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Some Implications of the Two-Constraint Joint Recreational Choice Demand Model*

Introduction

The recreation demand literature has grown extensively over the years as researchers have

explored ways to generalize the popular travel cost method (TCM), both within the model and by

proposing new ones.  The impetus for such research is the rather restrictive assumptions of the

travel cost model, such as assuming that on-site time is fixed (Randall; Freeman).  McConnell

relaxed the fixed on-site time assumption of the TCM to derive the theoretically consistent

demand function when on-site time is endogenous using a model in which recreationists value

both trip-making and on-site time.  This two-constraint joint recreational choice demand model

has also been used by Bockstael et al. and Larson to provide a more general framework for

analyzing value of time issues.

The purpose of this paper is to explore the implications of the two-constraint joint

recreational choice demand framework as it relates to the estimation of the demand for and

benefits of a recreation site when on-site time and the number of trips demanded are endogenous.

Recent contributions by Larson and Shaikh to the value of time literature have implications for the

structure of demand in two-constraint models and will be applied here.  The model differs from

the traditional TCM in that it divides up the recreational experience into two separate activities,

travel and on-site time, and models them as functions of own- and cross- prices instead of lumping

travel and on-site time together as a single own-price.  This permits the researcher to analyze a

recreation site where both on-site time and the number of trips are endogenous.  In this case, it is

possible to parametrically define the average days on-site (a).  In addition, since two demand

functions can be estimated there is a question about the proper approach to welfare measurement.

                                               
* This paper has benefited from several discussions with Doug Larson.  His encouragement is gratefully
acknowledged.  All remaining errors are my own.
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Hof and King argue that due to the complementarity between recreational activities (travel,

lodging, etc.), the consumer surplus of the recreational experience can be found by integrating

over the demand for any of the components of that experience.

In this paper, the appropriate structure of the demand functions for total on-site time and

total trips are derived from the joint recreational choice model and used to estimate the demand

for recreation at an Alaskan salmon sportfishery.  Since both total days on-site and the number of

trips are endogenous, average days on-site is parametrically determined and comparative statics of

significant variables are determined.  In addition, consumer surplus values are calculated.

Theoretical Framework for Joint Recreational Choices

Larson provides the general modeling framework for the joint recreational choice model.

In the model, recreationists are assumed to value recreation trips over some period of time (e.g., a

year) to sites j (rj), total days on-site during that period of time at sites j (dj), and all other goods

represented by a numeraire good (z), where j = 1,…,n.  McConnell presents a similar model, but

substitutes total days on-site with average on-site time at j (aj).  The two models are linked by the

identity

(1) aj ≡ dj/rj ∀j = 1,…,n.

A consequence of this relationship and the fact that days on-site and trip money and time prices

are assumed exogenous is that the linear budgets in the following formulation become non-linear

in McConnell.

Construction of the two-constraint joint recreational choice demand model begins by

assuming that each recreationist has a finite money budget M and time budget T with which to
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allocate among scarce recreational goods defined above1.  Each recreational trip to site j has

associated with it a money price ($/trip) and a time price (how long it takes), denoted γj and αj,

respectively.  To consume the days on-site at any site j (dj), individuals must pay a money price

per day on-site (δj).  Since time prices are measured in days, the time cost of consuming one day

on-site is one unit of time.  For simplicity, assume that the numeraire good (z) is measured in days

such that the time cost of consuming one unit of z is also one unit of time and denote the price of

the numeraire good p2.  Therefore, each individual recreationist seeks to maximize their utility by

choosing rj and dj for all j = 1,…,n sites subject to a time constraint 3

(2) α’r  + e’d + z ≡ T,

where r  = vector of trips, d = vector of total days on-site, α = vector of trip travel time, and e =

vector of ones, and a money constraint

(3) γ’r + δ’d + pz ≤ M,

where γ = vector of trip money prices and  δ = vector of on-site money prices.  Assuming utility is

quasi-concave, the individual will maximize the following Lagrangian function4:

Max L = U(r ,d,z) - λ[γ’r + δ’d + pz – M] - µ[α’r  + e’d + z – T]

subject to rj ≥ 1, dj ≥ 0, z ≥ 0 ∀j.

