-Pj) or v = (E(p)-(1-7T/)Pj) applies, 

and if a = 1 is true, alternatively 

v = 0 or v = (E(p)-Pj) or v = (1T(l)Pj applies 

The discussion of the alternative results which are achieved with different 
forms of the decision rules shows that the differences correspond to different 
points of view with respect to risk. It is remarkable, that the stated forms of 
preference function are derived under the assumption, that the operator 
symbol O is used as 0 (y) = y and that there are more possibilities to define 
other decision rules using another definition of 0 (y ). 

3.4 Action space and infeasibility costs 
Remember the fact, that the problem 

max Z = p'x under A x = b, x = 0 
with stochastic restrictions could be turned to the problems 

max Z = pjx under A1 x :S b1 and A2 ;x :S b2 i> x 2:0 

where A1 , b1 are deterministic, while p;, A2 ;, b2;, i = 1, ... I0 correspond to 
the elements of the space of events, the index i stands for the alternative 
events E;. If one uses as action space the organisations which are optimal with 
respect to the events, A1x = b1 applies for all these actions. If the action 
space is defined over a set of actions, each of them is feasible for at least one 
event, then A1x = b 1 applies, too. But this is not necessarily right if the 
action space is constructed at random or so-to-speak untested with respect to 
the deterministic part of the restrictions. There are two ways, among others, 
of treating infeasibility in the last case. 

(a) If one does not want those elements of the action space to be 
considered which violate the deterministic restrictions, the 
infeasibility costs of these restrictions must be set up with so high 
values, that violating one of these restrictions can never lead to more 
favourable risk measures than using any feasible solution. 

(b) Should it, on the other hand, be reasonable, that some or all of the 
deterministic restrictions can be exceeded, then the deterministic 
part may be formally treated as the stochastic part of the in­
equalities. 

Rather important is another aspect of the decision function H(x). 
Examining (9, p. 80) the mathematical properties of the function H(x), it can 
be shown, that under special circumstances H(x) has an absolute maximum 
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which is not a vector x of the given action space, but is a linear combination 
of some optimal solutions corresponding to the elements of the space of 
events. Proceeding from these facts it seems to be reasonable to maximize the 
function H(x) independent from a given action space. Those forms of the 
decision rule, which don't refer for a special co-ordination of a vector Pi to an 
organisation xi under consideration allow this free maximization. 

It is obvious (9, p. 94) that a linear combination of these elements 

Xo = LAk xk, 0 ~ Ak ~ 1, L Ak = 1 
k k 

does not violate the deterministic restrictions of the problems, if they are not 
violated by the xk. If this applies, the problem of free maximization 

max H(x) 
x 

can be written in the form 

max H(L Akxk) = max H(XA) 
A k A 

with the vector A= (Ak) and the matrix X = (x1 , x2 , .... , xk), 
with 0 ~ Ak ~ 1, Dk = 1. 

k 

The function H(x) is then maximized over a convex set of points P, defined 
by 

P = { x/x = pkxk 0 ~ A.k ~ 1,fAk = 1 } 

where the vectors xk are the optimal solutions corresponding to the events 
under consideration. 

4. The individual attitude to risk 

The decision maker's individual attitude to risk influences the decision 
process in a relevant way. The interdependence between individual and the 
uncertain situation and its influence on decision making cannot be measured. 

By determining certain coefficients and formal aspects of the decision rule 
these trans-rational components of the decision process may be simulated. 
Through certain prior decisions a subjective attitude to risk is prejudiced and, 
therefore, in this way certain alternatives of action are indirectly preferred. 
The parameters of the decision rule which are influenced by the subjective 
standpoint with respect to uncertainty are not to be regarded as constants 
generally, but they are the object of a control process between decision 
maker and the results of using the decision function. These parameters must 
be thought of as variable or rather corrigible. 

The necessary prior decisions have to be done on different levels. As they 
generate principally different actions as optimal with respe1:;t to the resulting 
decision rule, they can be considered as reflecting individual attitudes to risk. 
The following aspects are striking. 

(a) The first prior decision concerns the set of events, which are taken 
into consideration. The events which are not considered, that means, 
which are regarded as impossible or improbable by the decision 
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maker, or the deviations from those under consideration, which are 
neglected, are an expression of the subjective standpoint. 

(b) Should the distribution on the space of events not be capable for 
measurement or objective observations but for subjective estima­
tions, a further possibility of representation of individual aspects is 
given in the subjectively estimated values of the probability distribu­
tion. 

( c) In connection with the set of events the selected action space also 
reflects subjective points of view. Excluded actions, based on a priori 
judgements, are not examined for their relative superiority in 
relation to the decision function. 

( d) In the general form 
H(x) = aN(x) + bF(x) - c K(x) 

there are degrees of freedom in setting the coefficients a, b, cat zero 
or one. Meaningful alternatives for the triple (a, b, c) are, for 
example, 
1. (1,0,0) 2. (0,1,0) 3. (1,0,1) 4. (1,1,1). 
The resulting rules depend of course from the choice with respect to 
the functions N, F, K. Basically, however, varying selections of a,b ,c 
prefer varying actions. In table 1 some rules which can be compared 
with well known decision criteria are shown. Under different 
assumptions rules may be deduced which are comparable with the 
Hurwicz-or the Bayes Criterion, the Niehans-Rule or the methods 
of Madansky (14) and Evers (7). 

(e) As pointed out the choice of functions N(x), F(x) and K(x) in­
fluences the resulting decision rule and therefore the preferred 
actions, especially the choice of the operator symbol 0 in F(x) has 
consequences. 

(f) When considering the infeasibility costs, prior decisions about the 
function K(x) can be influenced by fundamental attitudes to the 
problem. Principally different judgement of positive and negative 
deviations from planned data corresponds to the decision for one of 
the basic forms 
K(x) = kk (Akx - bk) respectively K(x) = kk (Akx +bk). 

(g) The infeasibility costs, as far as they are regarded as calculatory 
costs, are an important instrument with respect to individual 
attitude to risk. Providing for a parametric variability of the costs 
they can be a measure of stability of a decision. If the optimal 
decision changes in response to small change of infeasibility costs, 
the decision would be called unstable. 

The seven possibilities outlined before open many degrees of freedom, the 
consequences of which can't be described here in detail. But it is remarkable, 
that some of the assumptions lead to well known decision criteria. 

