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Abstract

A Target MOTAD farm-level model was developed to assess the expected impacts from global
warming on representative grain and oilseed farms in Alberta.  It was found that a warmer
climate would increase crop yields and length of the cropping season.  Net returns and
shadow values of land would increase substantially.  

Introduction

Increased concern for the environment in the past decade has resulted in a greater awareness of

mankind's interrelationships with the environment.  On one front, it has become quite widely

accepted that "human activities have the potential to cause climate change." (Goodess and

Palutikof (1992) p. 34).  Significant research has focused on how increasing emissions of carbon

dioxide and other trace gases contribute to the greenhouse effect.  Most climate warming

scenarios predict that the average annual global temperature will rise 1.5 to 4.5 C and that some1

climatic factors, such as precipitation, will become increasingly variable.  

The purpose of the following study is to address the issue of farm level adaptation to

climate change and regional climate variability in the agricultural  regions of  Alberta.  The climate

scenarios used in this study were developed in the first of multiple components of a multi-

disciplinary project.  Other components estimated the impact of climate change on drought and

other climatic indices which affect agriculture in Alberta along with the effects on plant growth. 

The study presented here, is part of the economic component of that project. 

Climate Change and Agriculture

Due to increasing levels of CO  and other trace gases, the global concentration of which is2

expected to double by the early part of the 21st century, global climate change models (GCMs)

are predicting significant surface warming and changes in precipitation and other climatic

variables.  Many climate change studies have predicted negative effects on yields of most

agricultural crops throughout the world, particularly in areas already experiencing low levels of

precipitation (mostly developing countries).  See for example Rosenzweig and Parry (1993),

Woodward (1992), Carter, Porter, and Parry, (1992), and Smit (1989).  

In Alberta, Wong et al. (1989) predicted that a doubling of CO  concentration would2

result in a 3 to 7 C increase in surface temperature and between 7 and 32% increase in1

precipitation.  The higher temperature translates into longer growing seasons (see McGinn,

Akinremi, and Barr (1995)).  However, in the semi-arid regions of Alberta where soil moisture
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content is often the limiting factor in plant growth, additional growing degree days may not be

important to crop growth.  In addition, the higher temperatures result in greater

evapotranspiration and the increase in precipitation is not likely to offset this effect.  

Stewart et al.(1988) indicated that a doubling of CO  would result in an increase in mean2

surface temperature of 4.7 C and an increase in precipitation of 18% for Saskatchewan.  The1

result would be an increase in the growing season of 5-15% but a decline in crop yields of 6-15%

and an increase in the probability of drought.  In another Saskatchewan study by Williams et al.

(1988) similar results were obtained.  These effects translated into a 12% fall in farm level income

and a reduction in expenditures by agriculture of Can$277 million.

Arthur and Abizadeh (1988) (see also Arthur (1988)) assessed the economic impacts of

climate change on prairie agriculture.  They determined that due to slight increases in precipitation

and earlier seeding dates, which result in a new crop growth time scale relative to historical

pattern, most of the negative effects on crop production could be mitigated.

Climate Data

The results of McGinn, Akinremi, and Barr (1995); and Saunders and Byrne (1994) were used as

input information for farm level models.  Saunders and Byrne (1994) and Byrne examined the

output from the Canadian Climate Centre Circulation Model (CCC-GCM) and determined that a

doubling of CO  would likely translate into a 5 to 7 C rise in surface temperature and a 15%2
1

increase in precipitation for the Canadian prairies.  

McGinn, Akinremi, and Barr (1995) developed four climate change scenarios based on

historical data.  Their results suggested:  1)  a shift in vegetation classification with most scenarios

indicating a reduction in the size of the semi-arid; 2) the seeding date for spring wheat would be

advanced by 10-20 days in the northern part of the province and greater than 27 days in the

southern part of the province; 3) there would be an advancement of the harvest date by between

22 and 37 days depending on the region; and 4) growing degree days (GDD) would increase

across the province with a 50% increase expected in most regions. 

