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Abstract.   A generalized maximum entropy estimator is developed for the linear simultaneous

equations systems model.  We provide results on large and small sample properties of the

estimator.  Empirical results illustrate efficiency advantages of the generalized maximum entropy

estimator proposed in this study over traditional estimators (e.g., 2SLS and 3SLS). 
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Introduction

The simultaneous equation systems model (SESM) has been extensively applied in many areas

of agricultural economics.  For the linear SESM, the traditional estimators include two stage least

squares, three stage least squares, and maximum likelihood methods that yield consistent

estimates of structural parameters by correcting for simultaneity between the endogenous

variables and the disturbance terms of the statistical model.  However, in the presence of small

samples or ill-posed problems, the traditional approaches may provide parameter estimates with

high variance and/or bias, or provide no solution at all.

Recently generalized maximum entropy (GME) estimators were proposed for the general

linear model in both the moment (Golan, Judge, and Miller 1996) and data-constrained forms

(Mittelhammer and Cardell 1998), for the data-constrained form under autocorrelated error terms

(Sever, Murat, and Cardell 1998), and for the linear SESM in several different ways (Golan,

Judge, and Miller 1996; Golan and Judge 1997).  Properties of the  GME estimators in the

context of the linear SESMs are indeed promising, judging from a limited number of Monte

Carlo simulations of the estimators’ performance.  However a rigorous statistical foundation

relating to the performance of the maximum entropy estimator - including the finite sample

properties of the estimator, as well as the asymptotic properties of both the estimator and test

statistics based on the estimator - has not yet been fully developed and is in need of further study

before the procedure can be confidently adopted for widespread use by empirical economists.

Some Monte Carlo results have suggested that the GME estimator is superior to

traditional estimators in the presence of small samples or when the underlying sampling method

is incomplete or incorrectly specified (see Golan, Judge, and Miller 1996).  In extreme cases of
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incomplete or incorrect sampling methods the problem is commonly referred to as an ill-posed

problem.  Maximum entropy provides a principle or formalism to cope with such ill-posed

problems and provides a method for improving on estimation efficiency over traditional

estimation approaches even for problems that are not ill-posed (see, for example, Shannon 1948

or Donoho 1992).

 In this paper we propose a new generalized maximum entropy estimator for the linear

SESM with contemporaneous correlation in the error structure.  It is a data constrained

structural-equation generalized maximum entropy estimator, or SGME, which accounts

explicitly for simultaneity problems inherent in a system of equations.  We provide results on the

large sample properties of the estimator including consistency and asymptotic normality.  We

also provide a collection of asymptotically chisquare-distributed test procedures capable of

testing all of the hypothesis tests typically performed in applied econometrics.  For small sample

properties, we provide empirical evidence from Monte Carlo sampling experiments. 

As a basis for an intensive Monte Carlo sampling experiment, we analyze an

overdetermined simultaneous systems model.  The Monte Carlo simulations suggest that in

larger sample situations the SGME is generally not dominated by two and three stage least

squares estimators, and in small sample situations the SGME is the much more efficient

estimator. 

Overall, the results of this paper elevate the SGME to a mainstream status for applied

econometricians that is comparable to traditional estimation techniques; including rigorous

theorems on asymptotic properties of the estimator and test statistics, and empirical evidence

suggesting the contexts in which the SGME is superior to the traditional approaches.



1The notation ,=vec(, 1,...,, G) represents the vertical concatenation of the G vectors , 1,...,, G, which in
this case are each of dimension (N x 1), into a (NG x 1) vector. 

