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Abstract 
 
The advent of the new political dispensation in South Africa has seen an exponential growth in the 
rate of land transformation and encroachment by other land uses into valuable agro-ecological 
zones. Due to the socio-economic value of the often limited high-potential agricultural land in the 
country, a reliable determination of encroachment and transformation is necessary for effective 
monitoring and management of such agro-ecological resources. Using the robust support vector 
machine classification algorithm, this study adopted multi-temporal, remotely sensed datasets to 
assess the extent to which the physical development footprint in the uMngeni Local Municipality 
affected the existing agro-ecological zones from 1993 to 2003 and from 2003 to 2013. The results 
show a steady increase in built-up areas during the period under investigation. The study 
demonstrates the value of multi-temporal, remotely sensed datasets and techniques in mapping the 
vulnerability of existing agricultural land to urbanisation in the study area. 
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1. Introduction 
 
Knowledge of land-use and land-cover dynamics and causative factors is fundamental for landscape 
planning and management (Johnson & Maxwell 2001). Commonly, landscape transformation is 
influenced by a number of drivers, which could be categorised broadly as economic, policy and 
institutional, social and cultural, environmental and biophysical drivers (Shrestha et al. 2012). In rural 
and peri-urban areas, landscape transformation is often caused by growth in urban settlement and the 
associated infrastructural development (Gersh 1996; Long et al. 2007; Shalaby & Tateishi 2007). 
Typically, the settlement sprawl that characterises the urbanisation process consumes formerly 
productive agricultural land and open spaces (Heimlich & Anderson 2001; Konagaya et al. 2001; Wu 
et al. 2013). According to Johnson and Maxwell (2001) and Heimlich and Anderson (2001), 

residential and commercial developments in agricultural areas are often accompanied by detrimental 
impacts on agro-ecological functions, which further act as pull factors for additional amenities, more 
population and more degradation.  
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Globally, the evolving pattern of urban growth and development is driven by large profits to be made 
from converting agricultural land to non-farm uses in rural and urban fringes (Singh & Mohan 2001). 
Generally, residential developments on agricultural land have both a direct and an indirect effect on 
land values. When the demand for developable land is sufficiently high, the price of land in a 
developed state will inevitably exceed the value with which it is associated as an agricultural entity. 
Pressure by developers can lead to high rates of growth in land values, which in turn influences the 
conversion of more farmland to developed uses. Invariably, when faced with an option to either 
pursue or exit farming as a result of increased property prices, farmers may prefer the increase in 
farmland values and opt out of active agricultural production (Heimlich & Anderson 2001). 
 
According to Plantinga et al. (2001), land prices reflect not only its current uses, but also its potential 
uses. In a competitive market, the price of land will equal the discounted sum of expected net returns 
obtained by allocating the land to its most profitable use. Without public intervention, the market will 
allocate land to the use that optimises economic returns, thus, in the process of urban growth the 
owners are expected to convert agricultural land to non-agricultural use, as land suitable for other 
development is more valuable (Plantinga et al. 2001; Singh & Mohan 2001; Phuc et al. 2014). 
Generally, Britz et al. (2011) and Gibreel et al. (2014) note that the conversion of cultivated land to 
non-farm uses such as housing poses a serious threat to agro-ecological sustainability and current and 
future food security.  
 
Prime agricultural land is a scarce, finite and exhaustible natural resource (Tanrivermis 2003). In 
South Africa, with 13.8 million people vulnerable to food insecurity, the impacts of agricultural land 
transformation cannot be over accentuated (Niroula & Thapa 2005). The relationship between land 
and people is profound, with people’s standard of living, wealth, social status and aspirations all 
closely linked to land (Niroula & Thapa 2005). Recently, South Africa published a policy framework 
on Food and Nutrition Security. In particular, the policy highlights the value of conserving scarce 
agricultural land resources to secure the nation’s food supply at the household and national levels 
(Department of Agriculture, Forestry and Fisheries 2014). Furthermore, Chandrasena (2001) notes 
that the conversion of agricultural land could undermine rural livelihoods and economies, especially 
rural employment, as most farm workers are unskilled and will find it difficult to become assimilated 
into urbanised economies.  
 
