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Exogenous Production Shocks and Technical Efficiency
Among Traditional Ivorien Rice Farmers

By Shane M. Sherlund and Christopher B. Barrett

Abstract

This paper uses a unique panel data set and data envelopment analysis (DEA) techniques to obtain

estimates of technical efficiency for 492 traditional rice plots in Côte d’Ivoire.  The objective of this paper

is to explore the importance of explicitly controlling for exogenous shocks to production in technical

efficiency estimation.  We show how omission of such variables in highly stochastic production

environments can lead to serious inferential errors, with potentially significant policy implications. 

Conventional DEA estimation of a production frontier, followed by second-stage Tobit estimation of the

correlates of plot-level technical efficiency, suggest widespread and substantial inefficiency related to

managerial characteristics and practices.  However, when one controls for unobserved groupwise cross-

sectional and intertemporal heterogeneity and introduces observable exogenous shocks into the second-

stage estimation, managerial characteristics become jointly insignificant and state-conditional technical

efficiency becomes nearly universal.  The implication is that conventional technical efficiency estimates that

refute the classic Schultzian “poor but efficient” hypothesis may be incorrect because they ignore farmers’

vulnerability to adverse states of nature against which they cannot insure.

Key words: Africa (Sub-Saharan), Ivory Coast, production frontiers, agricultural productivity, rice.
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Exogenous Production Shocks and Technical Efficiency

Among Traditional Ivorien Rice Farmers

1. Introduction

A considerable empirical literature reports estimates that suggest widespread and substantial farm

inefficiency in low-income agriculture, contrary to T.W. Schultz’s classic “poor but efficient” hypothesis

(Ali and Byerlee 1991).  Schultz (1964) argued that traditional farmers, given a long enough period of time

to learn their production process, will identify their respective optimal input and output bundles.  Thus,

Schultz recommended that agricultural development policy focus on expanding peasants’ production

frontiers.  Hence the Green Revolution.  However, countless empirical studies have rejected the Schultzian

hypothesis.  The methods used in estimating allocative and scale efficiency in this context have been

recently critiqued (Barrett 1997).  This paper takes the next step of considering how estimates of technical

efficiency may be affected by measurable exogenous shocks to production (e.g., pest and weed infestation,

disease, and rainfall) and by unobserved cross-sectional and intertemporal groupwise heterogeneity.  We

find that failure to control for these factors in highly stochastic production environments may bias estimates

of technical efficiency downward, leading to potentially misguided policy and to misallocated resources.

This paper is an initial attempt at exploring the consequences of exogenous shocks to stochastic

production environments in the estimation of productive efficiency.  We employ a number of simplifying

assumptions — notably the complete exogeneity of environmental shocks — toward which future

refinements need to be directed.  The objective of this paper is simply to demonstrate the need to account

explicitly for potentially exogenous states of nature in technical efficiency estimation.
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2. Stochastic Production Technologies and the Estimation of Technical Efficiency

Farmers everywhere are subject to natural shocks to production associated with climate, pests,

plant disease, weeds, etc.  Peasant farmers in tropical settings are perhaps unusually vulnerable to the

realization of these adverse states of nature, both because climatic and epidemiological variability tends to

be greater in tropical than in temperate zones and because underdeveloped financial systems limit the

capacity to insure.  The core observation motivating this paper is that the stochastic production

environment has not been satisfactorily addressed in the literature estimating farmers’ technical efficiency.

Suppose a farmer generates output, Y, from a production function defined over inputs, X, and

exogenous states of nature, W, adjusted for the farmer’s technical inefficiency, u (u#0).  Given mean zero,

symmetric sampling and measurement error, v, in the data set, this relationship can be estimated

econometrically as Y = f(X;W)+u+v.  Because the literature has generally paid little attention to the

exogenous shocks affecting output, the relation typically estimated is actually Y = g(X)+û+v̂.  While it is

useful to know the extent of technical inefficiency prevailing in a sector, policy makers would also like to

know the correlates of technical inefficiency in order to target interventions appropriately to reduce

estimated inefficiency.  The second-stage relation to be estimated is thus u = h(Z)+,, where Z is a vector of

farmer characteristics and practices, and , is a white noise error term.  But this is commonly done by

estimating û = j(Z)+,̂.  Policy implications are then drawn from the g(X), û and j(Z) estimates although, in

general, f(X;W)…g(X), u…û, and h(Z)…j(Z).  