As it has been hown above, for instance in table 1, neglecting infeasibility 
costs leads to some so-called classical decision criteria. Using 
N(x) = E(p) . x and setting the infeasibility costs constant, that means 



TABLE I 

Some special forms of H(x) =a N (x) + b F (x) + c K (x) 
with K(x) = ~rrk kk (Ak x +bk) 

k 

No. Selected values for Selected form for Rule, Remarks 
a b c N(xj) F(~) maximize on xj 

I. 0 0 Hurwicz-Criterion with A = 1 
;i... 

Pj~ PjXj ti 
~ 

Commonly used in Linear Programming, "" 2. 0 0 (~ 7T p )x. E(p)~ ;;;· 
k k k J corresponds to the Bayes-Criterion c;· 

;:s 
3. 0 0 (rr.p.x.) (rr.p.x.) (expected value of a special result) ~ 

J J J J J J >:: 
~ 

4. 0 0 (E(p)·P.)x. 
'C)> 

(E(p)-p.)x. (E(p)-p.) corresponds to the 'opportunity .... 
J J J J costs' l of the decision for xj, likely to the ~ 

Niehans-Criterion ~ 
:::si 
l:l 
;:s 

5. 0 p.x.-K(x.) If for all indices k,p =p and kk =k, the 
;:s 

p.x. ~· J J J J J criterion becomes k the slack:-method of 
6. 0 E(p)x. E(p)x.-K(x.) Madan sky or, neglecting the set-up-costs to 

J J J the approach of W. Evers 

7. 0 P.X. (E(p)-p.)x. E(p)x. see under 2. 
J J J J J 

8. p.x. ( E( p )-p.)x. E(p)x.-K(x.) see under 6. 
J J J J J J w 

w 
V'I 
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independent from the different events, an approach similar to that of 
Madansky or neglecting the so-called set-up-costs similar to Evers' approach. 
Neglecting infeasibility costs, using N(x) = E(p) x and using a quadratic 
function instead of a linear one for the operator symbol 0 in F(x) and going 
from a discrete action space to a· continuous one leads to a decision function 
which is similar to the approaches describing the problem of decision under 
uncertainty with a quadratic criterion function with variance-covariance­
matrix in the quadratic part of the objective function (8). 

5. Some final remarks 
There are two critical points in decision making with help of decision 

rules. The fust is the treatment of seldom events, the second is the considera­
tion of liquidity in investment problems. 

5.1 Seldom events 
Seldom events in this connection are events with low probability and 

extremely high returns. A disadvantage of the most classical decision rules is 
that they induce optimal decisions in the manner of a player. To avoid this 
irregular and often uneconomical behaviour a very simple way is to add a 
minimum restriction 

a = p'x 

to the normal secondary conditions of the Linear Programming Problem. In 
this condition p is the vector of the objective function, x is the action and a is 
a variable similar to minimum income. By using an appropriate value of 
infeasibility costs corresponding to this restriction, the optimal decision is 
directed to reasonable actions. 

5.2 The liquidity problem 
Liquidity is an important aspect of investment problems, which are 

dynamic problems. It is clear, that there are formally no additional 
difficulties if the secondary conditions used to compute the infeasibility costs 
are taken from a Dynamic Linear Programming approach instead of a static 
approach. There are two ways to overcome the problem of illiquidity. 

The first possibility is to formulate common liquidity restrictions and to 
define high infeasibility costs for violating one of them Thus all organisations 
or actions are excluded which don't ensure liquidity under all circumstances. 

Under special conditions it may not be very meaningful to exclude 
organisations which violate the liquidity restriction under very improbable 
combinations of data. In these cases a second way is preferable. 

If the event Ei is characterized by the vectors Pi• bi, ki, these are objective 
function, capacities and infeasibility costs respectively, and the matrix Ai of 
technical co-efficients and if 1Ti is the probability of this event, and if F is the 
value of minimum of income or profit including the farmer's personal 
expenses and fixed costs, then the value 

Zi(xi) = PiXi - Ki(xi) - F 
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is computable for all events j and all actions xi. The term Kj(xi) does not 
mean the expected value, but the actual value of infeasibility costs if event Ej 
occurs and action xi has been realized. Let J be the set of indices j for which 

Zj(xD = 0 holds, then 7T(i) = ~ 7Tj 
id 

could be called the probability of survival of action i. By determining a 
certain, subjectively set limit 7T0 , all organisations, the probability of survival 
of which is smaller than the critical value 7T0 , can be excluded. 

Very high infeasibility costs for the liquidity restrictions correspond to the 
critical value 7T0 = 1. 

Conclusion 
The intention of the discussion was to derive an appropriate decision rule, 

appropriate with respect to the object of planning, the farm with respect to 
the planning approach, Linear Programming, and the special properties of 
uncertainty of agricultural production. The result was a generally formulated 
decision function, from which reasonable decision rules and under special 
assumptions some well known criteria functions, which are similar to them, 
were derived. The prior decisions for special forms of functions can be 
thought of as an expression of the subjective attitude to risk. The feasibility 
of the special problems of liquidity and seldom events by application of the 
decision function was shown. 

The operationality of the method depends on computability and the 
possibilities to define a space of events and the probability distribution on it. 

With most programs for Linear Programming series of solutions may be 
generated by changing coefficients with subroutines. Using the preceding 
solution as a basis for the next step a great number of organisations, which 
are optimal with respect to different events, may be computed and stored 
with little additional computing time. With special programs it is possible to 
select the optimal action with respect to the decision function in a second 
step. 

The possibility of defining a space of events and a possibility distribution 
on it is limited by lack of information. The more events are concerned, the 
more difficulties arise to define the distribution. In certain cases, using all 
objective and subjective information available, it will be possible to find an 
appropriate approach. 
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Obtaining Acceptable Farm Plans under Uncertainty 

P. B. R. HAZELL and R. B. HOW 
Cornell University, U.S.A. 

Linear programming is widely recognized as a method of determining a profit 
maximizing combination of farm enterprises that is feasible with respect to 
linear constraints on land, labor, equipment and financial resources, and to 
such fixed restrictions as rotational requirements and available market 
outlets. The technique has greatest potential for complex farm organizations, 
and yields considerable information of value to management in addition to 
the optimal farm plan. But linear programming solutions to enterprise 
combination problems have often been rejected because the approach has 
failed to consider uncertainty and leads to a higher degree of enterprise 
specialization than farm managers are willing to accept. We define uncertainty 
to consist of situations where our knowledge of future events is limited to 
estimates both of possible outcomes and their relative frequencies. 