In full appreciation that land use is not static, but a dynamic, interacting system, there is increasing 
recognition that decisions with the potential to have an impact on agro-ecological systems require 
comprehensive and careful consideration to ensure sustainable development (Fazal 2001). 
Uncoordinated development can lead to inefficient and undesirable environmental, social and 
economic outcomes; hence a number of countries require local jurisdictions to prepare comprehensive 
plans outlining land use and whether specific types of land use should be encouraged or discouraged 
in specific areas (Andersson & Gabrielsson 2012). Against this background, it is desirable to 
implement mechanisms to ensure long-term monitoring and assessment of the trends in human 
settlement and other infrastructural development within the agricultural system at local administrative 
scales. To achieve this it is important to monitor changes in agricultural land use/land cover in order 
to maintain a healthy balance between man-induced land uses and ecosystem services, and to help 
establish rational land-use policy in favour of sustainable agricultural development (Shalaby & 
Tateishi 2007). Such decisions require an understanding of land use/land cover trends. 
 
Traditionally, conventional methods that involve ground surveys have been used for mapping changes 
in agro-ecological landscapes. These methods commonly rely on the collection of field data and are 
often labour intensive, time consuming and lack temporal consistency, particularly at extended spatial 
scales. Remotely sensed data and tools have emerged as appropriate and cost effective means for 
mapping changes in agro-ecological systems (Shalaby et al. 2011). For instance, change detection, 
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based on remotely sensed data that involves feature extraction techniques to compare differences or 
ratios, and decision function operations to create change vs. no-change maps, has emerged as a 
valuable technique. Machine learning techniques like decision trees, neural networks and support 
vector machines iteratively determine land use/land cover class boundaries (Mountrakis et al. 2011). 
Such approaches, in concert with post-classification feature extraction, have been known to perform 
better than traditional classification techniques like maximum likelihood and minimum distance to 
mean (Zhu & Blumberg 2002; Mountrakis et al. 2011). Therefore, using a robust machine learning 
classification algorithm and post-classification feature extraction, this study sought to assess the 
extent to which increased settlement and associated physical infrastructural development have 
affected agricultural land categories/zones in uMngeni Local Municipality, KwaZulu-Natal, South 
Africa.  
 
2. Materials and methods 
 
2.1 Study area 
 
The study area (uMngeni Local Municipality) is located in uMgungundlovu District, KwaZulu-Natal 
Province, South Africa, approximately 90 kilometres from the coastline (Figure 1). The municipality 
is predominantly rural, with a variety of agricultural and tourism-related activities. Predominant 
agricultural activities include horticultural cash crops, agronomic crops (potatoes, soya beans, maize, 
etc.), timber plantations and livestock (poultry, dairy and beef).  
 

 
Figure 0: Landsat 8 true colour composite showing the location of uMngeni Local 

Municipality. 
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2.2 Data acquisition and pre-processing 
 
The Worldwide Reference System path 80, row 81 Landsat 5, 7 and 8 images, captured on 5 April 
1993, 7 April 2003 and 8 April 2013 respectively, were used in the study. All the multi-temporal 
datasets were collected at the closest possible dates to reduce scene-to-scene variation that may arise 
from differences in instrument calibration, geometric and atmospheric conditions, and natural 
vegetation phenological differences. The images had been orthorectified at delivery by the Earth 
Observation Directorate of the South African National Space Agency (SANSA) to a mean 0.19 error 
of the 30 m Landsat pixel ground sampling distance. Consequently, further orthorectification was 
deemed unnecessary. 
 
The nature of optical remote sensing requires that radiation from the sun passes through the 
atmosphere before it is intercepted by a remote-sensing instrument. Thus, remotely sensed images 
include information about both the atmosphere and the earth’s surface. For application focusing on 
the quantitative analysis of surface radiance or reflectance, removing the influence of the atmosphere 
is a critical pre-processing step. In order to compensate for atmospheric effects, properties such as 
the amount of water vapour, distribution of aerosols and scene visibility (including surface 
topography) must be known or inferred. In this study, the Fast Line-of-sight Atmospheric Analysis 
of Spectral Hypercubes (FLAASH) atmospheric correction method was adopted to reduce haze, water 
vapour and other atmospheric influences. The model was applied to the data of each geo-referenced 
and rectified Landsat image. The digital numbers were then converted to surface radiance data using 
the absolute radiometric calibration factors and effective bandwidths for specific Landsat bands in 
the Environment for Visualising Images (ENVI) 5.1 routine. A higher spatial resolution land use/land 
cover map (developed from 2008 SPOT5 imagery) was used as a reference dataset and ground-truth 
pixels representing six land use/land cover types in the study area were collected. The resultant data 
was used to derive a point distribution map of the land use/land cover types considered in this study.  
 