When relevant, measurable exogenous shocks, W, are omitted from the first-stage estimation, this

necessarily biases estimates of technical inefficiency, unless W and v are identically distributed, at least up

to location (mean) and scale (variance) parameters.  Because v is typically assumed to be symmetrically

(e.g., normally) distributed, and exogenous shocks are commonly asymmetric (see Figure 1 for evidence

from this data set), technical efficiency estimates will therefore be biased, as manifest in a statistically

significant relation between û and W.  In this paper, we demonstrate how the omission of exogenous shocks
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to production, W, in the estimation of a nonstochastic, nonparametric production frontier affects estimates

of u and h(Z).

Let us briefly confront an anticipated, legitimate criticism of our approach.  While conventional

estimation methods assume farmers suffer no exogenous shocks to production, here we assume that they

can do nothing to mitigate those shocks (e.g., apply pesticides to guard against pests).  Surely, there is a

certain amount of endogeneity in the experience of adverse states of nature.  We ignore that here because

we aim only to make the simple point that overlooking exogenous shocks to production in highly stochastic

environments may lead to serious inferential errors.  In extensions underway, we tackle the endogeneity

issue directly.

3. Data

The West Africa Rice Development Association (WARDA) farm management and household

survey (FMHS), based on three agroecological zones (humid Equatorial forest, sub-humid Guinean

savanna, and a transition zone), covers 120 randomly selected rice-producing households in Côte d’Ivoire,

and is described in WARDA (1997).  Twenty-two surveys were administered annually for the period 1993-

1995, covering 1,218 individual plots, 589 of which were planted with rice.  Due to nonsystematically

missing or incomplete data, or mechanization (we examine only traditional rice farmers), 492 of the 589

rice plots are used in estimating the production frontier, and only 464 of the remaining 492 rice plots are

used in the second-stage estimation because data on pests, weeds, or disease are missing in the other 28.

A comparative advantage of the WARDA FMHS is its inclusion of quarterly plot-level

measurements of production shocks, such as pest, weeds, and plant disease.  As is probably generally the

case, these exogenous production shocks are asymmetrically distributed (see Figure 1), with statistically

significant positive skewness.  So the econometric problems of the previous section exist in this data set,

with an uncommon opportunity to check the consequences of the omission of measurable states of nature.
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4. Data Envelopment Analysis

Most of the efficiency estimation literature relies on parametric, stochastic estimation methods,

following the work of Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977). 

Because our estimates using those methods — employing a variety of functional forms for the production

frontier and several distributional assumptions regarding u — failed to satisfy the basic monotonicity and

concavity properties of production functions (Sherlund 1998), we opt instead for a nonparametric

estimation approach.

Data envelopment analysis (DEA) requires no a priori assumptions regarding either the functional

form of the production frontier or the probability density function of the asymmetric technical inefficiency

population parameter.  DEA is a mathematical programming approach to estimating the convex hull of a

data set, imposing (weak) monotonicity and concavity (Färe, Grosskopf, and Lovell 1994).

The output-oriented, variable returns to scale, strong disposability DEA model may be written:

2*(Xn,Yn|VRS,SD)   = max2,z 2, (1a)
subject to: 2Yn # zY, (1b)

zX # Xn, (1c)
3nzn = 1, (1d)
z 0 UN

+, where n=1,...,N, (1e)

where z is the activity vector.  The resulting output measure of technical efficiency is bounded from below

at one, 2*0[1,4), representing the multiple by which output may be expanded, holding the input bundle

constant.  Excluding constraint (1d) yields an analogous constant returns to scale model.  However, by

applying Banker’s (1996) hypothesis testing method to the 2*s, we reject the null hypothesis of constant

returns to scale in favor of the variable returns to scale specification (Sherlund 1998).