                                               
1We assume that the individual has already made an optimal decision by choosing the number of hours to work
(W) and to spend in leisure activities (T). That is, recreationists are assumed to have maximized U(T,W) subject to
both a money and total time budget.  This maximization leads to an optimal leisure activity time, T.  Bockstael et
al. (1987) analyze this first-stage by including both discretionary and non-discretionary work time.
2 Wilman (1980) includes two numeraire goods, one that is time costly and another that is not.
3 Since the time constraint is an identity, the sign on the Lagrangian multiplier will be ambiguous whereas for the
money constraint, we would expect the multiplier to be non-negative.  It follows that the scarcity value of time can
be either positive or negative. Note that although the individual can spend less money than is available, it is
impossible for the person not to spend all of his/her time in some activity.
4 Note that this specification will lead to an incomplete demand system since non-recreational goods are subsumed
into a numeraire good.
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The Lagrangian multipliers, λ and µ, are the marginal utility of income and the marginal utility of

time, respectively.  For an interior solution5 (where the money constraint is binding), the first-

order conditions (FOC) are, after dividing through by λ,

(4) Urj/λ = γj + (µ/λ)αj,  ∀j = 1,…,n

(5) Udj/λ = δj + µ/λ,     ∀j = 1,…,n

(6) Uz/λ= p + µ/λ,

where the expression µ/λ is the marginal (scarcity) value of time and Ux denotes the partial

derivative of the utility function with respect to the variable x (where x represents the choice

variables, rj, dj, or z).  (4) – (6) represent the key results of Larson.  In general, they state that

individuals will consume until the marginal value of consuming another unit equals the explicit

marginal cost of another unit plus the value of time necessary to consume the additional unit.

Since the marginal time value of consuming each good is added to the money value, the right-

hand side of (4) – (6) can be interpreted as the full prices faced by individuals.  Moreover, recent

work by Larson and Shaikh has shown that for this two-constraint model, a general consequence

of duality restricts the structure of the arguments of demand functions derived in a two-constraint

problem to be expressed in full prices6 (γj + ραj, δj + ρ, p + ρ) and full incomes (M + ρT).

Together with (2) and (3), these conditions imply that it is possible to estimate two Marshallian

demand equations for each site j:

(7) rj = rj(γ + ραα,  δ + ρe, p + ρ, M + ρT),  ∀j = 1,…,n

(8) dj = dj(γ + ραα,  δ + ρe, p + ρ, M + ρT),  ∀j = 1,…,n

                                               
5 Larson also discusses the Kuhn-Tucker conditions associated with the corner solutions corresponding to r = 1 and
d = 0.
6 Larson and Shaikh use the two dual expenditure functions associated with the primal two-constraint problem and
Roy’s Identity to derive relationships between the coefficients on time and money prices and the marginal value of
time, ρ.
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where we let ρ represent the scarcity value of time, µ/λ.  If we started with the dual problem—

where the recreationist minimizes expenditure (based on full prices) subject to a fixed level of

utility, U0—we would arrive at two Hicksian, or income-compensated, demand functions.

Several points should be made at this point.  First, the manner in which ρ, the scarcity

value of time, is incorporated in the estimation is a matter of considerable debate.  Some contend

that ρ is an exogenous parameter which can be represented as the average wage rate or some

fraction of it (Cesario; Smith et al.; McConnell and Strand) which could be arbitrarily assigned or

estimated.  Others argue that the value of time at the margin (when individuals trade time for

money) is the appropriate realization of ρ and set forth empirical methods to elicit this value

(Bockstael et al.; Larson; Larson et al.).

Second, parametrically estimating total days on-site and total trips from the incomplete

demand system allows the researcher to parametrically define the average on-site time, aj, by

dividing (8) by (7).  This allows average on-site time to be expressed as

(9) aj = aj(γ, δ, α, p, ρ, M, T)  ∀j = 1,…,n.