Separability measurement relates to the extent to which patterns can be correctly in association with 
their target land cover classes using statistical methods. In this study, six classes were determined 
(Built-up land – buildings and other man-made infrastructure such as roads, Grassland, Cropland, 
Plantation forest, Water body and Bare land, including undefined features). The separability of the 
training data for all class pairs was assessed using the Jeffries Matusita (J–M) distance index (Sousa 
et al. 2003). The J–M measures the average distance between two class density functions. These 
values range from 0 to 2.0 and indicate how well the selected pairs can be separated statistically. In 
this study, a J–M distance greater than 1.90 (≥ 95% of 2) was used as a threshold of spectral 
separability between group pairs.  
 
2.3 Classification procedure and accuracy assessment 
 
For the classification of targeted land cover types (i.e. Built up, Grassland, Cropland, Plantation 
forest, Water body and Bare land), it was necessary to develop and validate the classification 
algorithm, and to calculate a change map of the distribution of Built-up infrastructure in the area. A 
supervised learning algorithm, the Support Vector Machines (SVM), was implemented in the ENVI 
5.1 environment. The SVM is a non-parametric method that makes no assumption about the 
underlying data distribution in classifying the multi-date Landsat images (Vapnik 1998). It identifies 
the class associated with each pixel and employs optimisation algorithms to locate the optimal 
boundaries between classes (Zhang & Ma 2008). The algorithm can be applied to stacked multi-
temporal images to detect change and no-change in a binary classification problem. In this regard, 
the algorithm learns from training data and automatically finds threshold values from the spectral 
features for classifying change from no-change (Vural et al. 2008). The SVM is known to provide 
more superior classification results than traditional classification techniques such as the maximum 
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likelihood classifier (Szuster et al. 2011). In this study, SVM was used to perform classification 
analysis independently on each of the multi-date Landsat images acquired for the study area.  
 
It is a rule of thumb in remote sensing that the entire classification dataset be separated into 70% of 
data points for classification – also referred to as training data – and 30% data points for accuracy 
assessment – also referred to as validation data (Knorn et al. 2009; Adam et al. 2014). Therefore, in 
this study, about 30% of the ground truth pixel data was reserved for the validation of the accuracy 
or performance of the SVM classification algorithm. A simple random sampling method was used to 
subset the ground truth pixels across each of the input Landsat images with the aid of higher spatial 
resolution SPOT images and aerial photographs covering the study area. A confusion matrix for SVM 
classifications was then computed using the validation ground-truth samples. Overall classification 
accuracy, producers’ and user’s accuracies were calculated for each classification. In addition, the 
Cohen’s kappa statistic was calculated for each matrix. According to Yang and Chinchilli (2009), the 
kappa (KHAT) measures the agreement between the classified map and mutually exclusive categories 
of the ground truth values, and is expressed as:  
 

Κ෡ ൌ ୒∑ ୶୧୧౨
౟సభ ି∑ ሺ୶୧ା∗୶ା୧ሻ౨

౟సభ

୒మି∑ ሺ୶୧ା∗୶ା୧ሻ౨
౟సభ

                 (1) 

 
where Κ෡ = is the KHAT statistic, xii is the number of diagonal entries in row i and column I, xi+ is 
the sum of the row I, x+i is the sum of column I, N is the total number of observations and r is the 
size of the matrix.  
 
2.4 Post-classification feature extraction and comparison 
 
This stage involved two major steps, namely independently extracting Built-up features from the 
multi-date images, and then comparing the extracted Built-up land class pixels for binary pairs of 
input classification images. The total number of extracted pixels/area from the pairs is calculated to 
quantify changes in Built-up land class between different time intervals. In this study, only the Built-
up classes were specified in order to achieve the set objective of estimating the impact of the 
developmental footprint within the agricultural land categories in the study area using multi-date 
image analysis. Figure 2 provides a summary of the image data, pre-processing and analysis. 
 