Such uncertainty may arise in forecasted yields, costs or prices for 
individual activities, in activity requirements for fixed resources, or in the 
fixed constraint levels for the farm This paper will be concerned with 
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uncertainty in gross margins (gross returns net of variable costs) which result 
only from uncertainty in activity yields, costs or prices. Methods suggested to 
handle such uncertainty include modifications of linear programming, 
quadratic programming, game theory, simulation, dynamic programming and 
statistical decision theory. These approaches differ primarily in the assumed 
decision criteria, but the relationships between them have not been fully 
explored. 

Utilizing various decision criteria we propose to develop a general class of 
short run farm planning models that have in common an expected (fore­
casted) income, and a measure of income uncertainty. These models are 
similar in that they generate sets of farm plans for the range of all possible 
expected incomes, and are efficient in that the measure of income 
uncertainty is minimized for each expected income level. Efficiency in this 
sense also implies that for each level of income uncertainty, the expected 
total income is maximised. Classifying the models in this way aids in their 
comparison, and facilitates the selection of an appropriate model for a given 
situation. 

Decision Criteria 
When uncertainty exists in future enterprise returns the kinds of things we 

can say about any given farm enterprise return depend on our knowledge of 
the nature of possible outcomes for each enterprise. We may or may not 
know the relative expected frequency of different possible outcomes. When 
we know the relative frequency of different outcomes we can use meastues 
such as the variance, semi-variance or mean absolute deviation as criteria to 
describe income uncertainty. When we do not, as is often the case in games 
against Nature, we resort to such criteria as the Wald maximin or Savage regret. 

Markowitz [4, 5] and others have explored at length the concept of 
expected income-variance (or E-V) efficient plans in the choice of 
investment portfolios using quadratic programming. From our attempts to 
apply this procedure to farm planning and the problems we encountered grew 
the interest in the general class of models generating two parameter sets of 
farm plans. 

The objective criteria of these models can all be evaluated in monetary 
terms. As such they are all extreme simplifications of a farm operator's utility 
function which might be regarded as a composite of socio-economic factors, 
including expected income and some measure of income uncertainty. Rather 
than attempt to measure such functions and prescribe the plan that provides 
the greatest utility, we intend, given the present state of knowledge regarding 
the measurement of utility functions, to simply describe methods of 
developing alternative farm plans from which farmers may choose. 

We have taken this approach to develop efficient sets of farm plans for a 
400 acre farm in New York growing 20 to 25 different vegetable crops for 
market, and for a 4,000 acre farm in Florida on which IO different vegetable 
crops were grown. The managers of these two large businesses found consider­
able value in the opportunity to consider alternative farm plans each with 
varying levels of expected income and associated income uncertainty. 
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Specification of Income Distributions 
In short run planning models farm overhead costs are usually assumed 

constant for the length of the planning horizon. The income distribution of a 
farm plan is then totally specified by the total gross margin distribution. 
Necessary data for the two parameter approach therefore include information 
about the gross margin distribution of each farm activity, and the inter­
relationships between these distributions. The interrelationships might be 
summarized as correlation or covariance coefficients or, if the distributions 
are finite, by specifying the mutually exclusive and discrete sets (or vectors) 
of possible gross margin outcomes with or without their probabilities of 
occurrence. 

Necessary data must generally be obtained from time series or cross­
sectional samples unless subjective expectations are already available from the 
farm operator. Subjective information, unless inconsistent with objective 
data, is to be preferred in that farm operators are more likely to accept plans 
that conform to their expectations. However, subjective information can be 
very difficult to obtain for a complex farm operation, particularly with 
respect to the dispersion and interrelationships between activity gross 
margins: A practical compromise to these problems may be to use sample 
data at the outset, but to make adjustments where possible according to 
subjective information available from the farm operator. 

Regardless of the estimation procedure, it is generally necessary to assume 
that derived parameters take on their population values. Although statistical 
inference concerning the population characteristics may be possible given 
sufficient sample observations, it is not particularly useful in the ultimate 
selection of a farm plan. This places a heavy demand on the available data and 
encourages use of unbiased and efficient sample estimates of expected income 
and income uncertainty in defining two parameter models. When relying on 
sample data for estimates of income uncertainty, the sample can be regarded 
as a finite set of mutually exclusive vectors of possible gross margin 
outcomes, and this allows some latitude in methods of describing inter­
relationships between activity gross margins [ 1] . 

General Definition of Efficient Two Parameter Models 
Assuming sample gross margin data at the outset, we can define the general 

class of models generating two parameter sets of farm plans as follows. 

Minimize R = ¢ l l chj I h= 1 to s l · Xj I j= 1 to n ~ ( 1) 

in words: to minimize R, a measure of total gross margin un­
certainty, defined as a set function o of the farm activity 
levels (xj) and associated sample gross 

margin distributions f chj I h= 1 to s j ; where chj is 

the h th sample observation of the jth activity gross 
margin, and there are s such observations. 
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n 
Such that ~ fx· =A 

j= 1 J J 
(A.= 0 to 00) (2) 

such that the expected total gross margin, the sum of the activity 
levels times their forecasted gross margins C9, equals "A , 
a scalar to be parameterized from zero to unbounded. 

n 
And j~ 

1 
aijxj ,,:;; bi (for all i, i= I tom) (3) 

and total fixed activity requirements for the ith constraint, the sum 
of the unit activity requirements aij for the constraint i 

And 

times the activity levels xj, do not exceed the level of the 

ith constraint bi, for all i. 

(forallj,j=l ton) (4) 

and all activity levels Xj are non-negative. 

In summary we wish to minimize a measure of total gross margin 
uncertainty (1) over all possible levels of expected total gross margin (2) 
while maintaining feasibility with respect to the linear farm constraints (3) 
and non-negative values of the activity levels (4). 

We can further group this class of models depending on whether or not the 
total gross margin outcomes are symmetrically distributed about the expected 
value for a given farm plan. This is a significant classification since we expect 
farmers to be primarily concerned with negative deviations around expected 
income and not willing to sacrifice the opportunity for large positive 
deviations unnecessarily. An empirical problem arises in ascertaining whether 
the total gross margin distributions are symmetric.* Models suitable for the 
asymmetric case are obviously acceptable for the symmetric case, but the 
converse does not hold. 

