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Abstract
Should econometricians always incorporate economic theory in their

models or only when unrestricted estimators are found to violate an inviolable
theory?  Using Monte Carlo experiments, we find that econometricians should
use economic theory to the fullest extent possible.  To paraphrase Leamer’s
classic article, we should put the “econ” into econometrics.



Putting the “Econ” into Econometrics

Econometrics is supposed to be a field that combines economics and statistics;

however, econometricians rarely make full use of economic theory in their work. 

Economic theory is frequently used in the selection of explanatory variables for a

regression model, is occasionally used in the choice of functional form, and is rarely

used in the actual estimation of the parameters.  The paucity of economic theory in

specifying functional forms should not be blamed completely on econometricians, as

economic theory is often uninformative with respect to functional form; some exceptions

are noted by Lopez.  The same excuse cannot be used with respect to the estimation

process, specifically econometricians’ failure to make use of economic theory when

estimating model parameters.  Following Leamer’s call to take the “con” out of

econometrics, we now suggest it is time to put the “econ” into econometrics.  In support

of this position, we present evidence that by using economic theory econometricians

can more precisely estimate economic models.

Econometricians often impose certain equality restrictions that derive from

economic theory (e.g., homogeneity) in their estimation algorithms.  However, these

restrictions simplify the estimation process by reducing parameters and are easy to

impose; we will not focus on this facet of economic theory as it is not an area of

dispute.  Economic theory often contains additional information that translates into

inequality restrictions (e.g., sign restrictions, curvature conditions).  Econometricians

typically ignore such information during an initial estimation algorithm, check ex post to

see if the economic theory at issue is violated by the unrestricted estimates, and if so

re-estimate the model with the necessary restrictions imposed (cf. Shumway and



Alexander).  That is, the econometrician never meant to allow a violation of those

restrictions, but did not incorporate them initially for convenience.  This results in a pre-

test estimator which is known to be inadmissable from the point of view of statistical

efficiency (Judge et al.).  An alternative would be for econometricians to impose from

the beginning of the estimation process all the restrictions based on economic theory

which the econometrician is not truly willing to challenge. 

Traditionally, econometricians have not imposed such inequality restrictions as a

matter of course because of the difficulty of imposing such restrictions (Shumway and

Alexander; Weaver). In the past, imposing such restrictions would have forced

econometricians to abandon the comfort of least squares estimates and resort to

restricted maximum likelihood or restricted least squares algorithms with iterative

search routines required to derive the optimal estimates.  However, recent advances in

numerical Bayesian methods allow econometricians to incorporate inequality

restrictions in an easy and straightforward manner (Geweke, 1986).  With the advent of

these techniques and their growing use in applied econometrics (Chalfant; Chalfant,

Gray, and White; DeJong, and Whiteman; Geweke, 1988a; Hayes, Wahl, and Williams;

Poirier), it seems appropriate to examine the potential benefit of relying on such

estimation algorithms in the place of common pre-test approaches.

This paper examines the benefit of imposing all relevant economic restrictions in

econometric estimation through a series of Monte Carlo experiments in which restricted

estimates are compared to unrestricted estimates on the basis of mean squared error

for certain economic measures.  Econometric estimation will be conducted on a simple

single equation model with independent sign restrictions on some coefficients and on



systems of equations with curvature restrictions that translate into highly nonlinear

restrictions on the structural coefficients.  The economic measures of interest will be

taken to be elasticities (or flexibilities) in all cases; that is, we will measure the mean

squared error of the estimated elasticities, not the structural coefficients of each model. 

After looking at the relative statistical precision of the different elasticity estimates, we

find that it is time to put the “econ” into econometrics and fully utilize economic theory

in our estimation algorithms.

The Data Generating Models

Three different data generating models were used in this study.  The first is

based on Waugh’s data set on potato demand.  This data set consists of fifteen

observations on potato prices, quantities, and income.  To generate Monte Carlo data

sets, a matrix of explanatory variables X (intercept, quantity, and income) is

bootstrapped with 50 observations, then a vector of dependent variables y is created

using the model y  = X� + �  where � is the OLS coefficient vector estimates from thei i i

original data set and �  is a vector of i.i. normally distributed error terms with variancei

that will be varied through a series of experiments.  For any single experiment, 1000

data sets are generated through the bootstrapping procedure.