2.5 Agro-ecological zones (AEZs) 
 
To determine the vulnerability of different agricultural zones to settlement, Built-up areas were 
overlaid on the agro-ecological zones (AEZs) of KwaZulu-Natal (KZN) province. The KZN 
Department of Agriculture and Rural Development (KZNDARD) uses the Food and Agricultural 
Organization of the United Nations (FAO) principle of zoning (IIASA/FAO, 2012) to classify the 
province into different AEZs. The zones consist of areas that have similar characteristics in relation 
to land suitability, production potential as well as environmental impacts, and are considered valuable 
for agricultural land-use planning. According to Collett and Mitchell (2012), the development of 
AEZs in the study region is motivated by the need to protect valuable agricultural landscapes across 
varying and diverse natural resources, rather than isolated land parcels.  
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Figure 2: Data, image pre-processing and analysis. 

 
3. Results 
 
The confusion matrices based on the validation datasets for the multi-temporal Landsat 8, 7 and 5 
data are shown in Table 2a, b and c respectively. As shown in the tables, high overall classification 
accuracies were achieved. All the producers’ and users’ accuracies were high, particularly the users’ 
accuracies for the Built-up land use/land cover classes. Figure 3, a, b, c and d summarise the SVM 
classification results for the Landsat 8 (2013), 7 (2003) and 5 (1993) images respectively. The figure 
shows land use/land cover trends during the study period. The overall percentage of classification 
accuracy (OA) and the respective Cohen’s kappa statistic (kappa) obtained for Landsat 8 (2013) was 
OA = 83.67% with kappa = 0.82; Landsat 7 (2003) was OA = 84.18% with kappa = 0.81, and Landsat 
5 (1993) was OA = 83.33% with kappa = 0.81.  
 
 
  

Data acquisition: multi-temporal Landsat 
images 

Ancillary data collection: high spatial 
resolution SPOT imagery, aerial photos, 
2008 land cover and field visits  

Radiometric, atmospheric and 
geometric pre-processing of Landsat 
and high-resolution spatial SPOT 
images 

Study area editing and layer stacking 

Definition of classification scheme, 
training/validation points selection 

Apply Support Vector Machine (SVM) 
classification  

Editing output class map and extraction of 
built-up and other man-made features 

Final production of built-up 
cover layer 

Post-feature extraction change analysis of binary pair of the input 
class image: 1993–2003, 2003–2013, and 1993–2013 

Built-up features maps overlaid on agricultural land categories in 
uMngeni Local Municipality 

Accuracy assessment of individual 
classified image 
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Table 2a: Error matrix for SVM classification results of Landsat 8, April 2013 input image. 
Overall accuracy = 83.67; kappa = 0.82. 

 Predicted class Built up Grassland Cropland Bare 
land 

Plantation Water 
body 

Reference 
pixels 

Built up 116 5 0 13 0 0 134 
Grassland 12 112 4 2 5 0 135 
Cropland 6 8 96 7 6 0 123 
Bare land 3 2 9 77 7 0 98 
Plantation 7 0 0 0 65 0 72 
Water body 0 0 2 0 0 36 38 
Sum of estimation 144 127 111 99 83 36 600 
Producer accuracy (%) 80.56 88.19 86.49 77.78 78.31 100  
User accuracy (%) 86.57 82.96 78.05 78.57 90.28 94.74  

 
Table 2b: Error matrix for SVM classification results of Landsat 7, April 2003 input image. 
Overall accuracy = 84.18; kappa = 0.81. 

 Predicted class Built up Grassland Cropland Bare 
land 

Plantation Water 
body 

Reference 
pixels 

Built up 66 5 2 7 0 0 80 
Grassland 8 54 8 6 3 0 79 
Cropland 5 11 111 11 9 0 147 
Bare-land 5 6 6 124 0 0 141 
Plantation 3 0 0 0 119 0 122 
Water body 0 2 0 0 0 42 44 
Sum of estimation 87 78 127 148 131 42 613 
Producer accuracy (%) 75.86 69.23 87.40 83.78 90.84 100  
User accuracy (%) 82.50 68.35 75.51 87.94 97.54 95.45  

 
Table 2c: Error matrix for SVM classification results of Landsat 5, April 1993 input image. 
Overall accuracy = 83.33; kappa = 0.81. 