We emphasize the importance of accounting for measurable exogenous environmental

characteristics.  It is also possible, however, that unobserved heterogeneity affects estimation results. 

While we cannot incorporate observation-specific fixed effects in a model seeking to identify observation-

specific inefficiency, u, because of prospective underidentification, we can control for groupwise
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unobserved heterogeneity.  So we estimated the 2*s in the pooled data set and then tested for statistically

significant differences across the three distinct agroecological regions, the three years over which the data

were collected, or both, using bootstrapping methods (Atkinson and Wilson 1995, Efron and Tibshiriani

1993).  Table 1 presents strata-specific mean technical efficiency scores and 95-percent confidence band

bounds.  This reveals underlying structural differences in mean technical efficiency scores across regions

and time that are statistically significant, as reflected by non-overlapping 95-percent confidence bands on

the empirical distribution of the strata means.  The transition zone exhibits higher output-oriented mean

technical inefficiency scores than either the sub-humid Guinean savanna or humid Equatorial forest

agroecologies.  This result may be due to agroecological or climatic differences, remoteness of plots from

the main village, or possible differences in supporting infrastructures.  Similarly, technical inefficiency was

more pronounced in 1994, probably due to the January 1, 1994, CFA Franc devaluation (from 50:1 CFA

Franc:French Franc to 100:1 CFAF:FF).  Given the apparent presence of both cross-sectional and

intertemporal groupwise heterogeneity in the pooled data, we stratify the data into nine region-and-year-

specific subsamples and reestimate the DEA model of equation (1).  Banker’s method again rejects the null

hypothesis of constant returns to scale in favor of variable returns to scale (Sherlund 1998).

Controlling for unobserved groupwise heterogeneity within the data yields a sharp improvement in

the estimated technical efficiency of these rice plots.  The first and third rows of Table 2 show the summary

statistics for the estimated 2*s from the pooled data; the second and fourth rows show the equivalent

estimates from the stratified estimation.  The mean, the median, and the 70th and 80th percentile estimates

have all fallen markedly, while the proportion of the sample plots lying within one or two standard

deviations of perfect efficiency (2*=1) rises sharply.  The mean technical efficiency parameter estimate, for

example, falls from 2.59 to 1.39, implying that rather than 159-percent possible expansion in rice output

from current input levels implied by conventional estimation, at best a 39-percent expansion is possible

once one controls for unobservable groupwise heterogeneity.  Similarly, where pooled estimation suggests
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11.2-percent of the rice plots are grossly inefficient, the stratified estimation suggests only 4.8-percent of

the rice plots lie more than two standard deviations from full technical efficiency.  Even though no control

has yet been made for measurable exogenous shocks to production, these figures already make Schultz’s

“poor but efficient” hypothesis appear far more plausible than do the conventional, pooled DEA estimates

of the sort reflected in the broader literature.

5. Correlates of Technical Inefficiency

The next logical step is to identify the correlates of technical inefficiency.  This is commonly done

by estimating a second-stage relationship between the technical inefficiency estimates, û, and the suspected

correlates of technical inefficiency, Z.  Statistically significant correlates of estimated technical inefficiency

are used to target policy interventions intended to improve sectoral productivity.  But if omission of

measurable exogenous shocks biases the estimates of u, this may lead to spurious estimated relationships

between û and Z and, thereby, to misguided policy recommendations.

We investigate that possibility by running two different regressions of the 2*s (û in our DEA

model).  First, we regress 2* on managerial characteristics (e.g., age, gender, education, and experience),

and managerial practices (e.g., type of seed used, number of plots and crops cultivated), all of which either

describe or are under the short-run control of the plot manager.  This replicates the conventional second-

stage estimation found in the literature and, as we show momentarily, generates reasonably typical results. 

