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Abstract

Analysis of agricultural production generally ignores the undesirable outputs (such as nitrate,

or pesticide contamination of water) that are produced alongside desirable, marketable

outputs.  This paper presents the results of research which integrates a simple physical

model of nitrate leaching from dairy production into a multiple input/multiple output

representation of the production technology: the output distance function.  Estimation of the

output distance function as a frontier allows for the derivation of shadow prices of the

undesirable output which can be interpreted as the marginal abatement costs that each

producer faces.

The study uses an unbalanced panel dataset derived from annual survey returns from 330

individual UK dairy farms which span the period 1982 to 1992 and totals to 2130

observations.   The shadow price for the undesirable output evaluated at the mean of the

data is estimated to be -£29.34.
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ESTIMATION OF SHADOW PRICES FOR UNDESIRABLE OUTPUTS: AN

APPLICATION TO UK DAIRY FARMS

INTRODUCTION

Generally agricultural production analysis is concerned with describing the relationships that

characterise the transformation of inputs - land, labour, purchased materials, etc. - into marketable

outputs - wheat, milk, meat and so on.  Such outputs are desirable in the sense that they are

demanded by consumers and yield utility in consumption.  But, the process of  modern, industrial

agricultural production does not solely result in the  provision of desirable products for the market.

Within the process are also created outputs which society deems undesirable because they yield

disutility in consumption.  Among such outputs could be included the contamination of ground and

surface waters due to runoff and leaching of nitrogenous fertilisers and pesticides, the emission of

greenhouse gases to the atmosphere and the removal of hedgerows and subsequent ‘prairiefication’

of agricultural landscapes.  All these ‘bad’ outputs impose costs, either in direct monetary terms -

when, for example, water supply companies are faced with the cost of removing contaminants from

supplies - or in a more indirect, but equally valid, loss of welfare - such as that suffered by consumers

of rural landscapes whose ‘enjoyment’ is marred as a result of unaesthetic agricultural activity.

By their very nature these ‘bad’ outputs are nonmarketable and their prices are not observed. This

paper uses the methodology developed in Färe, Grosskopf, Lovell and Yaisawarng (1993) (hereafter

FGLY) to calculate shadow prices for a variable that represents a simple measure of nitrate leaching

to groundwater.  Whilst these shadow prices do not directly represent the costs to society that nitrate

contamination imposes they do represent the cost to agricultural producers that reductions in

emissions of nitrates would entail.  In this sense they can be interpreted as a measure of the

abatement costs that each farmer faces.

The work presented here differs from FGLY and from other related studies (Coggins and Swinton,

1996, and Piot-Lepetit and Vermersch, 1998) in that econometric methods are employed to estimate

the parameters of an output distance function and differs from the one previous econometric approach

to this analysis (Hetemäki, 1997) by using a systems estimation procedure.

THEORETICAL BACKGROUND

The output distance function

Consider the case of a farm using a vector of N inputs, denoted by x = (x1,...,xn), x N∈ℜ+  to produce a

vector of M outputs, denoted by y = (y1,...,ym), y M∈ℜ+ .  The production technology of the farm can

be defined by the output set, P(x), which represents the set of all output vectors which can be

produced with the input vector x. The output distance can be formally defined as (Färe and Primont,

1995):
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The output distance function thus measures the reciprocal of the largest possible proportional increase

in the output vector (the extent of which is indicated by the value of θ) given the input vector and given

that the expanded output vector must still be a member of the output set.1  Values of DO(x,y)  for

observations which are equal to one lie on the frontier and are technically efficient.  Conversely,

values which are less than one imply that production could be increased by y/θ given x and hence are

technically inefficient.

The output distance function inherits a number of properties from the parent technology (see Färe,

1988; and Färe and Primont, 1995); including homogeneity of degree +1 in outputs and convexity in

outputs.  A further property that is fundamental to the analysis undertaken in this paper is its ability to

enable the modelling of outputs as being weakly disposable.  Conventionally, strong disposability of

outputs is assumed; which is to say that application of an additional unit of input always yields some

non-negative amount of additional output and outputs can be freely disposed of (McFadden, 1978).