 Predicted class Built up Grassland Cropland Bare 
land 

Plantation Water 
body 

Reference 
pixels 

Built up 64 9 2 9 0 0 84 
Grassland 9 61 6 6 3 6 91 
Cropland 2 3 102 4 9 0 120 
Bare land 4 7 12 94 0 0 117 
Plantation 0 2 4 0 110 0 116 
Water body 0 0 0 4 0 74 78 
Sum of estimation 79 82 126 117 122 80 606 
Producer accuracy (%) 81.01 74.39 80.95 80.34 90.16 92.50  
User accuracy (%) 76.19 67.03 85.00 80.34 94.83 94.87  
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Figure 3: SVM classification results of input Landsat image data: a – Landsat 8 true colour 
composite; b – Landsat 8 (2013); c – Landsat 7 (2003); d – Landsat 5 (1993) classification 

outputs. 
 
Figure 4 shows a comparison of the classified Built-up land use/land cover estimates derived from 
the multi-date Landsat using the SVM algorithm. The figure shows major agricultural zones, value 
and vulnerability. Overall, the average change between the 1993 and 2013 land use/land cover 
predictions was 38.92%. For the Built-up class only, the percentage change was 13.07%, 38.37%, 
and 32.03% for the period 1993 to 2003, 2003 to 2013 and 1993 to 2013 respectively (Table 3). 
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Figure 4: Built-up land use/land cover class within agricultural land categories in uMngeni: a 

– Built-up (white pixels) extracted from high-resolution (2.5 m) SPOT5 image; b – Built-up 
(red pixels) layer extracted from Landsat 8 (2013); c – Landsat 7; d – Landsat 5 images 

overlaid on the AEZs. 
 
Table 3: Multi-temporal land use/land cover change 

Class changes 1993–2003 (%) 2003–2013 (%) 1993–2013 (%) 

Unclassified 0 0 0 

Built up 13.07 38.37 32.03 

Grassland 19.06 15.18 9.98 

Cropland 2.18 2.83 1.76 

Bare land/sparse veg. 42.70 35.96 49.85 

Plantation 18.87 4.51 3.47 

Water body 4.52 3.15 2.87 

Class Total 100 100 100 

Class Changes 25.34 47.63 38.92 

 
Figure 5 shows an example of high-value agricultural land threatened by increasing settlement. The 
red areas show increasing growth in built-up areas between 1993 and 2013. 
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Figure 5: An illustration of increases in Built-up land use/land cover with high value 

agricultural land. 
Note: a – Agricultural land categories; b – Built-up extracted from 2013 Landsat 8 image; c – Built-up extracted from 
2003 Landsat 7 image; d – Built-up extracted from 1993 Landsat 5 image. 
 
4. Discussion 
 
Whereas large-scale regional determination of land use/land cover transformation remains critical, 
localised administrative land use/land cover change detection provides valuable insights for both 
short- and long-term monitoring and protection of high-value AEZs. Moreover, multi-temporal 
analysis of settlement offers insight into past, current and future agricultural potential. In this regard, 
increasing availability and accessibility of remotely sensed datasets and associated technologies 
provide better opportunities for understanding urban/agricultural landscape dynamics. 
 
Anthropogenic landscape transformation is a major cause of cumulative change in agro-ecological 
systems. Commonly, public and private policy makers require accurate and up-to-date information to 
determine the implications of anthropogenic activities on agro-ecological systems. Whereas private 
and public policy makers seem to disagree on the best means to determine the economic costs and 
benefits of mapping AEZs, Bingham et al. (1995) note that there is general agreement on the need to 
improve the availability and adoption of information on AEZs to optimise decision making. 
According to Turner et al. (1994), extents and complexity within landscapes impede reliable 
determination and prediction of the agro-ecological process arising from anthropogenic drivers. 
However, in the last few decades, remotely sensed datasets have emerged as valuable tools in 
understanding land use/land cover transformation and the associated drivers. According to Lins 
(1994), the most common reason for the adoption of remotely sensed datasets and techniques is the 
high cost of field data collection. Smit et al. (1999) note that, due to often limited budgetary 
allocation, remotely sensed datasets offer a viable option to the often costly, tedious and time-
consuming ground surveys.  
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To fully account for agro-ecological transformation, it often is necessary to value ecosystems within 
a historical context (Bingham et al. 1995). Archival data, which is available from commonly used 
sensors using objective and standardised analytical processes, provide valuable past, current and 
future agro-ecological trends. These, in concert with mainstream geographic information systems, 
offer additional value like digital storage, distribution and re-analysis, which often are difficult to 
achieve using other mapping techniques. Whereas fine spatial resolution mapping has for a long time 
been regarded as a major advantage of surveys over remotely sensed data, improvements in the spatial 
and spectral characteristics of the imagery has reduced the need for survey-oriented ground points. 
This provides a further economic advantage, as it eliminates the need for complementing remotely 
sensed and survey datasets for validation.  
 