This equation can be used to provide insight to park managers and other recreation managers who

wish to know what would happen to average lengths of stay on-site if, for example, gas prices,

entrance fees, or on-site snack bar prices were to be raised.

A third point relates to welfare measurement.  In some cases, researchers are interested in

the value of a recreational experience (Bell and Leeworthy; Hof and King).  In a model with two

choice variables and a single site (n=1), the total compensating variation (CV) is obtained by

integrating over each Hicksian demand function (denoted D(x) and R(x)) with respect to own

prices from the initial prices to the price at which Hicksian demand goes to 0.  Two possible price

paths for the calculation of total recreation CV are the following:



7

(10)          CV(γ0 → γc, δ0 → δc) = d

γ0

γc

γR ,,,γ δ0
p U

0
d

δ0

δc

δD ,,,γc δ p U
0

(11)          CV(δ0 → δc, γ0 → γc) = d

δ0

δc

δD ,,,γ0 δ p U
0

d

γ0

γc

γR ,,,γ δc
p U

0

where γ0 and δ0 represent the initial prices and γc and δc represent the choke prices such that R(γc, 

δ, p, U0) ≡ 0 and D(γ, δc, p, U0) ≡ 0.  γ, δ, and p are full prices and U0 is the reference utility level.

Bowes and Loomis argue that the second term in (10) should always be 0 when it is too

expensive to travel (γ = γc) because no time is spent on-site (since recreationists cannot reach the

site).  Therefore, the demand for on-site time must necessarily be 0 for any on-site price (D(γc, δ,

p, M) ≡ 0).  Hof and King claim that if it becomes too expensive to spend any time at a recreation

site (δ = δc), then recreationists do not get any utility from making the trip there, and therefore

would not make the trip in the first place, implying R(γ, δc, p, M) ≡ 0.  According to this joint

complementarity argument, the total CV of the recreational experience can be derived from either

the Hicksian trips or days demand.  Since Hicksian demands are unobservable, CV is

approximated by CS using either (8) or (9) (Willig; Randall and Stoll).

There are several potential problems with this approach.  If recreationists derive utility (or

disutility) from travel (a reasonable assumption), then the Hof and King argument cannot hold7.

In addition, imposing the complementarity suggested above may require highly restrictive

constraints on estimated parameters of the system of demand equations (depending on the

functional form chosen).  Moreover, as Just et al. point out, whenever there are income effects

accompanying price changes, the path-dependent CS values used to approximate CV are not

unique and can have substantial discrepancies.  These caveats imply that, in general, CS estimates
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found by integrating over estimated demand equations in the joint recreational choice model

should be interpreted as the CS of the activity in question and not as indicators of the value of the

total recreation experience unless the appropriate parameter restrictions are imposed on the

estimated system of demand functions.

Data and Estimation Results

To parametrically define average on-site time and calculate the CS derived from the two

demand functions, several common functional forms of demand were estimated for a single

recreational site (therefore no substitute prices).  The data consisted of recreational fishing data

collected through a mail survey of anglers who frequented Willow Creek in Alaska during the

summer of 19808.  The survey elicited detailed trip-specific information related to salmon fishing

activities on-site as well as travel cost-related information.  Of 324 returned questionnaires, 221

were used to estimate the demand functions in the analysis9.  Travel costs (γ) included lodging and

travel operation expenses, but omitted food and drink expenses since it was assumed not to be

exclusive to the travel experience.  For the same reason, food and drink expenses were omitted

from on-site costs (δ) too.  For consistency with the joint recreational demand model, prices and

income were augmented to account for the value of time thus creating full prices and income

(using both one-third and the full wage rate to represent ρ).  This approach differs from Larson et

al. since ρ is imposed on the system instead of being endogenous to it.  The numeraire price was

determined by dividing the residual income by the residual time.  Table 1 presents summary

statistics of the 221 observations.