Weak disposability, however, allows for the fact that disposal of some outputs may be costly in terms

of opportunity cost of foregone outputs of other commodities

Figure 1 – Disposability of outputs 2

These concepts are best explained diagrammatically.  Figure 1 shows output sets (constructed here

using a piecewise linear frontier) which feature strong (PS(x)) and weak disposability (PW(x)) of

outputs.  PS(x) is bounded by the line segments  0G, GB, BC, CD, DE, EF and F0, whilst PW(x) is

bounded by 0A, AB, BC, CD, DE and E0 - and is obviously a subset of PS(x).  If y1 is an undesirable

output and y2 a desirable output and all outputs are strongly disposable then from point B it would be

possible to reduce the level of y1 along the dotted line segment towards point G with no cost in terms

                                                  
1 The value of the output distance function is thus the inverse of the Farrell output measure of technical efficiency
(Färe, Grosskopf and Lovell, 1985).
2 Adapted from Färe, Grosskopf and Pasurka (1986).
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of reduced output of y2.  Alternatively, operating within PW(x) where disposal of the undesirable output

is not free then the segment GB is no longer feasible; reduction of y1 requires an accompanying

reduction in y2 along the segment AB or 0A.

To summarise, weak disposability of outputs, for this example, implies that reduction in the

undesirable output has an associated opportunity cost of reduced desirable output (or an associated

cost in terms of increased input use).

Derivation of shadow prices

Denoting output prices by r = (r1,....,rM) the revenue function can be defined

as { }.)(),( xPyryrxR
y

∈=  :  sup   Shephard (1970) proves that the revenue function and the output

distance function are dual and hence each can be expressed in terms of the other:

{ },1),(),(   :  sup o ≤= yxDryrxR
y

(2)

{ },1),(),(   :  sup ≤= rxRryyxD
r

o (3)

FGLY show that if these functions are differentiable then the maximal solution vector to the

Lagrangian problem for (2) will satisfy:

),,(),( yxDrxRr oy∇•=        (4)

where ∇ is the gradient vector.  Denoting the vector of revenue maximising output prices obtained

from (2) as r*(x,y), FGLY (1993) apply Shephard’s dual lemma to the revenue maximisation problem to

yield:

).,(),( yxryxDoy
∗=∇      (5)

Substituting (5) into (4) gives:

).,(),( yxrrxRr ∗= (6)

The vector r*(x,y) can be interpreted as revenue deflated shadow prices for outputs (FGLY, 1993).

Calculation of absolute shadow prices requires knowledge of maximum revenue (R(x,r)), this in turn

requires computation of the shadow prices which are to be derived and hence some assumption

regarding the values of shadow prices or the value of maximum revenue must be made to make the

calculation operational. FGLY employ the following assumption in their analysis: one observed output

price equals its absolute shadow price and note that it may also be appropriate to assume that

maximum revenue is equal to observed revenue.  Using the former assumption and denoting the

observed market price of ‘good’ output one by rg1
o and its revenue deflated shadow price by rg1

* allows

calculation of maximum revenue as follows:
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Absolute shadow prices for ‘bad’ outputs (identified here with a ‘b’ subscript) with no observable

market prices can then be derived as:
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DATA

The central core of the farm production data is drawn from the Farm Business Survey (FBS) for

England and Wales (Ministry of Agriculture, Fisheries and Food, Economic (Farm Business) Division,

Welsh Office, (1994)) covering the production years from 1982 to 1992.  The FBS is an annual survey

of more than 2,800 farms that are selected from a random sample of census data that is stratified

according to region, economic size of farm and type of farming.  A sub sample of 330 dairy farms

(defined here as those farms where 60% or more of revenue is derived from milk or milk products)

observed for varying numbers of years (the mean duration being 6.45 years) are extracted from this

dataset to form an unbalanced panel.  Analysis is restricted to 330 farms by the availability of soil and

annual precipitation information.  Dairy farms are chosen because milk is a relatively homogenous

product (hence aggregation problems are minimised) which generally accounts for a large proportion

of farm revenue and, because they are the most widely represented farm types in the FBS (both in

terms of geographical distribution and in numbers of surveyed farms).  In total, 2130 observations form

the final panel dataset.