2The subscript notation (-g) implies that Y(-g) is a (NxGg) matrix formed by: (1) always removing the
column vector yg and (2) possibly removing other endogenous vectors due to zero exclusions.  For example, if only 
yg is removed from Y then Y(-g) is a (NxG-1) matrix.  On the other hand, if  yg and yg+2 are removed from Y then Y(-g)

is a (NxG-2) matrix.
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Y'%X#%+'0 (1)

yg'Y(&g)( g%Xg$g%, g (2)

Linear Simultaneous Equations Statistical Model (SESM)

Consider the linear simultaneous equations model in matrix form 

Here ' and # represent the unknown true parameter values and + represents the unobserved true

random errors of the system.  For G equations, Y=(y1 ... yG) is a (N x G) matrix of jointly

determined endogenous variables, '=((1...(G) is an invertible (G x G) matrix of structural

coefficients of the endogenous variables, X=(x1...xK) is a (N x K) matrix of exogenous or

predetermined variables that has full column rank, #=($1...$G) is a (K x G) matrix of coefficients

of the predetermined variables, and +=(,1...,G) is a (N x G) matrix of unobserved random errors. 

The standard stochastic assumptions of the error vectors are that  for i=1,...,G,E[,i]'0

 for i=1,...,G, and  for iûj and i,j=1,...,G.  If ,=vec(, 1,...,, G)1, thenE[,i,
)

i]'Fii IN E[,i,
)

j]'Fij IN

this implies that the covariance matrix of , is defined by  with the (G x G) matrixE[,,)]'Eq IN

G containing the unknown Fij’s for i,j=1,...,G.

An alternative form of the gth structural-equation is the column vectorized form

where Y(-g) represents a (N x Gg) matrix of endogenous variables included in the gth equation

explicitly excluding the yg vector2, (g is a (Gg x 1) vector of coefficients on the endogenous
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Y'X(&#'&1)% (&+'&1)'XA%V (3)

y g'XBg%< g (4)

variables contained in Y(-g), Xg is a (N x Kg) matrix that represents the exogenous variables

included in the gth equation, $g is a corresponding (Kg x 1) vector of coefficients on the

exogenous variables contained in Xg, and ,g is a (N x 1) residual vector of the gth equation.

The reduced form model is obtained by post-multiplying (1) by ' -1 

where A=-#' -1=(B1,...,BG) is a (K x G) matrix of reduced form coefficients and V= -+'-1

=(<1,...,<G) is a (N x G) matrix of reduced form disturbances.  The vectorized reduced form of the

gth equation can be written as

Equations (1)-(4) and the identification conditions each play important roles in formulating a

consistent generalized maximum entropy estimator of the SESM, which is developed below.

A Structural-Equation GME Formulation

In this section we derive a structural generalized maximum entropy estimator of the SESM in

equation (1).  In its formulation, the objective function is based on Shannon’s entropy function. 

Shannon (1948) used an axiomatic method to define the entropy of the discrete distribution of

probabilities  as the measure where h(0)=0.  The measure h(p)p' (p1,...,pK)) h(p)'&'
K

i'1
pi ln(pi)

reaches a maximum at   when the probabilities are uniform.  Under thep1' ...'pK'1/K

maximum entropy principle h(p) is maximized subject to data and other constraints, which yields

a distribution of  p that is closest to the uniform distribution and still consistent with the data. 



5

y g'E[Y(&g)](g%Xg$ g%,g% (Y(&g)&E[Y(&g)])( g

'E[Y(&g)]( g%Xg$g%µg
(5)

E[Y(&g)]'E[XA(&g)%V g]'XA(&g) (6)

yg'X A(&g)( g%Xg$g%µg'Zg* g%µg (7)

To motivate the structural GME formulation of the SESM in (1), recall the vectorized

version of the gth equation given in (2).  Following Thiel (1971), it can be rewritten as 

As a result of this formulation, equation (5) has a nonstochastic observation matrix and the

elements of µg have zero mean, constant covariance matrix, and are uncorrelated under the

prevailing assumptions.  From the reduced form equation (3) we have that  

where A(-g) is a (K x Gg) matrix of reduced form coefficients that are associated with the

endogenous variables in Y(-g).  Combining the last two equations yields the structural model

where  and .  Equation (7) historically motivated 2SLS andZg' XA(&g) Xg *g'vec(( g,$g)

3SLS, whereby OLS is applied to obtain predicted values of E[Y(-g)] in (6), and then predicted

values of  are used in (7).X A(&g)