Choice of a particular model for a given farm situation should depend 
largely on the measure of uncertainty most relevant to the farm operator [ 1] . 
For many farm situations no one measure will be most appropriate, and we 
suggest the following criteria for evaluating alternatives. 

(a) The computational ease of the solution procedure. Linear 
programming codes are available to most researchers with access to a 
computer, while quadratic programming codes that permit 
parametric programming are not as widely available and are 

*Whereas necessary conditions for symmetry cannot be stated in any generality we do 
know that if either a) the individual activity gross margin distributions are approximately 
normal or b) if the sample observations are independent and sufficient numbers of 
activities enter farm plans so that the Central Limit Theorem is applicable, then 
approximate normality will hold. A reasonable course of policy might be to take 
normality as synonomous with symmetry, knowing that if symmetry occurs without 
normality then little would have been lost by using a model suitable for the asymmetric 
case. 
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frequently of limited dimensions and uncertain performance. Special 
purpose simulation models require much time and effort to develop. 

(b) The gross margin data requirements of the uncertainty criterion. The 
ultimate goal of complete information about activity outcomes and 
their probability of occurrence and interrelationships may be 
difficult to realize, but some degree of estimation may be possible. 
We may, however, have to be content with information about 
possible gross margin outcomes without specifying relative 
frequency of occurrence. This is likely to occur, for example, when 
using a small sample of data and in the absence of subjective 
probability estimates. 

(c) The ease of incorporating subjective information into estimates of 
expected gross margins, their frequency distributions and inter­
relationships. Expected income may be easily modified in all models· 
of this class, but the ease of modifying the uncertainty criterion 
varies. 

Models for Symmetrically Distributed Farm Plan Incomes 
1. Expected Income-Variance Criterion 

Let V denote the variance of the total gross margins of a farm plan, then 

1 R=V= -
s - 1 

n n 

s 
~ 
h=l 

= ~ ~ Xj Xk Ujk 
j= 1 k= 1 

is an unbiased and efficient estimator of the population variance. Where: 

denotes the h th sample gross margin observation for the 

/h activity ( chj) adjusted by scalar addition or subtraction in 

accordance with any changes made to the forecasted gross 

margins c9 from the sample means in incorporating subjective 

information about their values. 2 

denotes the estimated covariance coefficient of gross margins 

between the j th and kth activities when j=i=k, the estimated 

variance coefficient of gross margins for the /h activity when 

j=k. 

*It is assumed that subjective estimates of the most likely gross margins pertain to 
measures of central tendancy, and not to specific predictions for one year [I] . Such 
estimates are equivalent to scalar addition or subtraction on the initial sample 
observations. 



Obtaining Acceptable Farm Plans under Uncertainty 343 

If V is now minimized subject to the constraints (2), (3) and ( 4 ), this is the 
familiar quadratic programming model developed by Markowitz [4, 5]. This 
model is appealing since probability statements are readily derived for the 
likelihood of occurrence of different income levels for a farm plan in the final 
set providing the total gross margins are approximately normally distributed. 
Further, the variance V is totally specified by the variance-covariance co­
efficients, and when subjective information is available for these values, the 
criterion does not depend on specification of the possible sets of gross margin 
outcomes and associated probabilities. We have found computational 
problems however, in solving large dimension models with available computer 
codes. The data requirements are also considerable. 

2. Expected Income-Mean Absolute Deviation Criterion 
I.et A denote the mean absolute total gross margin deviation for a farm 

plan. Then 

R =A= - L L (eh. - f. ) X· 1 s I n I 
s h= 1 j= 1 J J J 

is an ubiased estimator of the population mean absolute deviation. 
With some manipulation A can be minimized subject to constraints (2), (3) 

and ( 4) by parametric linear programming [ 1] . Rigid specification of sets (or 
vectors) of possible activity gross margin outcomes together with their 
relative frequencies are required. It total gross margin distribution can be 
expected to be approximately normal then the mean absolute deviation may 
be regarded as a linear alternative to the variance in deriving efficient 
income-variance farm plans [ 1] . Further, given normality then probability 
statements for the income levels of efficient farm plans may be derived 
through use of Herrey's H statistic [l, 3] , or by calculating the variance ex 
post [I]. 

3. Expected Income-Wald Maximin Criterion 
I.et U be the worst possible total gross margin that could occur with a 

farm plan from the sample data. Then replace R by the following system of 
linear equations. 

Maximize U n 
L c x ;;;.. U (for all h, h= 1 to s) 

Such that j= 1 hj j 

When solved subject to the constraints (2), (3) and (4) this is the maximin 
parametric game model [2]. Note that the activity gross margins chj need not 
be adjusted for any changes in the forecasted gross margins fj, but if the 
forecasted values are changed it may be necessary to add a new constraint 
requiring that the forecasted total gross margin exceed the worst possible 
outcome [2] . 

This model can be solved by parametric linear programming. The maximin 
gross margin U initially increases with expected income, reaches a maximum 
and then decreases until the final linear program solution is obtained. The 
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solution for the maximum value of U corresponds to that of the resource 
constrained maximin game model developed by Mcinerney [6]. All solutions 
are efficient in that the maximum worst possible outcome is ensured for each 
expected level of income. 

The model avoids specific assumptions about gross margin probabilities 
when subjective values are available for the forecasted gross margins, and uses 
data about possible outcomes only. This can lead to less satisfactory consider­
ation of the interrelationships between activity gross margin distributions. 
The model requires specification of the finite sets (or vectors) of possible 
gross margin outcomes, and these must capture gross margin interrelation­
ships. 

4. Expected Income-Savage Regret Criterion 
Define regret as the difference in income between a farm plan evaluated 

for a set (or vector) of possible gross margin outcomes and the value of an 
optimal linear program solution solved and evaluated for the same gross 
margins. In particular, let ~ denote the total gross margin of the optimal 
linear program solution solved and evaluated for the h th sample observation 
of activity gross margins, then we can define this measure of regret more 

n 
formally as gh - L chJ.xJ .. 

j=l 
Let W be the largest such regret value that could occur with a farm plan from 
the sample data. Then replace R by the following system of linear equations. 