The ‘bad’ output

The ‘bad’ output (Yb1) is represented within the model as an index - the Groundwater Vulnerability

Index (GWVIN) as described in Kellogg, Maizel and Goss (1992).  This index is constructed from two

components:

• a nitrogen leaching index (LI), the value of which is dependent upon the soil characteristics of

each farm and annual rainfall patterns, and

• an estimate of excess nitrogen (Ne) for each farm, involving the calculation of individual farm

nitrogen budgets, i.e. the balance between nitrogen inputs and outputs.

The LI has been developed by Williams and Kissel (1991) as an indicator of the potential for nitrate to

be leached and its calculation requires data on the soil hydrologic group and monthly rainfall at each

farm and for each year in which that farm appears in the sample.  It is itself the product of two other

indices; a percolation index  - an estimate of average annual percolation through and below a crop’s

root zone which is a function of annual precipitation and the water transmission properties of the soil -

and a seasonal index  - which attempts to account for increases in percolation occurring outside of

crop growing seasons.3

                                                  
3 Rain falling during the autumn and winter months is more likely to percolate below the root zone than that which
falls in the growing season when rainfall is, to some extent, taken up by crops and evapotranspiration is higher,
(Williams and Kissel, 1991).
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Individual farm nitrogen budgets are constructed using estimates of flows of nitrogen across the farm

boundary (using a simplified version of the accounting procedure outlined in Meisinger and Randall,

1991).  Annual quantities of nitrogen contained in purchased inputs (fertilisers and animal feeds) are

summed along with an estimate of nitrogen deposited from the atmosphere, subtracted from this is the

annual quantity of nitrogen contained in the harvested part of crops and in livestock (and livestock

products) sold off farm. Any product of this calculation that is greater than zero is termed excess

nitrogen.  Formally, this calculation is made as follows:

)()( lstkcropatmosfeedferte NNNNNN +−++= (9)

where: Ne = excess nitrogen, Nfert = quantity of nitrogen contained in fertiliser, Nfeed = quantity of

nitrogen contained in animal feed, Natmos = quantity of nitrogen deposited from the atmosphere4, Ncrop =

quantity of nitrogen contained in harvested crops, and Nlstk = quantity of nitrogen contained in livestock

and livestock products sold.  All elements are measured in tonnes.

The GWVIN for each farm in each year is then computed as:

,iteitit NLIGWVIN ×= (10)

where: i indexes individual farms, and t indexes years.

In essence the GWVIN represents an estimate of excess nitrogen which is weighted by is potential to

be leached.  Whilst its virtue is its relative ease of computation it cannot be directly interpreted as an

estimate of nitrate emissions at any site and it is used here simply to illustrate the analysis employed,

work continues to integrate a more ‘realistic’ model of the leaching process into the production

technology model.

Conventional outputs

Two conventional, ‘good’, outputs are also included in the analysis; milk and milk products (Yg1) and

an other outputs variable (Yg2).  The former is defined in terms of quantity of milk and milk products (in

hectolitres) sold off farm, plus quantity of farmhouse consumption and benefits in kind, less quantity

used on farm.  The latter is a catch-all variable defined as revenue derived from all other livestock and

crop enterprises (livestock and crop products used on farm – e.g. for feed or seed – are deducted to

reflect their deduction from the appropriate input variables).

Conventional inputs

Six input aggregates are considered.  Livestock inputs (X1) represents the flow of incurred livestock

expenses and includes; livestock variable costs (feed, veterinary expenses, etc.), expenditure on

purchased animals and interest on the animal capital stock (included in order to account for the

                                                  
4 Substantial amounts of nitrogen are deposited on all land surfaces in the UK through wet and dry deposition
from the atmosphere and any calculation of nitrogen inputs to agricultural systems must take account of this
(Goulding, 1990).  Here it is assumed that annual deposition has been constant over the period 1982-92 and
estimates for nitrogen deposition for the three geographical zones described in Scholefield, Lockyer, Whitehead
and Tyson (1991) are used.
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opportunity cost of capital tied up in livestock).5  Labour (X2) is a simple sum of hours worked annually

by all classes of labour (family, hired and casual). Miscellaneous costs, electricity, heating fuel, etc.