We considered only the worst case scenario developed by McGinn, Akinremi, and Barr

(1995), a change in temperature accompanied by historical precipitation.  In addition, we used the

historical scenario in order to obtain a base case to validate the economic model.  Finally, the
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CCC-GCM scenario from Saunders and Byrne (1995) was also incorporated as a more moderate

climate change scenario.

We assumed that the effects of climate change, world wide, will be neutral.  This

assumption enabled us to assume further that world agricultural input and output prices would

maintain their historical pattern.

Model Formulation: Crop Growth Simulation Model

There are numerous crop growth simulation models available for most major crops like

wheat and maize (for example see Toure and Major (1995), Toure et al (1995), and Global

Climate and Terrestrial Ecosystems (1992)).  The crop growth simulation model selected for this

study was the Erosion Productivity Impact Calculator (EPIC) developed by Williams et al. (1989)

with the USDA at Temple, TX, as calibrated by Toure and Major (1995).  This choice was based

upon an evaluation of simulation models in southern Alberta (Toure and Major (1995)).  The

EPIC model gave the best simulation results over all rotations and the most accurate predictions

of mean yields during droughts.  In another study, Toure et al (1995) found that wheat growth

simulated by EPIC had correlations of 0.77 to 0.39 with actual yields.  Given the semi-arid region

of southern Alberta and the risk effects of droughts, EPIC provided a logical choice.

In addition, EPIC can be used to simulate growth of a variety of crops and attempts to

account for the physiological processes that govern crop growth and development.  Toure and

Major (1995), and Williams et al (1988) give a more detailed description of EPIC.

Model Formulation: Farm-Level Economic Model

A Target MOTAD (Tauer) model was developed.  Given EPIC's strength for simulating drought

years and moderate to high correlation with actual yields, it more effectively captures bottom-side

risk.  Thus, when coupled with a farm-level model which has a Target MOTAD objective

function, the best approximation of the weather-induced risk faced by farm operators in Alberta

will be obtained.

The Target MOTAD model has a linear objective.  The objective function maximizes

expected net revenue minus a risk term which captures only the variability in income below a

specified target level.  The risk term is discounted by the risk aversion coefficient.  The greater is

risk aversion, the greater is the risk aversion coefficient.
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The objective function is:

maximize:  E - r(d  (1)i

where E is expected income, r is the risk aversion coefficient, and d  is the negative deviation (ini

net income in state i) from the specified target level.

Expected income equals the hectares planted times the yield times the price, less the costs

of production.  The risk aversion coefficient is specific to the farm operator.  Negative absolute

deviations occur when net income in any state of nature (yield-price combination) results in a net

income that's below a specified target level. 

Decision Variables

Although dryland farmers can plant a number of different crops in the harsh climate of southern

Alberta, a rather small number of crops tend to dominate agricultural production, no doubt

reflecting their relative profitability: hard red spring wheat, winter wheat, barley, corn, canola, and

forages (represented in the model by crested wheatgrass).  The farm-level model allows the

selection of any combination of these crops when making planting decisions (subject to certain

constraints discussed below).

As moisture is generally a concern to crop producers in southern Alberta, large portions of

these crops generally are planted on summerfallow rather than stubble (to conserve soil moisture). 

The model incorporates this choice, where all the crops (except crested wheatgrass which is a

perennial forage crop) can be planted on either stubble or summerfallow.  The choices include the

number of hectares of each crop to plant, whether to plant on stubble or summerfallow and when

to plant.  The optimal levels of each are determined on the basis of relative costs of each crop,

prices, yields, crop rotation constraints, and the variability of net returns which occur as a result

of climatic factors and output prices.  

The present form of the model assumes that only conventional tillage operations are

performed: a crop-fallow choice simultaneously chooses the type and amount of tillage, as well as

chemical (herbicide and insecticide) use.  Fertilizer use in this in this version of the model has been

pre-set for each crop-fallow combination.  Yield depends on the weather, planting date, and

whether the crop is planted on stubble or summerfallow.