Minimize W 

Such that (forallh,h=l tos) n :;;::w 
gh - L c .x.""' 

j= 1 hJ J 
When solved to the constraints (2), (3) and (4) this is the regret parametric 
game model [2] . Again note that the activity gross margins Chj need not be 
adjusted for any changes in the forecasted values fj, but if the forecasted 
values are changed it may be necessary to add a new constraint requiring that 
regret for the forecasted total gross margin does not exceed W. 

This model can be solved by parametric linear programming. The minimax 
regret W iriitially decreases with expected income, reaches a minimum and 
then increases until the final linear program solution is obtained. The solution 
for the minimum value of W corresponds to that of the non-parametric 
resource constrained regret game model [2] . The model avoids specific 
assumptions about gross margin probabilities, when subjective values are 
available for the forecasted gross margins, but requires specification of finite 
sets (or vectors) of possible gross margin outcomes which must capture gross 
margin interrelationships. 

Models for Asymmetrically Distributed Fann Plan Incomes 
1. Expected Income-Semi-Variance Criterion 

Let V denote the semi-variance, mean squared negative deviation, of the 
total gross margins of a farm plan, then 
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R = V = ~ ~ [Minimum ( £ ( chj - fj ) xj, oJ~ 2 

s- h=l j=l ~ 
is an unbiased estimator of the population semi-variance. When minimized 
subject to the constraints (2), (3) and (4) this is the semi-variance model 
proposed by Markowitz [4] . 

This model can only be handled by Monte Carlo simulation techniques [4] 
which are not likely to be a practical procedure for farm planning researchers. 
Unlike the variance, the semi-variance is not specified by variance-covariance 
coefficients, but like other criteria depends on specification of the possible 
sets of gross margin outcomes and associated probabilities. 

2. Expected Income-Mean Absolute Negative Deviation Criterion 
Let A denote the mean absolute value of the negative total gross margin 

deviations about the expected value for a farm plan, then 

s 
R =A=_!_ L 

s h=l I 
Minimum ( . £ 

J= 1 

is an unbiased estimator of the population mean absolute negative deviation. 
With some manipulation A can be minimized subject to constraints (2), (3) 

and (4) by parametric linear programming to yield a set of farm plans 
providing minimum mean absolute negative deviation for any given level of 
expected income [ 1] . However, because the sum of the negative deviations 
around the mean is always equal to the sum of the positive deviations, this 
criterion is equivalent to the expected income-mean absolute deviation 
criterion and leads to identical results. In other words, the expected income­
mean absolute deviation criterion is appropriate for symmetric or asymmetric 
income distributions, and the only justification for considering the expected 
income-mean absolute negative deviation criterion is that it suggests a 
smaller and more efficient parametric linear programming model for 
obtaining solutions [ 1] . 

3. Expected Income-Wald Maximin and Savage Regret Criteria 

These models are directly applicable to the asymmetric situation. 

Comparison of Models 

These models all have the following general characteristics. 
(a) A set of farm plans are obtained that are efficient in the sense that 

for all levels of possible expected income an associated measure of 
income uncertainty is minimized. 

(b) The forecasted gross margins need not be the original sample means 
buy any values deemed the most likely outcomes. 

(c) The models are defined as linear in the farm constraints, or as 
extensions of the deterministic linear programming model. If the 
measure of uncertainty is also linear they can generally be solved by 
parametric linear programming. 
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(d) The solution for maximum X is always the linear programming 
solution for the forecasted gross margins. 

The models differ in the following important respects. 
(a) The variance model requires a special quadratic programming 

algorithm and the semi-variance model requires simulation, while the 
others can all be handled with linear programming codes containing 
the parametric option. 

(b) The variance, semi-variance, mean absolute deviation and mean 
absolute deviation models require data about the relative frequency 
of possible activity gross margin outcomes. This places heavy 
demands on available data but permits more satisfactory consider­
ation of the interrelationships between activity gross margins. The 
Wald Maximin and Savage Regret models avoid explicit assumptions 
about the probabilities, though these can be incorporated. 

( c) The variance is totally specified by the variance-covariance co­
efficients, and subjective information can easily be incorporated. All 
the other models require incorporating subjective information for 
the uncertainty criterion by defining important gross margin out­
comes and associated probabilities. 

(d) When total gross margin distributions are expected to be 
approximately normal the mean absolute deviation may be regarded 
as a linear alternative to the variance in deriving farm plans efficient 
with respect to expected income and variance. This permits use of 
available linear programming computer codes. 

Conclusions 
Only a few of many possible efficient two parameter models for obtaining 

sets of farm plans under uncertainty have been presented. Our purpose has 
been to indicate a general framework of analysis that a research worker or 
farm advisor might use to select a model most appropriate to his needs and 
available data. We conclude at this stage that the most useful models are those 
combining expected income levels with the mean absolute deviation and the 
Wald maximin criteria. Both models are suitable regardless of the shape of 
income distributions and both can be solved with available linear 
programming computer codes that contain the parametric feature. The 
maximin parametric model seems most appropriate when data are limited to a 
few sets of possible gross margin outcomes, such as a small sample, whereas 
the mean absolute deviation model yields more information and is to be 
preferred when knowledge of gross margin probabilities are available. 
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An Approach to Farm Planning Under 'Ambiguity' 

I. Introduction 

Y. MARUYAMA and T. KAWAGUCHI 
Kyoto University Japan and University of Essex, U.K. 

and Kyushu University, Japan. 

The state of a farmer's knowledge regarding his own farm planning: Very 
seldom is he in the state of complete ignorance that is assumed in many 
game-theoretic decision models under uncertainty. Some estimates of 
probability distributions, e.g. in the form of his own observations or of his 
neighbour's, including those of government experimental stations, of the 
relevant variables are available. However, these estimates are not always very 
reliable, so that he is not completely confident of the associated objective or 
subjective risks. Thus, his state of knowledge appears to simulate what 
Ellsberg calls the 'ambiguity' [4] . 

The role of a farm planning model under uncertainty is understood to 
process whatever information the farmer has regarding his alternative 
economic opportunities, say, his procurement, production and marketing 
opportunities, and derive on his behalf the implications of this information 
relative to his ultimate objective, e.g., the maximization of expected utility, 
which are not often obvious· at first sight, and thereby help him make a more 
sensible decision whenever possible. The derived implications, of course, 
cannot be more reliable than the basic informational inputs. 