are aggregated to form a general costs variable (X3).  Crop inputs (X4) is made up of annual

expenditure on seeds and young plants, fertilisers, crop protection and other miscellaneous variable

crop costs.  The flow of services emanating from capital stock items such as machinery, buildings and

land improvements (X5) is measured by summation over these elements of maintenance and running

costs, depreciation charges and interest on the capital stock (calculated according to the logic

employed for the interest on the animal capital stock item).  Finally, agricultural land (X6) is simply

defined as total utilised agricultural area (in hectares) for each farm.

All output and input variables defined in value terms are deflated using the appropriate annual price

indices published by the UK Ministry of Agriculture, Fisheries and Food.  Further detail and discussion

regarding the construction of these aggregate variables can be found in Hadley, 1997. Summary

statistics for these variables and others of interest are detailed in Table 1 below.

Variable Description Unit Mean Standard

Deviation

Minimum Maximum

Yg1 Milk output hl 5264.68 3525.15 396.97 32091.00

Yg2 Other output £ 28412.06 23839.02 467.29 199701.14

Yb1 GWVIN (bad output) index 113.46 135.66 0.01 789.47

X1 Livestock inputs £ 41222.80 29498.12 2834.27 256283.61

X2 Labour hours 6397.87 3204.14 1900.00 29000.00

X3 General costs £ 16982.33 13868.12 952.68 105586.13

X4 Crop costs £ 9850.16 8358.29 99.39 71738.53

X5 Capital £ 22341.06 28720.22 759.44 1152144.65

X6 Land ha 78.99 59.33 9.15 742.16

Ne Excess nitrogen t 22.36 15.14 1.17 103.81

Syg1 Revenue share Yg1 % 74.82 7.86 59.58 97.88

Sx1 Cost share X1 % 34.02 8.12 7.76 64.51

Sx2 Cost share X2 % 19.39 6.46 4.52 53.20

Sx3 Cost share X3 % 13.60 5.27 2.80 37.10

Sx4 Cost share X4 % 7.67 3.09 0.33 22.72

Sx5 Cost share X5 % 18.15 5.66 3.16 81.82

Sx6 Cost share X6 % 7.18 2.45 1.21 17.42

Milk price £ hl-1 15.51 1.42 12.47 30.41

Farms No. of farms 330

N No. of observations 2130

Table 1 - Summary statistics for sample data 1982-1992

                                                  
5 Interest on the animal capital stock is calculated as the average annual value of animal stocks multiplied by the
real rate of interest on 91 day UK Treasury Bills (chosen to represent a real after-tax return on a safe asset and
following Paul and Abey, 1984).
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ESTIMATION

The econometric estimation of distance functions is fundamentally hampered by the fact that the

function has no observable dependent variable, a problem that is compounded by issues surrounding

the endogeneity of the independent variables. Two differing strategies have been used to combat

these problems in previous work:

• by setting the value of the dependent variable equal to one for all observations, using instruments

for the endogenous independent variables and correcting resulting estimates for the biases the

estimation procedure necessarily includes (see, for example, Grosskopf and Hayes, 1993),

• by exploiting the fact that the output distance function is homogenous of degree +1 in outputs and

transforming the dependent and endogenous right-hand side output variables by division by some

arbitrarily chosen output, and subsequently assuming the transformed right-hand side variables are

exogenous, output-mix, variables (see Lovell, Richardson, Travers and Wood (1994) and Coelli

and Perelman (1996)).6

Specifying the output distance function as translog (since we have no a priori expectations regarding

its functional form) and applying the latter of these two strategies and using the ‘bad’ output as a

numeraire the function to be estimated can be written:
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where: i indexes farms, t indexes time, yb1 is the bad output, ygm are good outputs, xk  are inputs, and

ln denotes natural logarithms (first and second-order time and output/input/time interaction terms are

also included to account for non-neutral technical change over the period).  Exploiting the properties of

logarithms then:

).ln(]),,(ln[
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y
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(12)

Subtracting ln[D(x,y,t)it] from both sides of (11) yields –ln(yb1 it) as the dependent variable and adds the

negative unobservable value of the distance function to the right hand side of the equation.