                                                                                                                                                      
7 This does not preclude the possibility of imposing complementarity of the sort discussed by Bowes and Loomis.
8 I thank Doug Larson for providing access to the data.
9 In addition to the observations used, a couple observations were dropped that contained all of the necessary
information but were deemed outliers.  These were individuals with extremely high incomes and no on-site
expenses.
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Table 1:  Summary Statistics of Willow Creek Angler Sample
Variable Variable

Name
Mean Standard

Deviation
Minimum Maximum

Total trips r 3.8597 2.916 1 20
Total on-site time (in
hours)

d 144.98 155.46 24 1080

Income M 29174 18899 2500 80000
On-site cost ($/hr) δ 0.95 2.5451 0 25
Travel cost ($/trip) γ 20.481 48.532 1.227 708
Average trip time
(hours)

α 3.267 2.9242 0 35

ρ = 1/3 wage rate assumption
Full income (in
$/year)

M 31687 20513 2660 88960

Full on-site cost
($/hour)

δ 4.9101 3.1422 0.42 13.39

Full travel cost per
trips ($/trip)

γ 36.456 52.002 2.5 726.3

Full numeraire good
cost ($/hour)

p 23.182 17.728 1.394 151.1

ρ = wage rate assumption
Full income (in
$/year)

M 36713 23755 2980 106900

Full on-site cost
($/hour)

δ 14.635 9.4317 1.25 40.06

Full travel cost per
trips ($/trip)

γ 68.406 71.022 2.5 763

Full numeraire good
cost ($/hour)

p 25.426 17.761 1.658 116.4

Table 2:  Estimated Coefficients of Total Trips and On-site Days Demand
(t-values in parentheses)

Estimated
Coefficient

Linear
(1/3 wage)

Linear
(full wage)

Semi-log
(1/3 wage)

Semi-log
(full wage)

Log-linear
(1/3 wage)

Log-linear
(full wage)

α1 4.8198
(13.49)

4.8297
(13.70)

1.3823
(15.81)

1.3789
(16.01)

16.276
(3.73)

12.170
(1.602)

β11 -.0081828
(-2.204)

-.0076022
(-2.50)

-.0028785
(-3.166)

-.0026048
(-3.506)

-.32353
(-4.624)

-.28536
(-3.753)

β12 .62036
(1.034)

.13026
(.3145)

.10265
(.6989)

.00012433
(.001229)

.42488
(.8553)

-.043392
(-.03945)

β13 .058988
(2.864)

.072278
(2.178)

.016604
(3.293)

.021502
(2.652)

1.3308
(6.254)

1.3702
(4.393)

βΜ1 -.00016017
(-1.745)

-.00011424
(-.7442)

-.000033787
(-1.504)

-.000017799
(-.4746)

-1.8274
(-3.617)

-1.3554
(-1.408)

α2 164.41
(11.10)

167.97
(11.25)

4.8141
(46.55)

4.8227
(47.07)

20.657
(4.018)

-1.0477
(-.1137)

β21 -.25920
(-1.683)

-.22983
(-1.784)

-.0023284
(-2.166)

-.0021747
(-2.461)

-.25298
(-3.069)

-.19673
(-2.134)

β22 -16.331
(-.6564)

-86.664
(-4.94)

-.038175
(-.2198)

-.29362
(-2.44)

-.31611
(-.5401)

-3.3638
(-2.522)

β23 11.256
(13.18)

17.294
(12.30)

.03985
(6.683)

.059691
(6.19)

2.3137
(9.228)

2.5838
(6.832)

βΜ2 -.006018
(-1.581)

.022371
(3.441)

-.000028469
(-1.071)

.000072699
(1.63)

-2.1199
(-3.561)

.67424
(.5778)
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Total days10 (d) and total trips (r) were estimated using Zellner’s seemingly-unrelated

regression approach since it is postulated that the error terms of (7) and (8) are correlated.  Thus,

(12) and (13), (14) and (15), and (16) and (17) were estimated as incomplete demand systems.