Data-Constrained Structural GME model of the SESM

We formulate a structural generalized maximum entropy model (SGME) by reparameterizing the

coefficients and error terms of (4) and (7) as: $=S$p$, (=S(p(, B=SBpB,  <=Szz, and µ=Sww.  The

coefficient estimates of B=vec(B1,...,BG), (=vec((1,...,(G), and $=vec($1,...,$G) can be derived

from the following constrained GME problem
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m a x

p B,p (,p $,w,z

{&p B)

lnp B&p ()

lnp (&p $)

lnp $&w )lnw&z )lnz} (8)

y' (IGqX) (S B

(&)p
B) (S(p ()%X $S$p$%S ww (9)

y' (IGqX)(S Bp B)%S zz (10)

j
M

m'1

p (

igm'1, j
M

m'1

p $

kgm'1, j
M

m'1

p B

kgm'1, j
M

m'1

wngm'1, j
M

m'1

zngm'1 (11)

subject to:

The intuition behind incorporating both the reduced and structural components is based on

several observations.  First, without the reduced form component in (10), the parameters of the

structural component in (9) are not identified.  Second, the structural component in (9) draws the

SGME estimates to the true parameter values as the sample size increases.

We define  to denote the number of unknown $kg’s and  to denote theK̄' '
G

g'1
Kg Ḡ' '

G

g'1
Gg

number of unknown (ig’s.  Then together with the KG reduced form parameters Bkg’s the total

number of unknown parameters of the system is given by .  In (9) the matrix X$ =Q' K̄% Ḡ%KG

diag(X1,..., XG) represents a (GN x ) block diagonal matrix and y=vec(y1,...,yG) is a (GN x 1)K̄

vector of endogenous variables. The (NGM x 1) vectors w=vec(w11,...,wNG) and z=vec(z11,...,zNG)

represent vertical concatenations of sets of (M x 1) subvectors for N observations (n=1, ... ,N) and

G equations (g=1, ...,G), where each subvector wng=(wng1 ... wngM)N and  zng=(zng1 ... zngM)N is made

up of M support points (m=1,...,M) for the structural and reduced form residuals ,µng and vng
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respectively.  Similarly, the vector  is a (KGM x 1) vector,pB'vec(pB

11,...,p
B

KG)

 is a (M  x 1) vector, and  is a ( M x 1) vector. p('vec(p(

11,...,p
(

KG) Ḡ p$'vec(p$

11,...,p
$

KG) K̄

Regarding the Si support matrices (for i=B, (, $, z,w), note for example, Sw is given by

S w'

S
w

1 0 ... 0

0 S
w

2 ... 0

. . . .

0 0 . S
w

G (GN×GNM)

where S w
g '

sw )

1g 0 ... 0

0 sw )

2g ... 0

. . . .

0 0 . sw )

Ng (N×NM)

and s w
ng'

s
w

ng1

s
w

ng2

.

s w
ngM (M×1)

In (9), the matrix  defines the supports for the matrix .S B

(&) d i a g A(&1),...,A(&G)

Consistency and Asymptotic Normality

Regularity Conditions.  To derive consistency and asymptotic normality results for the SGME

estimator, we assume the following regularity conditions.

R1. The N rows of the (N x G) disturbance matrix + are independent random drawings
from an G-dimensional population with zero mean vector and unknown but finite
covariance matrix E.

R2. The (N x K) matrix X of predetermined variables has rank K and consists of
nonstochastic elements.  And,  where S is a  p.d. matrix.l i m

1

N
XNX'S as N64

R3. The elements <ng = µng (n=1,...,N, g=1,...,G) of the vector µg are independent and
bounded such that cg1 + Tg # µng # cgM - Tg for some Tg>0 and large enough
positive cgM = -cg1. The pdf of µ is assumed to be symmetric about the origin with
a finite covariance matrix.

R4.       Bkg 0 (BkgL, BkgH), for finite BkgL and BkgH, é k =1,...,K and g =1,...,G.
 (jg 0 ((jgL, (jgH), for finite (jgL and (jgH, é (jûg) j,g =1,...,G; (gg=-1.