Interpreting this as a one sided error term which is assumed to account for firm-specific effects and

adding a symmetric error term (which accounts for firm- and time-specific statistical noise) to (11)

                                                  
6 Coelli and Perelman (1996) argue that outputs appear on the right-hand side of the transformed function as
ratios and since the output distance function is defined for radial expansion of all outputs, given observed input
levels, output ratios are held constant for each observation by definition.  Hence these output mix ratios can be
considered as exogenous variables in the model.
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produces a function which is amenable to estimation within the standard stochastic error component

frontier function model introduced by Aigner, Lovell and Schmidt (1977).  Furthermore, the presence of

panel data allows for the value of the one-sided error to be predicted using the panel data frontier

estimation methods outlined in Schmidt and Sickles (1984).

Single equation estimates of the modified version of (11) are likely to severely suffer from the effects

of multicollinearity.  Färe and Primont (1995) summarise the duality relationships between the output

and input distance functions and the revenue and cost functions respectively and also note the

equivalence between the output distance function and the reciprocal of the input distance function

(assuming the production technology exhibits constant returns to scale).  Exploiting these relationships

allows for the parameters of the output distance function, in logarithmic form, to be estimated more

efficiently as a system along with derived revenue share and negative cost share equations.7   In the

context of panel data this system can be estimated using the iterative seemingly unrelated regression

(ISUR) technique where the variables entering the output distance function are transformed according

to the usual panel data within and generalised least squares (GLS) estimation methods, whilst the

variables appearing in the derived share equations remain untransformed.8

A number of issues must be considered regarding the appropriate choice of panel data estimator. GLS

estimation may be preferable over the within estimator when N (number of firms) is large and T (the

length of the time dimension of the panel) is small (as is the case here) and it has an important

advantage in its ability to incorporate time-invariant regressors (which are wiped out by the within

transformation) (Schmidt and Sickles, 1984).  Mundlak (1978) also argues that the fixed firm effects

derived from within estimation can be considered random, but that inference is conditional upon the

sample.  The GLS estimator makes specific distributional assumptions about the random firm effects

(in terms of their variance) and allows unconditional inference to be made.  However, GLS is biased if

the regressors are correlated with the firm-specific effects.  A Hausman test (Hausman, 1978) of the

within against the GLS estimates of the parameters of the transformed version of (11) produced a

χ 2

55

statistic of 36.58 (the critical value at 5% being 73.31) leading to an acceptance of the null

hypothesis that firm effects and regressors are uncorrelated and that GLS estimates are consistent.  It

is the results from the GLS procedure that are therefore presented in the following section.

                                                  
7 Grosskopf, Hayes, Taylor and Weber (1997) and Bosco (1996) describe applications that, respectively, derive
budget and cost share equations from an indirect output distance function and an input distance function.
8 See Hsiao (1986) and Baltagi (1995) for expositions of panel data estimation techniques.  The procedure
adopted here is an adaptation of Kumbhakar (1997) – the short time dimension used prevents the application of
the heteroscedasticity correction the original employs.
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RESULTS

The GLS estimates of the parameters of the output distance function are detailed in Table 2 below.9

Goodness-of-fit as measured by R2 for each equation of the system are: 0.986 for the output distance

function, 0.931 for the dairy revenue share equation and 0.956, 0.836, 0.941, 0.888, and 0.945 for the

five negative cost share equations (X1 to X5 respectively).  The McElroy (McElroy, 1977) system wide

measure of goodness-of-fit is valued at 0.963.