The purpose of this paper is to formulate a farm planning model under 
'ambiguity', relate it to other decision making models under uncertainty, and 
apply it to a representative Eastern North Carolina farm due to Freund [5] so 
as to illustrate some of its further aspects. Throughout this paper the 
parametric or comparative statics analysis is emphasized, which is necessary 
(a) because of the apparent difficulty of revealing the farmer's preference 
with respect to uncertainty and (b) the insufficient reliability of the basic 
informational inputs. 

For the sake of expository convenience, the subsequent sections will be 
developed in a close relation to Markowitz's portfolio analysis [8] , which was 
popularized by Heady and Candler as 'risk programming' [6] to the agri­
cultural economics profession. The risk programming model is a simplest 
form of program planning under uncertainty, which deals in uncertainties 
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only in the form of objective or subjective risks, and incorporates them only 
in the coefficients of objective function. 

II. Formulation of the model 

The information available to a farmer usually consists of (a) a number of 
time and/or cross-sectional series of net returns from a unit of individual 
alternatives, 

(I)rtj,t=l, ... , T;j=l, ... , n, 

where the fust suffix denotes the tth series, and the second the jth alter­
native; (b) similar series of resource requirements or productions per unit 
level of individual alternatives, 

(2) atij, t= I, ... , T;i= I, ... , m;j =I, ... , n, 

where an additional suffix i denotes the ith resource; ( c) a similar series of 
resource availabilities, 

(3) bti,t= I, ... , T;i= I, ... , m, 

and (d) a similar series of objective or subjective probabilities associated with 
these series, whichever apply to the case, 

> t=T _ 
(4) Yt = 0, L t=l Yt - 1. 

The downward variability in the net return: The mathematical expecta­
tions of these series of information, 

(5) rj = L ~~f rtjYt,j =I, ... , n, 

(6) aij = L ~~f atijYt, i =I, ... , m;j =I, .. ., n, 

(7) bi= L ~~f btiYt. i = 1, .. ., m, 

are utilized as basic informational inputs in the ordinary linear programming 
models. Besides these, the variances and covariances between rtj's are 
employed as measures of variability in rj's in the risk programming model. 
Here, let us instead define an alternative measure of variability in rj's and see 
what this much extraordinariness will imply. The deviation of individual rtj's 
from their expectation rj's, 

(8) Vtj = rj - rtj, t = I, .. ., T; j = 1, .. ., n, 

may serve as measures of variability as well. Our rationale for emphasizing the 
downward as compared with the directionless absolute deviations or varia­
bilities coincides with Markowitz's for introducing the semi-variances [8) . 
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Problem (/): The downward variabili~ in the net return from a program 
x1, ... , xn in the tth series, where xj = 0 G = 1, ... , n) denotes the level 
of commitment to the jth alternative, 

(9) dt = Vt}Xl + ... + VtnXn, t = 1, ... , T. 

The relations (4) and (8) imply that dt cannot be negative. The downward 
variability in the net return from this program is defined as max 
(di, ... , dT). The constraint to confine it within d ~ 0 is equivalent to the 
following set of inequalities. 

< (10) dt = Vt}Xl + . . . + VtnXn = d, t = 1, ... , T. 

Additional constraints specifying the technical, institutional or behavioural 
feasibility of this program are introduced, in an ordinary way, in terms of aij's 
and bi's. 

< . 
(11) anx1 + ... + ainxn= bp = 1, ... , m. 

The expected net return from this program, 

(12) E = 11x1 + . . . + rnxn. 

The problem of maximizing E subject to the feasibility constraints (11) will 
be referred to as Problem (I). Let us assume that a solution to this problem 
exists and that the corresponding value of E is equal to E. 

Problem(//) and E-Vd efficiency locus: The problem of maximizing E subject 
to (10) and (11) is referred to as Problem (II). The minimum value of d that 
guarantees E to Eis denoted as d. The minimum feasible value of d under the 
constraints (10) and (11) is denoted as d, and the maximum value of E 
corresponding to d, where d is regarded as a parameter, is denoted as E. The 
optimum programs for all values of d~ d can be obtained by means of the 
parametric linear programming (Pl.P for short). See Table 1 for the results of 
application to the representative Eastern North Carolina farm. From the 
construct of PLP it follows that E is a continuous, monotonically 
non-decreasing and concave function of d. Furthermore, it is strictly 
increasing for d < d < d. The locus of E(d) thus obtained consists of a number 
of straight line segments, and looks as a whole much like the familiar E-V or 
E-o efficiency loci in risk programming. For contrast let us refer to the E-d 
locus thus obtained as E-Vd efficiency locus. See Figures 1 and 3, which 
show the E-Vd and E-aefficiency loci for the above-mentioned farm, 
respectively. 

Problem (III) and the minimum expected net return: The net return from a 
program xi, ... , xn in the tth series, 

(13) kt= rt1x1 + ... + rtnXn, t = 1, ... , T. 
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The constraint of requiring the return from this program not to fall short of a 
specified minimum level, say k, can be expressed in terms of kt. 

> (14) kt= rtixl + . . . + rtnXn = k, t = 1, ... , T. 

The minimum level of net return k is meant to reflect the importance of the 
subsistence or similar levels of income in many farm planning problems. See, 
e.g., Wharton (10]. Let us refer to the problem of maximising E subject to 
(11) and (14) as Problem (III). The optimum programs corresponding to 
various values of k can be obtained by means of PLP. However, this is not 
really necessary as is shown in the sequel. The set of solutions to the Problem 
(II) contains as a subset those to the Problem (III). See Table 1. 

Relationship between Problems(//) and(///): The recourse to the relation 
(8) suggests that the constraints (10) and (14) can be rewritten as 

(lOa) kt~ E-d, t = 1, T, 

> (14a) dt = E-k, t = l, T. 

These two relations suggest a close connection between Problems (II) and 
(III). Let us express by the function E = f( d) the E-V d efficiency locus in 
Figure 1. Then the monotonicity of f for .Q < d < d assures that its inverse d = 
f-l(E) exists and that f-1 is continuous, monotonically increasing and convex 
for E < E < E. Therefore, the function k = E - f-l(E) is continuous and 
concave for E<E<E. It attains its maximum in the interval E1~ E~E2 
where the curve E = f(d) has a slope of one. In Figure 1 the interval 
E 1 < E < E2 reduces to a single point Eo (= E 1 = E2). 