Then, we introduce exogenous shock variables representing plot characteristics (e.g., erosion, fertility, soil

aptitude, slope, and topographic location), states of nature (e.g., pests, weeds, disease, and rain), and region

and year controls, all of which are largely (or entirely) outside the control of the plot manager.  This second

regression allows us to establish whether exogenous shocks are correlated with the conventional first-stage

estimates of technical efficiency and, more strongly, to test the hypothesis that the managerial

characteristics and practices variables are jointly statistically insignificant.  We find that not only are
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exogenous variables significantly correlated with estimates of technical inefficiency,  but that when

exogenous variables are appropriately controlled for, managerial variables are jointly statistically

insignificant.  Omission of the exogenous states of nature variables, W, from the first-stage production

frontier estimation appears to bias conventional estimates of both technical efficiency and its relationship to

managerial characteristics and practices, potentially flawing policy-related inference.

Measurement error, sampling error, and the unobservability of the true production frontier, make it

possible that the natural logarithm of an observation’s true technical efficiency measure, ln(u), is less than

zero, although it cannot be observed directly in the constructed ln(2*) variable.  The estimated technical

efficiency parameter is thus a censored variable, so we estimate the following Tobit model:

ln(2*) = R + M" + W* + J, if >0, (2a)
ln(2*) = 0, otherwise, (2b)

where M is a vector of managerial characteristics and practices variables, W is a vector of exogenous

shock variables, J is a Gaussian white noise error term, and R, ", and * are estimable parameters.  Note

that because 2*0[1,4), ln(2*)0[0,4).

Table 3 presents three different sets of regression results.  The leftmost column presents the

estimates of the conventional model, using the 2* derived from the pooled data — i.e., failing to control for

unobserved groupwise heterogeneity — and implicitly setting *=0.  The central column presents estimates

that use the 2* derived from the stratified frontier estimation, but still setting *=0.  The rightmost column

shows the estimates that result from the use of the 2* derived from the stratified frontier estimation and the

relaxation of the standard *=0 assumption.

The first thing to note is that while several managerial characteristics and practices have

statistically significant relationships to technical inefficiency in the absence of controls for exogenous

shocks, none do in the most general specification.  Women, the very young or old (estimated 2* is

minimized at age 49, according to the middle column specification), and those who engage in considerable
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multicropping appear to be less efficient in the absence of controls for exogenous shocks.  Such results are

commonplace in the literature (Ali and Byerlee 1991, Barrett 1997) and give rise to policy

recommendations emphasizing targeted farmer education and extension programs.  Once such controls for

exogenous shocks are added, however, we find that a plot’s location on the hydromorphic or lowland

toposequence, low rainfall (estimated 2* is maximized near the minimum rainfall quantity), high rates of

pest infestation, and steep plot slopes are the only statistically significant correlates of 2*, individually or

jointly.  This shift may capture the social dynamics of land allocation, wherein the less powerful (the

elderly, the young, and women) are allocated less desirable plots, particularly with poorer water control. 

But the crucial issue appears to be not managerial characteristics or practices so much as the experience of

adverse exogenous production shocks.  The policy implication of our findings is that improved water, pest

control, and terracing technologies hold the key to improving yields, given current production technologies.

The second point is stronger still.  A likelihood ratio test of the joint null hypothesis that *=0, i.e.,

that the exogenous shock variables are jointly statistically insignificant, as is implicitly assumed in most of

the literature, yields a test statistic (p-value against the P2(24) distribution) of 106.75 (0.0000), enabling

the rejection of the null hypothesis.  In other words, the exogenous variables, as a group, have a statistically

significant relationship with technical inefficiency estimates.  Since W and u must be orthogonal in the true

population relationship, the statistically significant relation between  û=2* and W demonstrates that

omission of states of nature from the estimation of inherently state-conditional frontiers biases plot-level

technical efficiency estimates.  