Parameter Variable Estimate Standard Error t-statistic
α0 Constant 0.62129 0.28238 2.200
α1 lnYg1 1.02376 0.00657 155.862
α2 lnYg2 -0.14669 0.01996 -7.348
α3 lnYb1 0.12293 0.01886 6.519
β1 lnX1 -0.05533 0.00641 -8.634
β2 lnX2 -0.19345 0.01017 -19.026
β3 lnX3 -0.15654 0.00490 -31.971
β4 lnX4 -0.14886 0.00447 -33.301
β5 lnX5 -0.19606 0.00546 -35.930
β6 lnX6 -0.32223 0.12669 -2.543
α11 (lnYg1)

2 0.16676 0.00100 165.998
α12 lnYg1 × lnYg2 -0.16707 0.00099 -169.219
α13 lnYg1 × lnYb1 0.00031 0.00025 1.278
α22 (lnYg2)

2 0.17718 0.00157 112.496
α23 lnYg2 × lnYb1 -0.01011 0.00115 -8.768
α33 ln(Yb1)

2 -0.00979 0.00112 -8.730
β11 ln(X1)

2 -0.21439 0.00088 -243.246
β12 lnX1 × lnX2 0.06209 0.00097 64.119
β13 lnX1 × lnX3 0.04877 0.00052 94.347
β14 lnX1 × lnX4 0.02504 0.00047 52.943
β15 lnX1 × lnX5 0.06277 0.00056 111.770
β16 lnX1 × lnX6 0.01802 0.00099 18.238
β22 ln(X2)

2 -0.14316 0.00187 -76.501
β23 lnX2 × lnX3 0.02263 0.00075 30.281
β24 lnX2 × lnX4 0.01139 0.00066 17.209
β25 lnX2 × lnX5 0.03642 0.00082 44.520
β26 lnX2 × lnX6 0.00166 0.00147 1.130
β33 ln(X3)

2 -0.11411 0.00057 -201.066
β34 lnX3 × lnX4 0.01034 0.00038 27.159
β35 lnX3 × lnX5 0.02617 0.00046 56.780
β36 lnX3 × lnX6 0.00756 0.00076 9.989
β44 ln(X4)

2 -0.05692 0.00050 -114.431
β45 lnX4 × lnX5 0.01259 0.00043 29.348
β46 lnX4 × lnX6 -0.00184 0.00068 -2.705
β55 ln(X5)

2 -0.13906 0.00071 -196.550
β56 lnX5 × lnX6 0.00586 0.00082 7.167
β66 ln(X6)

2 0.00073 0.03041 0.024
continued

Table 2 - Generalised least squares parameter estimates 10

                                                  
9 Parameter estimates are obtained from GLS estimation of the homogeneity transformed output distance function
given in (11) and m-1 and k-1 revenue and negative cost share equations.
10 Shaded entries refer to parameter estimates recovered using the homogeneity conditions.
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Table 2 - continued

Parameter Variable Estimate Standard Error t-statistic
δ11 lnX1 × lnYg1 0.00058 0.00065 0.886
δ21 lnX2 × lnYg1 -0.00059 0.00097 -0.611
δ31 lnX3 × lnYg1 0.00229 0.00052 4.439
δ41 lnX4 × lnYg1 0.00107 0.00047 2.286
δ51 lnX5 × lnYg1 -0.00155 0.00057 -2.739
δ61 lnX6 × lnYg1 -0.00528 0.00109 -4.864
δ12 lnX1 × lnYg2 0.00146 0.00065 2.242
δ22 lnX2 × lnYg2 -0.00271 0.00097 -2.793
δ32 lnX3 × lnYg2 -0.00113 0.00051 -2.204
δ42 lnX4 × lnYg2 -0.00105 0.00046 -2.273
δ52 lnX5 × lnYg2 0.00253 0.00056 4.502
δ62 lnX6 × lnYg2 0.00544 0.00406 1.338
δ13 lnX1 × lnYb1 -0.00204 0.00021 -9.636
δ23 lnX2 × lnYb1 0.00330 0.00032 10.291
δ33 lnX3 × lnYb1 -0.00116 0.00016 -7.290
δ43 lnX4 × lnYb1 -0.00002 0.00013 -0.165
δ53 lnX5 × lnYb1 -0.00097 0.00016 -5.957
δ63 lnX6 × lnYb1 -0.00016 0.00394 -0.040
αt Time 0.02241 0.00760 2.949
αtt Time2 -0.00089 0.00057 -1.561
α1t Time × lnYg1 -0.00024 0.00017 -1.387
α2t Time × lnYg2 0.00083 0.00065 1.275
α3t Time × lnYb1 -0.00059 0.00063 -0.940
βit TIme × lnX1 0.00365 0.00014 25.669
β2t Time × lnX2 -0.00875 0.00022 -39.882
β3t Time × lnX3 0.00177 0.00011 16.144
β4t Time × lnX4 0.00076 0.00009 8.727
β5t TIme × lnX5 0.00157 0.00011 14.126
β6t Time × lnX6 -0.00609 0.00164 -3.717