 $kg 0 ($kgL, $kgH), for finite $kgL and $kgH, é k =1,...,K and g=1,...,G.
R5. For the true #, and nonsingular ' there exists a p.d. matrices Qg (g=1,...,G) h

.lim
N64

1

N
Z )

gZg6Q g where A'#'&1

Below the theorems for consistency and asymptotic normality of the structural parameters
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 are stated.  Proofs are available from the authors upon request.$*'vec($*1,...,
$*G)

Theorem 1.  Under the regularity conditions R1-R5, the SGME estimator, , is a$2'vec( $B,$*)

consistent estimator of  the true coefficient values 2=vec(B,*).  

Theorem 2.  Under the conditions of Theorem 1, the SGME estimator, , is$*'vec($*1,...,
$*G)

asymptotically normally distributed as .$*-
a

N(*,
1

N
S&1
> SES

&1
> )

The elements of the asymptotic covariance matrix are  whereS>'diag >1Q1,...,>GQG

 and 8w is the lagrangain multiplier>w
ng(J)'

M8w(ung(J))

Mung(J)
' j

M

m'1

(s w
ngm)2 wngm(8w(ung(J)))& (ung(J))2

&1

with respect to the nth observation and gth structural equation.  In addition ,1

N
Z(E8qI)Z )6SE

where  and  is a (G x G) matrix of the covariances for the  .Z'diag Z )

1,...,Z )

G E8 8w
ng

)

s

Given the SGME estimator  is consistent and asymptotically normally distributed, then$*

asymptotically valid normal and P2 test statistics can be used to test hypothesis about .  For*

empirical implementation a consistent estimate of the asymptotic covariance of , or ,$* S&1
> SES

&1
>

is required.  First, we define 

 and ,  $>g'
1

Nj
N

n'1

1

j
M

m'1

(s w
ngm)2wngm(8w(ung(

$*))&ung(
$*)2

$Qg'
1

N
Z )

gZg

then .  Second, a straightforward estimate of SE can be constructed$S>'diag $>1
$Q1,...,

$>G
$QG

using an estimate of the (G x G) matrix E8 based on  for i,j=1,...,G. $Hij'
1

N
8w(u

Ci(
$*)))8w(u

Cj(
$*))

Finally, we define the estimated asymptotic covariance matrix as .$Cov($*)' 1

N
$S&1
>
$SE

$S&1
>

Asymptotically Normal Test.  Since is asymptotically N(0,1) under the null hypothesisZ'
$*ij&*

0
ij

$Var( $*)ii

H0: , the statistic Z can be used to test hypothesis about the values of the *ij’s.*ij'*
0
ij

Wald Test.  Let  H0:  be the null hypothesis to be tested.  Here R(*) is a continuously R(*)' [0]
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differentiable L-dimensional vector function with rank =L#K.  For a linear null hypothesisMR(*)

M*

.  The Wald statistic has a P2 limiting distribution with L degrees of freedom, asR(*)'R*

  under the null hypothesis.  W'(R($*)&r))
MR($*)

M*

)

$Var($*)
MR($*)

M*

&1

(R($*)&r)6
d

P2
L

Lagrange Multiplier Test.  Let *R be a restricted SGME estimator of * and .  $*R'argmax
J:R(*)'r

{F(J)}

  under the null hypothesis H0: .LM'L($*R)) ( $Var($*))L($*R)6
d

P2
L R(*)' [0]

Above F(J) is the conditionally-maximized entropy function that is a solution to (8)-(11).

Monte Carlo Experiments

In this sampling experiment we set up an overdetermined simultaneous systems model that

corresponds to the empirical model discussed in Golan and Judge (1997) in order to directly

compare the results of the alternative GME estimators.  This system was introduced by Tsurumi

(1990) and is a modification of the model used by Cragg (1967).  The ', # and covariance

matrices are

'

&1 .267 .087

.222 &1 0

0 .046 &1

B'

6.2 4.4 4.0

0 .74 0

.7 0 .53

0 0 .11

.96 .13 0

0 0 .56

.06 0 0

'

1 &1 &.125

&1 4 .0625

&.125 .0625 8

The exogenous variables are drawn from a N(0,1) distribution, while the errors for the structural

equations were drawn from a truncated multivariate normal with mean zero and covariance 3qI. 