As a result of the additional costs required for higher classification accuracies, what is regarded as 
adequate is commonly determined by the minimum cost for datasets, characteristics, processing and 
analysis for a specific purpose. Consequently, due to the high multiplicity of interest groups and 
stakeholders interested or involved in determining the transformation of agro-ecological systems, it 
often is desirable that users of remotely sensed products determine their own minimum thresholds 
and the most cost-effective means of achieving the desired thresholds. Smit et al. (1999) provide an 
example of the provision of agro-ecological subsidies to European farmers based on the mapping 
errors of commission and omission. They note that an error of mapping omission will lead to 
underestimation, hence farmer losses, while an error of mapping commission may lead to 
overestimation and therefore government losses through over-subsidisation. 
 
South Africa has limited high-potential agricultural land available for long-term sustainable 
agriculture, estimated at less than 4% of available agricultural land (ARC-ISCW 2005). Much of this 
land, however, has already been lost to non-agricultural land uses such as residential, industrial and 
mining, or is under severe pressure from other non-agricultural development (Collett 2013). The use 
of high-potential agricultural rural and peri-urban land must be viewed against the need to utilise it 
for production to achieve national food security versus providing for the necessary urbanisation 
process. This requires careful consideration to determine optimal and sustainable land-use options. 
Commonly, due to a lack of short- and long-term multi-temporal information on land use/land cover 
patterns, optimal and sustainable decisions often are a challenge. In this study, the integration of the 
SVM learning algorithm and multi-date Landsat data yielded important information for the time 
periods investigated. The results obtained in the study identified changes in Built-up land use/land 
cover that occurred from 1993 to 2003, 2003 to 2013, and 1993 to 2013 in the uMngeni Local 
Municipality. Generally, increased Built-up surfaces in the study area can be related to known land 
use/land cover changes, or the conversion of agricultural land to other uses (Collett & Mitchell 2012). 
Using multi-temporal datasets from different missions, the accuracy of the land use/land cover 
classification analyses was realistic and the mapping procedure was repeatable.  
 
Generally, the transformation of valuable agricultural land into land uses associated with settlement 
is influenced by a range of factors that include economic, policy and institutional, social and cultural, 
environmental and biophysical considerations. Notwithstanding the circumscription of the study to 
assess the extent to which they contribute to the transformation of agricultural land to other land uses, 
economic factors, driven by urbanisation, are generally considered to be the strongest influence in the 
transformation of the rural and peri-urban landscape. 
 
In some instances, the implementation of a new policy serves as an unintended impetus to rural and 
peri-urban land transformation. Following decades of segregated spatial development, the South 
African government promulgated the Development Facilitation Act No. 67 of 1995 as an instrument 
for the advancement of the Reconstruction and Development Programme (RDP). The significant 
change (approximately 38%) in Built-up area during the period 2003 to 2013 seen in this study 
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therefore could be attributed to the use of this legislation to promote development in the uMngeni 
Municipality.  
 
Globally, population is expected to continue to rise. However, population growth remains both an 
opportunity to increase food production and a threat to agricultural land in favour of development for 
human settlement. The transformation of agricultural land therefore should be considered within the 
context of sustainable development without neglecting other development imperatives. In this 
respect, this study advocates a holistic approach to land development without prejudice to specific 
types of land use. 
 
5. Conclusions 
 
Multi-temporal change in Built-up cover indicates that some agricultural land has been converted to 
settlement and associated infrastructure in the uMngeni Municipality. The rate of increase in Built-
up land use/land cover often relates to a number of factors that include the subdivision of agricultural 
land for alternative uses, socio-economic development and legislation. Based on the study findings, 
it is concluded that the adoption of remotely sensed datasets offers a superior and cost-effective means 
to determine the transformation of AEZs. The results of this study offer valuable insights into the 
influence of settlement trends on the area’s AEZs. Furthermore, the findings of this study hold great 
promise in providing an understanding of landscape transformation resulting from the presence or 
absence of policy guidelines for agricultural productivity and urbanisation.  
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