By contrast, the likelihood ratio test statistic on the joint null hypothesis that "=0 is only 19.20, for

a p-value of 0.2585 against the P2(16) distribution.  One cannot reasonably reject the null hypothesis that

managerial characteristics and practices, as a group, do not have a statistically significant relationship with

estimated technical inefficiency.  These results challenge orthodox notions of targeted extension service and

farmer education programs as an effective means to increase sectoral efficiency without necessarily
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augmenting the production technology.  Our results imply instead a need for technological improvements in

farmers’ capacity to control their production environments and in overall output capacity (i.e., an outward

shift in the production possibilities frontier).

6. State-Conditional Technical Efficiency

By taking the estimates of 2* and *, along with equation (2a), we can indirectly estimate the true

plot-specific state-conditional technical efficiency (SCTE), u, as:

SCTE = 2*|W = (2*)exp{-*(W-W*)}, (3)

where W* is the estimated optimal state of nature, as identified by the first derivative of equation (2a) with

respect to each exogenous variable.  Recall that 2*0[1,4), thus, SCTE0(0,4).  Indexing estimated state-

conditional technical efficiency to the estimated (state unconditional) best-practice frontier, we define

SCTE*=SCTE if SCTE>1 and SCTE*=1 if SCTE0(0,1].  In words, if under a better draw of production

environments the plot’s output is estimated to be at least as great as one would predict from realized best

practices, we consider the plot to be technically efficient.

As shown in Table 4, mean SCTE and mean SCTE* are much lower than mean 2*.  The estimated

multiple by which mean plot output can be expanded has dropped from 1.3861 to only 1.0004.  Note that

the naive DEA estimates of mean 2* — without controls for unobserved groupwise heterogeneity or

adjustment for within sample variation in exogenous shocks — were 2.5861.  Rather than the 159-percent

estimated output expansion possibility suggested by the DEA estimation method common in the literature,

our state-conditional method suggests there is effectively no room for output expansion under current

technologies without improved methods for controlling producers’ environments.  Put differently, the rice

farmers of this data set are largely managerially efficient; unobserved groupwise heterogeneity and

observable environmental shocks to production explain effectively all of the observed deviations from the

best-practice production frontier.
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7. Conclusions

This paper is motivated by a concern that the empirical literature on technical efficiency estimation

of peasant agriculture largely ignores that production decisions are made in and data are drawn from highly

stochastic production environments.  We first explain why prevailing empirical methods, using either

econometric or programming techniques, may yield biased and inconsistent estimates of technical

efficiency, production frontiers, and the relationship between estimated technical efficiency and managerial

characteristics and practices.  This may have serious implications for policy makers relying on statistical

inference from such models to guide resource allocation in agricultural development.  We then demonstrate

the relevance of our concern to the important case of west African rice production.  Using a unique panel

data set of 492 Côte d’Ivoire rice plots, we show that failure to control for unobserved cross-sectional and

intertemporal groupwise heterogeneity yields highly inflated estimates of technical inefficiency.  Similarly,

failure to control for observable exogenous production shocks leads to biased estimates of plot-level

technical efficiency and to spuriously significant relationships between managerial characteristics and

practices and plot-level technical inefficiency.  We introduce a new, indirect measure of state-conditional

technical efficiency that reflects only those factors controllable by plot managers.  Mean state-conditional

technical efficiency is estimated at 1.0004 — as compared to mean (state-unconditional) estimates of

2.8716 using conventional methods — suggesting that the rice farmers in this survey are largely

managerially efficient.

These results have significant policy implications.  Conventional methods of estimating production

frontiers, technical inefficiency in production, and the correlates of technical inefficiency suggest that the

traditional Ivorien rice farmers we study are highly inefficient, leaving open the question of whether scarce

agricultural development funds are best spent to develop improved technologies or to teach farmers how

better to use existing technologies.  By controlling for unobserved and observed exogenous shocks to

production, however, we find instead that almost all of these rice producers are wholly state-conditional
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technically efficient, implying they can be made better off only through the expansion of the production

frontier or through improvements in their capacity to control a highly stochastic production environment. 