The E-k efficiency locus: In case f is differentiable, the above result can 
be proved easily as follows. In case f consists of a number of straight line 
segments, a similar proof requires a set-theoretic discussion. 

dk/dE = 1 - df-l(E)/dE = 0, hence 

df-l(E)/dE = 1. 

k is strictly increasing for~< E < E 1 and strictly decreasing for E2 < E <E. It 
looks much like Baumol's L = E - Ka curves [l], except that k = E - f-l(E) 
consists of a number of straight line segments as is shown in Figure 2. The 
relationship between the E-k efficiency locus and the curve k = E - f-l(E) 
should be obvious. The former corresponds to a part of the latter for 
E2 ~ E ~ E. Thus, the relationship between the E-V d efficient set and the 
E-k efficient set of programs is very similar to that between Markowitz's 
E-a efficient set and Baumol's E-L efficient set of portfolios. Just like 
Baumol's E-L efficiency criterion, the E-k efficiency criterion may help 
reduce the farmer's decision-making task by providing him with a smaller 
efficient set of programs from among which he must still choose. 
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III. Discussion of the model 
The constrained game: Multiplying both sides of the inequalities {14) by 

Yt and summing up overall t, we have 

{15) L ~~T L 1::r YtrtjXj ~ k L ~~T Yt = k. 

By (5) this relation can be rewritten as 

j=n .. > L j=l r1x1 = k. 

The existence of a solution to Problem (I) implies the existence of a 
maximum of k. Let it be denoted ask. Ifwe regard the left-hand side of (15) 
as the pay-off in a game, K proves to be equal to the value of a constrained 
game, (a) where the pure strategy x1, ... , xn of the maximizer, the farmer, 
is subject to the feasibility constraints {11), and {b) where the mixed strategy 
yl, ... , yT of the minimizer, Nature, is subject to the regular conditions 
(4). Thus, optimum programs corresponding to k guarantee the maximum 
security while those corresponding to k {= E - d) guarantee the maximum 
expected net return E. The theory of constrained game, which was first 
developed by Charnes [2], has recently been applied to the farm planning 
problem by Imamura (7] and Mcinerney (9]. 

Ellsberg's decision rule with a confidence parameter p: In the situation of 
'ambiguity' where some estimates of yt's are possible but they are not 
completely reliable, Ellsberg (4] suggests a decision rule to choose such 
strategies that maximize the following index (as rewritten in our notation): 

- - < < (16) U = pE + (1-p)k, O=p = 1, 

where p denotes the decision maker's degree of confidence in the estimate of 
yt's. If p = 0, optimum programs corresponding to k, if p = 1, those corres­
ponding to E, respectively, will be chosen. If 0<p<1, those represented by 
the intermediate points on the E-k efficiency locus will be chosen. In other 
words, the ratio p/{l-p) reflects the rate of substitution between E andk in 
the decision maker's preference system with respect to uncertainty. Thus a 
close correspondence between the E-k efficiency locus and Ellsberg's 
decision rule is ascertained. 

Probability that the minimum expected net return falls short of a specified 
level: By use of slack variables zt ~O, t = 1, ... , T, the constraints (14) can 
be rewritten as equalities, 

{14b) kt=rtix1+ ... +rtnXn=zt+k,t=l, ... , T. 

The PLP procedure determines all the values of zt fork< k <k. See Table 1. 
Then the sum zt + k can be compared with the arbitrary level of net return h. 
The sum of yt's over all t such that zt + k < h is equal to the probability that 
the minimum expected return from the program xI, ... , Xn falls short ofh. 
Such a probability will provide useful information in many farm planning 
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problems where the consideration of the subsistence or similar levels of 
income is important. The usefulness of such a probability is, of course, 
dependent upon the farmer's confidence in the estimate of yt's. 

Variabilities in the resource requirements and availabilities can be similarly 
defined as vtj in (8). The upward variability in case of the resource require­
ments and the downward variability in case of the resource availabilities 
respectively will be of more interest than their counterparts for similar 
reasons as in the case of unit level net returns. 

(17) Stij=atij-aij.t=l, ... , T;i=l, ... , m;j=l, ... , ,n, 

(18) % =bi - bti. t = I, ... , T; i = I, ... , m. 

The variation in the resource requirements of a program xl, ... , xn can be 
similarly constrained as in (10). 

(19) Uti = StijXl + . . . + StinXn~ Ui, t = I, ... , T; i = I, .. ., m. 

The variabilities in bi's can be used to specify the relevant ranges of the values 
of ui's, but they would be more conveniently suppressed in the formulation 
of (19). Their implications with respect to the optimum programmes will be 
derived as the latter corresponding to various values of Ui's are obtained by 
means of PLP procedure. 

Problem (IVA) [(IVB)j: The problem of maximizing E subject to (IO), 
[(14)], (11) and (19) is referred to as Problem (IV A) [(IVB)]. There are a 
tremendous number of combinations of d [k] and ui's. Accordingly, there are 
as many possible PLP runs to try. It would be economically infeasible to try 
them all. However, some of them, especially those associated with the 
resources of severely limited supply, say, hay or labour time during the peak 
seasons in certain cases, may be worth trying. 

IV. Application to the Representative Eastern North Carolina Farm Due to 
Freund 

Data for the unit level net returns series are adapted from his unpublished 
Ph.D. thesis by his courtesy. Data for the resource requirements and 
availabilities, together with the variances and covariances of the unit level net 
returns are adapted from his Econometrica article [5]. They are not 
reproduced here for lack of space. 

The results of application are shown in Table I, and are summari.ied in 
Figures I and 2, along with Figure 3, where the results of risk programming 
analysis on the same farm are summarily shown for contrast. The risk 
programming analysis is performed by means of the Wolfe-Dantzig modified 
simplex algorithm for quadratic programming [3]. 

V. Conclusion 
In the foregoing sections a farm planning model under ambiguity has been 

formulated, developed, discussed and then applied to a representative farm. 
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The apparent prevalence of ambiguity in many farm planning problems may 
suffice to endorse the relevance of the proposed model. The difficulty of 
revealing a farmer's preference relative to uncertainty together with the 
insufficient reliability of the basic informational inputs, both inherent in the 
farm planning under ambiguity, may lead us to find particular uses in the 
parametric features of the proposed model. 