Resource Constraints
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The resource constraints include land area, labour hours, machine hours, and financial capital

availability.  The number of hours required to perform a given operation is determined by the size

and efficiency of operation for each farm machine. The farm operator may face financial

constraints in operation of the farm.  The model includes constraints on cash flow, taxes, and

requires that short, intermediate, and long term debt (interest) payments be made. 

Machine Sequencing Constraints

Six groups of activities must be performed in a sequential order:  pre-seeding tillage, seeding,

early summer weed control, late summer tillage and hay harvesting, fall harvest and post-harvest

tillage.  Not all crops have activities in every group; the main exceptions are winter wheat and

crested wheatgrass.

Rotational Constraints

Certain cultural practices must be observed when planting canola.  In particular, due to disease,

canola should not be planted on the same land more than once every four or five years.  The

Alberta Canola Production Survey (Alberta Agriculture 1993) found that 70 percent of the best

producers rotate canola with three or four crops.  This practice is modelled by imposing a

constraint that limits canola acreage to one-fifth of the total cultivated farm land base.

Yields and Prices

Twenty-four equally likely states of nature, based on weather and crop prices from the years

1964-87, are included in the model.  Prices were deflated on the basis of the Consumer Price

Index to provide a series of prices in constant 1990 dollars.  Yields were obtained from EPIC and

vary by seeding date.

Input Costs

The model includes the prices and quantities of chemicals and fertilizer; seeding rates; machinery

needed for pre-seeding, seeding, harvest, and post-harvest activities for each crop; hired labour

costs; and amounts of borrowed capital in short, intermediate, and long-term loans.  Machinery

requirements, sizes, prices, ages, depreciation schedules, repair schedules, fuel use, are also

included.  Depreciation, repairs, and machine efficiency are based on the age of the machine

implement and accumulated hours of operation.  Fuel use and other machine costs are tabulated

for each hour of machine use.
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Walburger and Klein (1998) provide a complete description of the models and validation.

Results

Four farm-level models are developed, one for each major soil zone in Alberta (Figure 1).  The

structure of the model was the same in all cases, only the input data was changed to reflect the

costs, appropriate operation data, farm size, and etc. which are typical of the soil zone.  Each of

the four models were run three times in order to obtain values for each of the three climate change

scenarios: historical case (SCENH), CCC-GCM prediction (SCEN1), and the worst case scenario

(SCEN2).

The Historical/Base Case Scenario (SCENH)

Brown Soil Zone

In the brown soil zone, barley and spring wheat grown on stubble were found to be the most

profitable crops.  The profit maximizing outcome (r=0) resulted in 93% of the total crop hectares

being planted to barley on stubble, while the remainder was planted to spring wheat on stubble. 

This is not at all characteristic of farmer behaviour in this region, but increasing the risk aversion

coefficent as little as 0.2, obtained a solution more comparable to what occurs on average in the

brown soil zone.  Approximately 82% of the farm was planted to spring wheat on fallow (i.e. 41%

is fallowed at a given time), while about 15% was planted to barley on stubble, and the remainder

planted as a perennial forage crop.  This outcome resulted in a drop in income variability

(standard deviation of farm net income falls by 44%).  The trade-off to such a significant decrease

in variability however was a reduction in net farm income of about $10,000.

As the risk aversion parameter was increased above 0.2, barley hectares declined and

forage hectares increased.  Hiley (1995) estimated, for major crops, that the average crop mix

presently observed in the brown soil zone is 40% wheat, 32% fallow, 11% forages, and 9% barley

and oats.  This compares most closely to the results where r=0.5.

Dark Brown Soil Zone

The profit maximizing crops in the dark brown soil zone were spring wheat, barley, and canola, all

on stubble.  Canola, in fact, was the most profitable of all crops, but was constrained not to

exceed the average level observed in this soil zone.

As in the brown soil zone, even a very small increase in the risk aversion coefficient
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resulted in large changes in crop selection.  With an r=0.2, spring wheat on fallow became the

dominant crop at approximately 497 of the 650 hectares planted to spring wheat on fallow (76%);

102 hectares were planted to spring wheat on stubble and 46 hectares planted to barley on

stubble.  This small increase in risk aversion resulted in a 35% reduction in variability and a

decrease in net revenue of $13455.  As risk aversion was increased further, barley exited the

solution, spring wheat hectares decreased slightly, and the forage crop entered the solution, rising

to 119 hectares at r=2.0.