Schultz appears to be right when one compares Ivorien rice producers against the estimated stochastic

production frontier they actually face, given their idiosyncratic realization of the environmental conditions

vector, W, rather than against the state-unconditional best-practice frontier, which implicitly pits them

against colleagues enjoying considerably more favorable exogenous shocks to production.
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Figure 1: Distributions of Asymmetric Exogenous Shocks
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Table 1: Bootstrapping Technical Efficiency Scores--95 Percent Confidence Bands

Stratus Mean Lower Upper No.
Bound Bound Obs.

Sub-humid 2.2754 2.0379 2.5437 119
Transition 2.9157 2.6050 3.2547 181
Humid 2.4695 2.3231 2.6175 192

1993 2.1581 1.9406 2.3861 118
1994 2.9883 2.7083 3.2931 194
1995 2.4324 2.2447 2.6317 180

1993-SH 1.9949 1.7184 2.3087   33
1993-TR 2.6717 2.2202 3.1475   47
1993-HU 1.6675 1.5017 1.8529   38
1994-SH 2.4444 1.9641 3.0049   46
1994-TR 3.5083 2.8810 4.2046   68
1994-HU 2.8628 2.6165 3.1180   80
1995-SH 2.3111 1.9531 2.7215   40
1995-TR 2.4759 2.0764 2.9285   66
1995-HU 2.4565 2.2627 2.6558   74

SH=Sub-humid region, TR=transition region, HU=humid region.
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Table 2: Stratified Output-Oriented Technical Efficiency Summary Statistics

70th Percentile 80th Percentile Inside 1 St. Dev. Inside 2 St. Devs.

Pooled
Results

1.6747 1.3267 0.6524 0.8882

Stratified
Results

1.0000 1.0000 0.8476 0.9512

Mean Median St. Dev. Skewness Rel. Kurt. Min. Max. Number

Pooled
Results

2.5861 2.1882 1.6748 2.9015 15.0110 1.0000 16.6941 492

Stratified
Results

1.3861 1.1696 0.7267 6.5646 71.9108 1.0000 11.1980 492

1993-SH 1.1971 1.0886 0.2363 1.2003 0.8920 1.0000 1.8761 33

1993-TR 1.2187 1.0000 0.3961 2.1743 4.4205 1.0000 2.6867 47

1993-HU 1.3126 1.1470 0.4219 2.0462 4.5731 1.0000 2.8864 38

1994-SH 1.5865 1.3599 0.7857 2.5202 7.2591 1.0000 4.6563 46

1994-TR 1.4594 1.0436 1.4033 5.6367 35.4496 1.0000 11.1980 68

1994-HU 1.6527 1.5819 0.5212 1.0523 1.0098 1.0000 3.2433 80

1995-SH 1.7217 1.4088 0.8750 1.2755 0.8141 1.0000 4.3509 40

1995-TR 1.0869 1.0000 0.1286 1.6118 1.8816 1.0000 1.4733 66

1995-HU 1.2199 1.1500 0.2602 1.9774 5.6240 1.0000 2.4348 74

SH=Sub-humid region, TR=transition region, HU=humid region.
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Table 3: Second-Stage (Tobit) Estimation Results

Variable Pooled
M only

Stratified
M only

Stratified
M and W

Variable Pooled
M only

Stratified
M only

Stratified
M and W

Constant 1.0458
(3.109)***

0.4004
(1.506)

-31.0268
(-2.494)**

Pests
(1=good,

7=severe)

0.1902
(2.263)**

[6.32]**

Modern
(% of seed
modern)

-0.0096
(-0.566)

[9.44]***

-0.0002
(-0.013)

[0.01]

-0.0017
(-0.147)

[0.83]

Pests2 -0.0213
(-1.822)*

Modern2 0.0001
(0.462)

0.0000
(0.016)

0.0000
(0.189)

Weed Dens.
(1=good,

5=severe)

-0.3234
(-1.556)

[2.53]

Experience
(years with
rice variety)

0.0173
(0.789)

[0.65]

0.0170
(0.971)

[1.41]

0.0062
(0.377)

[0.14]

Weed
Dens.2

0.0480
(1.563)

Experience2 -0.0009
(-0.674)