Table 3 contains the estimated coefficients under both the full and partial wage assumptions.

(12) r(γ, δ, p, M) = α
1

.β
11

γ .β
12

δ .β
13

p .β
M1

M

(13)   d(γ, δ, p, M) = α2
.β21 γ .β22 δ .β23

p .βM2
M

(14)  ln r(γ, δ, p, M) = α
1

.β
11

γ .β
12

δ .β
13

p .β
M1

M

(15)   ln d(γ, δ, p, M) = α2
.β21 γ .β22 δ .β23p .βM2 M

(16)   ln r(γ, δ, p, M) = α1
.β11
lnγ .β12

lnδ .β13
lnp .βM1

lnM

(17)  ln d(γ, δ, p, M) = α
1

.β
21

lnγ .β
22

lnδ .β
23

lnp .β
M2

lnM

where the error terms are suppressed for the discussion.

The results show that the own-price effect on trips and the constant terms are highly

significant for all models, whereas the own-price coefficient on days is highly significant only for

the full wage models and statistically non-significant under the 1/3 wage rate models.  This implies

that the value of time is the crucial factor for determining the effects of on-site prices in this

model.  The effect of a change in on-site price generally does not affect the number of trips taken

as indicated by the t-values on the cross price coefficient, β12.  On the other hand, in each of the

models except one, the travel price does significantly negatively affect the days variable (gross

complements).  In addition, the cross-price effect of the numeraire price is not surprisingly highly

significant and positive (since it is constructed using the other prices).  However, the income

coefficient is ambiguous in sign and significance across the models.

From the estimated equations, the average on-site time can be written from (1) as

                                               
10 Total days was actually measured in hours to avoid single-day logged terms being thrown out.
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(18)   a(γ, δ, p, M) = 
α2

.β21 γ .β22 δ .β23
p .βM2

M

α1
.β11 γ .β12 δ .β13

p .βM1
M

(linear)

(19)  a(γ, δ, p, M) =  e
α2 α1

.β21 β11 γ .β22 β12 δ .β23 β13 p .βM2 βM1 M

(semi-log)

(20)   a(γ, δ, p, M) = ....e
α2 α1 γ

β21 β11 δ
β22 β12

p
β23 β13M

βM2 βM1
(log-linear)

The effect of changing prices or income can be determined by using (21), (22), or (23)11

(21) ∂ a(γ, δ, p, M) /∂x = (β2x - β1xa)/r (linear)

(22)    ∂ a(γ, δ, p, M) /∂x = (β2x - β1x)a (semi-log)

(23)    ∂ a(γ, δ, p, M) /∂x = (β2x - β1x)a /x (log-linear)

where x represents any of the exogenous parameters (the full prices and income).  Thus, for the

linear case, the sign of the effect of an exogenous price or income change on the average length of

stay depends both on the effect of the exogenous change on both days and trips and on the

average on-site time at which it is evaluated.  However, for both the semi-log and log-linear

forms, the sign of the change depends solely on the difference between the estimated coefficients.

It is important to note that for each functional form, the average on-site value at which the

comparative statics are done is critical for determining the magnitude of the expected change

brought about by a change in prices or income.  In the linear case, the number of trips taken is

also an important determinant affecting the magnitude.

For illustration, Table 3 shows the estimated change in average length of stay (in hours) at

Willow Creek with an incremental increase in on-site costs, trip costs, and income.  Asymptotic

standard errors and t-values were calculated using the estimated variance-covariance matrices.  As

expected, when on-site costs increase the models unambiguously predict that average time will

decrease.  Each model yields different levels of change, however, with the linear model predicting

                                               
11 The effect of longer trip times on average on-site time can also be derived by noting that ∂γ/∂α is ρ.
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the largest changes for changing on-site costs.  Since on-site costs are primarily driven by time

spent on-site, it is not surprising to see larger predictions for the full wage models.  The full wage

models all have significant on-site cost and income variables, while travel costs are not significant

in any model.  McConnell showed how the trip cost has an ambiguous effect on average length of

stay.  Here, trip costs appear to have little, if any, effect on changing a.  Similarly, small income

changes do not appear to have much impact on average time spent on-site.  This small income

effect is not surprising since the budget share of these activities is small.