At all levels of risk aversion, winter wheat on fallow was very close to entering the

solution.  The loss in net revenue, on average, would be less than $0.25 per hectare.  So it could

easily enter the farmer’s choice of crops in a year with a long fall or where there was concern of a

wet spring (factors not accounted for in this model).

None of the solutions for different risk levels were particularly close to the estimated

proportions of crop production provided by Hiley (1995); nevertheless, his estimate is easily

contained in the set of solutions.

Black Soil Zone

The profit maximizing crops in the black soil zone were barley and canola, both on stubble.  At an

r=0.2, spring wheat on stubble, crested wheat-grass, and canola on fallow entered the solution at

hectares of 102, 69, and 6 respectively.  Barley remained important with 119 hectares.  The

reduction in income variability was 28% for a trade-off of $4,361 in net income.

As risk aversion increased, barley and spring wheat hectares were reduced while forage

hectares increased quite substantially to 57% of the total at r=2.0.  Average production estimates

from Hiley (1995) are most comparable to the model solution from r=0.2.

Grey Soil Zone

For the most northerly soil zone, the profit maximizing crop mix involved barley, spring wheat,

and canola, all on stubble.  Again canola hectares were restricted to the maximum permitted by

cultural practices.  Barley comprised 47% of the 250 hectare total while spring wheat was 33%,

and canola made up the rest.

As risk aversion increased to 0.2, crested wheat-grass became the dominant crop at 69%

while barley dropped to 11%, and spring wheat disappeared from the solution.  This solution was
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most comparable to Hiley’s estimates, with the exception that the canola proportion is higher. 

Further increases in risk aversion resulted in the disappearance of barley from the solution; spring

wheat re-entered to take barley’s place at almost the same number of hectares.

Based on these results we concluded that SCENH reasonably represents the historical

case, validating the model.

The CCC-GCM Scenario (SCEN1)

The most notable impact for all regions in Alberta was the substantial increase in farm net income. 

This outcome differs from earlier studies and is a direct result of the yield outcomes obtained from

EPIC.  By allowing earlier seeding dates, the probability that drier summers would severely

damage crops was reduced (more will be said on this below).  As an example, spring wheat on

stubble yields increased by 34% for the province on average.  As costs and output prices are held

at historical levels, the yield increase goes entirely to increase net revenues.  Under profit

maximization, i.e., risk aversion coefficient equal to zero, the increases in net farm income of

average size farms in the respective soil zones ranged from $78,000 in the grey soil zone in the

north to $236,000 in the larger farms of the brown soil zone in the south.

Because of such large increases in average net returns, risk analysis using the Target

MOTAD objective function required a larger target income.  Leaving the target at an acceptable

historical level resulted in little change in crop selection as risk aversion increased.  We, therefore,

chose to elevate the target level to the mean net return in order to capture risk effects.

In the brown soil zone, barley planted on stubble was the most profitable crop and only at

the highest risk aversion level, r=2.0, did any other crop enter the solution.  At that point, spring

wheat on stubble entered the solution at around 8% of total hectares.  In the black and dark

brown soil zones, spring wheat on stubble was the most profitable crop and was the only crop

planted regardless of risk aversion level.  Finally, in the grey soil zone, spring wheat on stubble

was the most profitable crop and was planted on all the farm hectares.  However, a slight increase

in risk aversion to r=0.2, resulted in an introduction of canola.

Interestingly, the most profitable crops in SCENH remain the most profitable in SCEN1. 

Therefore, major shifts in production from one crop to another did not result.

We were interested, not only in the change in farm welfare but also in relative riskiness of
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 different crops.  An observation, which applies to all soil zones, requires some discussion.  Unlike

the SCENH, SCEN1 (and SCEN2 as discussed below) crop selections did not change very much

as risk aversion increased.  However, there was a much greater range of seeding dates in the

climate change scenarios than in SCENH and these varied as risk aversion varied.  This was likely

due to the expanded seeding period in SCEN1 (and SCEN2).