The support spaces specified for the structural and reduced form models are sik
$=sik

B=[-5,0,5]N for

k=2,...,7;  sik
$=sik

B=[-20,0,20]N for k=1; and sin
(=[-2,0,2]N for i,n=1,2,3.  The error supports for the

reduced form and structural model are specified as din= vin=[-Ti-3Fi,0,3Fi+Ti], where Fi is the

standard deviation of the errors from the ith equation and from R3 we let Ti=2.5. 
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Results

Results of the ' parameters from sampling experiment are presented in Table 1.  The precision of

the parameter estimate and the reduction of mean square error (MSE) is apparent over the

traditional 2SLS and 3SLS estimates (with true covariance matrix) in small samples.  In the

tables below notice that the MSE are reported in the parentheses below the coefficient estimate.

From Table 1 we can infer several implications.  First, the standard GME estimates are

not converging to the true values, suggesting that standard GME estimator - like the OLS

estimator - is not consistent when the Y(-i) are correlated with the error vector ei.  Second, as the

sample size increases the 2SLS, 3SLS, and the SGME estimates are converging to the true

coefficient values.  Third, predominately the SGME has the lowest MSE among the consistent

estimators.  For small samples of 20 observations, the MSE performance of the SGME estimator

is vastly improved relative to the 3SLS estimator with the true covariance structure.  As the

sample size increases from 20 to 100 to 200 observations, the MSE of the 3SLS estimator

approaches that of the SGME estimator.

Conclusions

In this paper we proposed a data constrained structural generalized maximum entropy estimator,

or SGME model, for the linear simultaneous equations statistical model with contemporaneous

covariance in the error terms.  We have shown that the SGME estimator is consistent and

asymptotically normal under the assumed regulatory conditions.  Moreover, asymptotically

distributed test statistics were derived that are capable of preforming all of the hypothesis tests

typically used in applied econometrics.

 Monte Carlo results indicate that like ordinary least squares the standard data constrained
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generalized maximum entropy estimator, or GME model, is not a consistent estimator for the

SESM.  This is because the correlation between endogenous variables and the errors are not

accounted for in either model formulation.  In regard to the other estimators of the linear SESM,

the Monte Carlo simulations suggest that in larger sample situations, the SGME estimator is

comparable to traditional estimators.  In contrast, small sample simulations indicated that the

SGME is likely to be a more efficient estimator than 2SLS or 3SLS.  
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Table 1. Monte Carlo results from 1000 repetitions using GME, 2SLS, 
3SLS(E), and SGME.  Structural parameter (12 with true value .267.

Obs GME 2SLS 3SLS(E) SGME

20 .073
(.054)

.259
(.976)

.403
(.948)

.303
(.025)

100 -.064
(.006)

.277
(.157)

.311
(.141)

.287
(.034)

200 -.151
(.182)

.255
(.096)

.270
(.083)

.270
(.033)

400 ---- ---- ---- .270
(.024)

Structural parameter (13 with true value .087.

20 .107
(.045)

.064
(.506)

.067
(.506)

.205
(.052)

100 .046
(.039)

.082
(.078)

.083
(.078)

.139
(.041)

200 .009
(.030)

.090
(.037)

.090
(.037)

.122
(.027)

400 ---- ---- ---- .106
(.015)

Structural parameter (21 with true value .222.

20 .078
(.034)

.134
(.097)

.200
(.089)

.317
(.036)

100 -.053
(.082)

.211
(.018)

.229
(.017)

.264
(.016)

200 -.112
(.116)

.219
(.009)

.229
(.009)

.247
(.009)

400 ---- ---- ---- .235
(.004)

Structural parameter (32 with true value .046.

20 .068
(.014)

.050
(.330)

.013
(.324)

.146
(.078)

100 .053
(.006)

.041
(.125)

.027
(.100)

.086
(.050)

200 .048
(.003)

.058
(.083)

.051
(.061)

.075
(.040)

400 ---- ---- ---- .065
(.024)
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