Individual firm effects (αi) are recovered from the residuals of the output distance function (eit) as

follows (Schmidt and Sickles, 1984):

.
1 ∑=

i
iti e

T
α (13)

The maximum value of the vector of these firm effects is interpreted as indicating the best practice

farm (i.e. which is 100% technically efficient and for which the output distance function value is equal

to one) and the value of the output distance function for all other firms is measured relative to this

according to:

),exp(),,( αα −= iityxD (14)

where, α = max(αI).  By definition values are bounded by 0 and 1.
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Predicted values of the output distance function range from a minimum of 0.893 to 1.000 with a mean

of 0.936 indicating that on average outputs could be increased by approximately 7% if all farms

operated according to the best practice in the sample.11

Absolute shadow prices for the ‘bad’ output are computed at each observation using (8) and assuming

that the observed price of Yg1 is equal to it absolute shadow price.  The ‘bad’ shadow price evaluated

at the mean of the data has a value of -£29.34 indicating the loss in revenue the average farm would

incur for a reduction of one unit of the ‘bad’ output.  Over all 2130 observations 1989 shadow prices

are negative and of the 141 positive values 48% of them occur for levels of Yb1 which are less than

one.  Very large positive shadow prices occur where Yb1 is very small (i.e. below 0.3) and these large

values skew the mean shadow price evaluated over all observations to be a positive value (£3640.82).

Given this very skewed distribution a more appropriate summary statistic is the median value which

evaluates to -£33.77 (inter-quartile range = 89.88).

The relationship between shadow prices and levels of the ‘bad’ output was explored using shadow

price values computed at the mean for each farm in a regression of the log of farm mean ‘bad’ shadow

price (SY*
b1) (multiplied by –1) on a constant and the farm mean log of Yb1.   Estimated parameters are

as follows (t-statistics are shown in parentheses below each parameter);

34.0

)90.12()57.34(

).ln(*5453.0075.6)ln(

2

1
*
1

=

−
−=−

R

YSY ibib

(15)

This relationship is illustrated graphically in Figure 2:

Figure 2 – Abatement costs

                                                  
11 Note that in order to promote simplicity output distance function values are assumed constant over the period
covered by the sample.  Also note that the inclusion of the ‘bad’ output in the function specification effectively
credits farms for high levels of production of that output (cf., for example, Färe, Grosskopf, Lovell and Pasurka
(1989) for non-parametric programming methods which evaluate efficiency where ‘good’ and ‘bad’ outputs are
treated asymmetrically).
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This estimated curve can be interpreted as representing the abatement costs, in terms of diminished

revenue, that farms would face for reductions in levels of Yb1.  Its shape shows that the marginal cost

of abatement for producers with high levels of undesirable emissions is significantly lower than for

those producers whose level of nitrate emission is low.

CONCLUSION

This paper applies FGLY’s (1993) methodology to evaluate shadow prices for nitrate emissions to

groundwater from a sample of UK dairy farms.  An output distance function incorporating a variable

representing nitrate emissions is estimated with unbalanced panel data on 330 farms observed over

the period 1982 to 1992.  The parameters of this function are evaluated using a GLS panel data

estimator within a system incorporating the function itself and derived revenue share and negative

cost share equations.  From the estimated parameters shadow prices for the undesirable output are

computed and an abatement cost curve is estimated.

The shape of the abatement cost curve suggests that policy designed to curb emissions of nitrate to

groundwater will be most effective if it is possible to target producers whose emissions are relatively

high and whose abatement costs are significantly smaller relative to farms where emissions are low.

Policy instruments which do not differentiate between producers according to their level of emissions

will punish producers with low emission rates disproportionately.
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