-0.0012
(-1.152)

-0.0003
(-0.334)

Weed
Height

(1=good,
5=severe)

-0.0893
(-0.674)

[1.82]

Gender
(0=M, 1=F)

-0.0616
(-0.769)

0.1470
(2.312)**

-0.0279
(-0.414)

Weed
Hght.2

0.0201
(0.944)

Age
(years)

-0.0066
(-0.488)

[1.04]

-0.0246
(-2.292)**

[5.45]*

-0.0134
(-1.387)

[2.28]

Plant Dis.
(1=good,

9=severe)

0.0210
(0.411)

[0.27]

Age2 0.0001
(0.640)

0.0003
(2.347)**

0.0001
(1.475)

Plant Dis.2 -0.0015
(-0.299)

Elem. Edu.
(0=N, 1=Y)

-0.0366
(-0.336)
[7.149]

-0.0196
(-0.227)

[6.34]

-0.0315
(-0.403)

[6.33]

Hydromorph
(0=N, 1=Y)

-0.3800
(-2.861)***
[16.83]***

Sec. Edu.
(0=N, 1=Y)

0.1301
(1.144)

0.0863
(0.967)

0.0477
(0.591)

Lowland
(0=N, 1=Y)

-0.1452
(-2.325)**

Inc. College
(0=N, 1=Y)

-0.0749
(-0.628)

0.0095
(0.098)

0.0648
(0.735)

Irrigated
(0=N, 1=Y)

0.2077
(0.503)

College
(0=N, 1=Y)

-0.4098
(-1.192)

-0.2493
(-0.891)

-0.2246
(-0.789)

Rain Days
(number)

0.4119
(1.704)*
[7.01]**

Prof. Degree
(0=N, 1=Y)

0.4547
(1.863)*

0.1543
(0.807)

0.1246
(0.715)

Rain Days2 -0.0020
(-1.740)*

Plots
(number)

-0.1480
(-0.789)
[8.54]**

-0.2263
(-1.441)
[6.50]**

-0.0398
(-0.275)

[0.11]

Rainfall
(cm)

0.2020
(4.607)***
[21.13]***

Plots2 -0.0031
(-0.132)

0.0142
(0.740)

0.0033
(0.193)

Rainfall2 -0.0009
(-4.464)***
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Crops
(number)

0.1193
(0.576)

[3.58]

0.3867
(2.241)**

[10.47]***

0.1690
(1.046)

[2.48]

Transition
Zone

(0=N, 1=Y)

0.6928
(0.976)

[3.53]

Crops2 0.0003
(0.010)

-0.0332
(-1.438)

-0.0292
(-1.411)

Humid Zone
(0=N, 1=Y)

0.0680
(0.208)

Erosion
(0=N, 1=Y)

0.0330
(0.475)

Year 1994
(0=N, 1=Y)

0.3780
(1.227)
[4.97]*

Fertility
(1=good,
2=fair,
3=poor)

0.0412
(0.993)

Year 1995
(0=N, 1=Y)

-0.0217
(-0.195)

Aptitude
(see
fertility)

-0.0032
(-0.074)

F 0.5548 0.4191 0.3639

Slope
(percent)

0.0048
(0.274)

[6.19]**

R=ln(L) -400.3906 -295.4569 -242.0799

Slope2 -0.0009
(-1.251)

***, **, * = statistically significant at the 99, 95, and 90 percent confidence levels, respectively.

t-ratios in parentheses, likelihood ratio statistics for joint hypothesis tests of significance of each quadratic
variable expression and each group of binary variables in brackets.

Table 4: State-Conditional Technical Efficiency Summary Statistics

Mean Median Standard
Deviation

Minimum Maximum

2* (pooled) 2.5861 2.1882 1.6748 1.0000 16.6941

2* (stratified) 1.3861 1.1696 0.7267 1.0000 11.1980

SCTE 0.1911 0.1508 0.1092 0.0654 1.1862

SCTE* 1.0004 1.0000 0.0086 1.0000 1.1862