Furthermore, the formal simplicity of the present approach offers an 
economy of information through a more direct utilization of the basic 
informational inputs, in particular, compared with the risk programming 
analysis where, for instance, the information of the unit level net returns are 
transformed into variances and covariances before analysis. This economy of 
information may be significant especially under ambiguity, where the amount 
of information is very severely limited. To be definite, let us assume a 
plausible set of values, say, five, forty and sixty for T, m and n. Then the 
proposed model makes a full use of 300 rtj's, 1200 atij's and 200 bti's, while 
the risk programming model requires 3660 variances and covariances among 
300 rtj's, i.e., a tremendous stretching of the basic informational inputs. 
Whereas it finds only a very sparing use, at the rate of one-fifth, of 1200 atij's 
and 200 bti's. 

An economy of computation, closely connected with the above economy, 
can also be enjoyed with the proposed model. Should we work with Problem 
(II) in the above, and solve the corresponding risk programming problem by 
means of the Wolfe-Dantzig modified simplex method, the dimension of 
simplex tableau for the proposed model will be 45 x 60 while that for the risk 
programming model will be 100 x 100, assuming for T, m and n the same set 
of values in the above. Furthermore, the proposed model can be employed if 
only a PLP code is available which is definitely more readily available than a 
quadratic programming code. 

The formal simplicity of the proposed model also makes possible a 
symmetrical analysis of the variabilities in the resource requirements and 
availabilities, that is virtually impossible in many other decision making 
models under uncertainty, including the risk programming model. 

Finally, the proposed model offers a very important set of information as 
a by-product of the main analysis. The probabilities that the minimum 
expected returns from alternative programs fall short of a certain specified 
level will prove to be useful in many farm planning problems where the 
consideration of the subsistence or similar levels of income is crucial. How­
ever, let it be noted that the usefulness of such information depends on the 
farmer's confidence in the basic informational inputs. In general, such 
probabilities may also be somewhat more easily understood as measures of 
risk by an average farmer than the standard deviations or variances. 

All these features of the proposed model may add to its 
recommendability. 

References 

1 Baumol, W. J., An Expected Gain-Confidence Limit Criterion for Portfolio 
Selection, Management Science 10: 174-182, 1963. 



An Approach to Farm Planning Under 'Ambiguity' 355 

2 Charnes, A. A., Constrained Garnes and Linear Programming, Proceedings of 
National Academy of Sciences, pp.639-641, July, 1953. 

3 Dantzig, G. B., Linear Programming and Extensions, Chap. 24, Princeton, 1963. 
4 Ellsberg, D., Risk, Ambiguity and the Savage Axioms, Quarterly Journal of 

Economics, 75: 643-669, 1961. 
5 Freund, R. J ., The Introduction of Risk Into a Programming Model, Econometrica, 

24: 253-263, 1956. 
6 Heady, E. 0., and Candler, W ., Linear Programming Methods, Chap. 17, Iowa State 

College Press, 1958. 
7 Imamura, Y ., Game Theoretic Programming (in Japanese), Bulletin of the National 

Institute of Agricultural Sciences (Japan), Series H, No. 36, December, 1966. 
8 Markowitz, H. M.,Portfolio Selection, Wiley, 1959. 
9 Mcinerney, J. P., 'Maximin Programming'-An Approach to Farm Planning under 

Uncertainty ,Journal of Agricultural Economics, 18: 2 79-289, 196 7. 
10 Wharton, C. R., Risk, Uncertainty and Subsistence Farmer, American Economic 

Review, Vol.59, No.2, May, 1969. 

SPECIAL GROUP B REPORT 

Following the paper by Hazell and How, the fust of the three papers 
presented at this meeting, the question was raised as to whether the models 
discussed represented an approach which could be regarded as consistent with 
the utility functions of farmers. The authors, however, doubted whether the 
measurement of utility functions was far enough advanced for them to be 
directly incorporated but argued that the two parameter models such as that 
using the mean absolute deviation represented an approximation to these. In 
the general discussion on all three papers, it was pointed out that the utility 
function of a farmer was not constant but changed, for instance, with each 
change in the capital assets held. The temporary nature of the planning 
coefficients and resource levels was instanced by one speaker as an argument 
against the more elaborate programming methods. He claimed that the sub­
division of activities into the largest possible number of 'tasks' while involving 
very large matrices enabled solutions to be reached by standard linear 
programming procedures which took account of the uncertainty aspects. 

There was some discussion of the problems involved in arriving at a full set 
of probabilities for use in the programming models. It was pointed out that 
probabilities based on time series would not correspond to realised 
probabilities. More attention needed to be given to this particularly in view of 
the rapidity of technical change. 

Difficulties in the use of probability models were seen by one speaker in 
situations where the use of many transfer activities was appropriate. This 
applied particularly to quadratic programming. Simulation models might be 
an alternative. It was claimed that the mean absolute deviation model was 
compatible with transfer activities. 

The need to distinguish between risk and uncertainty was made. The term 
'ambiguity' used by Maruyama and Kawaguchi was considered to be 
appropriate as a term going rather beyond the strict definition of uncertainty. 
Reference was made to the difficulties posed by uncertainty attributable to 
political and social factors. 
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Speakers from centrally planned countries questioned the aims and value 
of the individual farm models and the extent to which these could have a 
general applicability. The situations facing individual farmers were perhaps so 
complex as to be beyond solution. Central planning using price changes, 
bonuses and insurance removed to a large extent the uncertainties and risks 
facing the individual farmer. However, other speakers in reply said that the 
methods were helpful. Even if the solutions are not always implemented the 
models provided a basis for a logical approach to the problems. Other reasons 
apart, it was necessary to check on the validity of the policies advocated by 
farm extension workers. 
Among the participants in the discussion were J. L. Dillon Australia, S. S. 
Joh! India, U. Renborg Sweden, C. D. Throsby Australia, J. Anderson 
Australia, D. Vlador Bulgaria, P. K. Ray F.A.O. V. A. Tichonov U.S.S.R. Z. 
Griliches U.S.A. V. Stankov Bulgaria. 


	000341
	000342
	000343
	000344
	000345
	000346
	000347
	000348
	000349
	000350
	000351
	000352
	000353
	000354
	000355
	000356
	000357
	000358
	000359
	000360
	000361
	000362
	000363
	000364
	000365
	000366
	000367
	000368
	000369
	000370
	000371
	000372