Table 3:  Estimated Change in Average On-Site Time (in hours) with a Change in On-site Costs, Trip
Costs,  and Income (evaluated at mean days, trips, and prices; asymptotic t-values in parentheses)

Variable Linear
(1/3 wage)

Linear
(full wage)

Semi-log
(1/3 wage)

Semi-log
(full wage)

Log-linear
(1/3 wage)

Log-linear
(full wage)

On-Site Costs -10.27
(-5.669)

-23.72
(-6.085)

-5.28
(-1.315)

-11.03
(-3.999)

-5.67
(-1.864)

-8.52
(-3.909)

Trip Cost .0125
(.356)

-.0144
(.504)

.0021
(.830)

.017
(.797)

.0727
(1.259)

.050
(1.510)

Income -.00000063
(-.001)

.0069
(4.781)

.0002
(.325)

.0034
(3.324)

-.00035
(-.723)

.0021
(2.731)

The consumer surplus values for the average individual associated with the estimated

linear and semi-log demand functions were calculated using the following equations (with all cross

prices and income evaluated at the mean values and suppressed for convenience):

(24)  CSr = .5 (γc – γ0) r(γ0) (linear)

(25)   CSd = .5 (δc - δ0) d(δ0) (linear)

(26)  CSr = -r/β11 (semi-log)

(27)  CSd = -d/β22 (semi-log)

where r and d are evaluated at their mean values.  The results are listed in Table 4.12

The CS values in Table 4 are the consumer’s surplus of the trip experience and on-site

experience.  The results show that all the models except one yielded significant CS values13.  The

large magnitude of these estimates can partially be attributed to the fact that they embody both

                                               
12 CS values were not calculated for the log-linear case since calculations require arbitrarily choosing a choke
price.
13 Again, asymptotic t-values were calculated based on variance-covariance matrix of estimated demand functions.
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time and money prices.  A natural next step would be to estimate the exact welfare measures by

integrating back to find the quasi-preferences and compare these true welfare measures with the

approximate ones obtained here (LaFrance; LaFrance and Hanemann).  However, note that

integrating the functional forms in this paper would require considerably more structure to be

imposed upon the estimated system to get theoretically consistent quasi-expenditure functions14.

Table 4:  Consumer Surplus Values for the Average Individual Associated with Total Trips and Total
On-Site Demand for Linear and Semi-log Cases (calculated asymptotic t-values are in parentheses)

CS of activity Linear
(1/3 wage)

Linear
(full wage)

Semi-log
(1/3 wage)

Semi-log
(full wage)

Total Trips $910.27
(20.758)

$979.79
(20.702)

$1340.87
(3.203)

$1481.76
(3.546)

Total On-Site Time $643.71
(18.799)

$121.24
(18.357)

$3797.77
(.222)

$493.77
(2.468)

Conclusion

In this paper, the joint recreational choice demand framework typically used to analyze

value of time issues provided the framework to parametrically define average on-site time and

calculate CS values for the average angler at Willow Creek, Alaska.  Using common functional

forms with full prices and income, the demand for total trips to Willow Creek and total on-site

time were estimated.  Comparative statics of the resulting parameterization of average on-site

time suggested that both trip costs and income do not significantly affect the average angler’s

decision to stay longer on average.

A natural extension would be to use a preference-based approach with a theoretically-

consistent flexible functional form.  Additionally, determining the total use value of a recreational

resource in this framework needs to be explored.  Although joint complementarity appears to

provide a potentially fruitful approach to welfare estimation in this regard, the restrictions

necessary to impose this condition on the functional forms in this paper appear to be quite severe

and were not pursued here.

                                               
14 Tests showed that the estimated coefficients did not conform to integrability restrictions.
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