The results suggest that there are two underlying characteristics of the covariance

structure.  The first and simplest is that the most profitable crops also experienced the smallest

variability in returns.  Second, and more importantly, it doesn’t appear that there was significant

diversifiable risk.  Alternatively, it is more effective to alter the seeding dates of the most

profitable crop(s) than to introduce new crops.

The longer growing season in SCEN1 resulted in earlier planting and harvesting dates. 

The earliest seeding dates advanced by as much as 3 weeks in the brown soil zone to as little as

two weeks in the grey soil zone.  Just as important, the seeding periods in SCEN1 covered as

many as 6 weeks in some combinations of soil zone and risk aversion level.  The SCENH seeding

period never extended beyond 3 weeks in length.  This illustrates two underlying factors.  First,

yields varied less over a larger range of potential seeding dates; and as a result, it was unnecessary

and more costly to employ extra labour or less efficient machinery than to spread seeding into

later periods.  Second, and similar to the first factor, it was less critical for early seeding because a

longer growing season translates into less risk of frost damage.

The shadow values on land increased substantially between SCEN1 and SCENH:  213%,

106%, 114%, and 125% for the brown, dark brown, black and grey soil zones respectively.

The Worst Case Scenario (SCEN2)

Recall this scenario was developed based upon yields obtained when precipitation was held at

historical levels but temperature increased according to the climate change predictions.

This scenario also generated large increases in net income, although not as large as

SCEN1.  Toure and Major (1995) indicated that, despite decreases in summer soil moisture, yields

can increase substantially due to advanced seeding dates and more heat units early in the growing

season resulting in faster maturity.  Both of these factors enable significant plant growth to occur

early in the season before the drier summers are able to severely impact crops.  
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In the farm level model, the economically optimal seeding dates were advanced by as much

as 4 weeks in the dark brown soil zone and as little as 1 week in the black soil zone (seeding dates

in the remaining soil zones advanced 2 weeks).  The profit maximizing crop selection resulted in

net revenue increases of $141,500, $81,700, $45,900, and $48,400 in the brown, dark brown,

black, and grey soil zones respectively.  

In the brown soil zone, barley seeded on stubble is the most profitable crop.  Spring wheat

on stubble and barley on fallow would reduce the net income by less than $1.50 per hectare if

forced into the solution.  In the dark brown soil zone, spring wheat and canola, both seeded on

stubble, were most profitable, but barley on stubble would reduce net income by only $0.13 per

hectare.  The results for the black and grey soil zones were almost identical.  In both cases crested

wheatgrass and canola were the most profitable crops; canola is produced at the maximum

permitted level and crested wheatgrass is grown on the remainder of the hectares.  Spring wheat

on stubble was close to entering the solution, at a reduction to net income of $0.25 per hectare.

Only in the dark brown soil zone did risk aversion affect the crop choice solutions.  At

high levels of risk aversion (r=1,2), crested wheatgrass entered the solution at the expense of

spring wheat hectares.

Shadow values on land in SCEN2 experienced increases of 125%, 40%, 46%, and 71%

for the brown, dark brown, black and grey soil zones respectively.

Conclusion

The growth of all major cereal and oilseed crops grown in the four major soil zones in Alberta

were simulated by EPIC for historical and two climate change scenarios.  A Target MOTAD

farm-level model was developed to simulate optimal crop selection for representative farms found

within in each of the four major soil types.

Results indicated that under a warmer climate, crop yields would increase for all

investigated crops, though by different proportions in different crop regions.  Planting dates

advanced by as much as 4 weeks in the brown soil zone.  The seeding periods could cover as

many as 6 weeks without substantial yield penalties while seeding in the historical scenario never

extended beyond 3 weeks. 

Increased profitability resulted due to increases in average yields.  The result was increases



in shadow values on land by 114% to 213% in the scenario with precipitation increase and 40% to

125% for the scenario without increased precipitation.
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Figure 1.  Major Soil Regions of Alberta