The second data generating model is more complex and is based on a

normalized quadratic profit function.  The production process is specified to have three

variable inputs and one output that is stochastically produced with an additive

Gaussian error to represent uncertainty in production efficiency.  The firm is assumed

to maximize a normalized quadratic profit function with known normalized input prices



and a stochastic normalized output price that is forecast to equal the past period’s

actual price plus a known deterministic drift.  The two normalized input prices evolve as

independent AR(1) processes, one stationary and one nonstationary.  Data sets of 50

observations on quantities and normalized prices are generated randomly by finding

the optimal input demands and planned output for the known input prices and projected

output price for a single period.  Actual output and output price are then determined by

the addition of additive error terms to each.  The prices then evolve according to their

defined dynamic processes, and the next observation of data is generated. 

Coefficients in the model are based on those published by Lopez and the model was

calibrated to loosely represent the pattern of agricultural production data over the last

half century.  Each Monte Carlo experiment consisted of 1000 data sets generated with

a specific pair of variances for the i.i. normally distributed errors added to output price

and quantity to represent the stochastics of the production and pricing processes.

The third data generating process is similar to the second, but is based on a

normalized quadratic cost function.  The production process is assumed to have five

inputs (capital, labor, energy, materials, and services) producing one output.  Four

conditional input demands are solved for to minimize cost based on planned output and

known input prices (the numeraire equation is not included as those elasticities can be

recovered through the restrictions of symmetry and homogeneity).  Input prices are

simulated by AR(1) processes with drift through 50 observations meant to represent

annual data; output evolves as an AR(1) with drift and trend.  The parameters of the

cost function and the standard deviations of the random terms in the price and output

equations were calibrated to match the features of actual annual data on the chemical



and allied products manufacturing sector (SIC 28).  This Monte Carlo experiment again

consisted of 1000 data sets.  However, variances were not changed in the cost function

example, but remained at the values estimated using actual data on the chemical and

allied products manufacturing sector.

The Estimation Methods

The benefits of imposing economic theory are evaluated by comparing the

results of models estimated by different methods.  The first method is unrestricted

generalized least squares estimation (equivalent here to maximum likelihood estimation

for the elasticity estimators) and represents the method used most commonly by

econometricians.  The second method, used to impose the restrictions from economic

theory, is Bayesian.  The prior distribution on the parameters is taken to be a product of

independent, large variance, normal distributions on the regression coefficients, an

indicator function that equals one when all the restrictions are satisfied and zero

otherwise, and a Jeffreys (ignorance) prior on the variance components, p(() � |(|-

, where m is the dimension of the covariance matrix.  Importance sampling with(m+1)/2

antithetic replication (Geweke, 1988b) is employed to generate a Monte Carlo sample

from the posterior distribution of the function of interest (e.g., elasticities) and the

posterior mean is taken to be the optimal estimate, implying a quadratic loss function. 

Thus, the Bayesian restricted estimates are based on prior information that is extremely

informative with respect to the economic theory (no support for estimates that violate

the theory), but very mildly informative with respect to numerical magnitudes (with

priors that are quite diffuse while still proper).  Each restricted estimate is based on



1000 random draws (500 antithetic pairs) which was empirically determined to be

enough to provide suitable numerical accuracy to the posterior means of the

elasticities.  For both methods, equality restrictions such as homogeneity and symmetry

are imposed in all experiments through construction of the data matrices.

A third estimation method is employed in the final experiment.  To provide a

small piece of evidence on the relative merits of imposing economic theory using the

Bayesian estimation technique, a standard restricted maximum likelihood approach is

performed with data generated from the cost function model.  For this experiment,

elasticities are also estimated by a non-Bayesian, restricted maximum likelihood

estimation algorithm.

The economic theories imposed on the three experiments are as follows.  The

single equation demand models are assumed by economic theory to have negative

price flexibilities and positive income flexibilities.  The profit function is assumed by

economic theory to be convex in output and input prices; homogeneity and symmetry

are imposed through construction of the data matrix on both restricted and unrestricted

estimates.  The cost function is assumed by economic theory to be concave in input

prices; again homogeneity and symmetry are imposed in all estimations.

Empirical Results

Demand Experiments

Nine experiments were conducted on the Waugh potato data using different

variance settings when generating the bootstrapped data, representing a range from

1/3 to 3 times the estimated variance of the original data.  The priors on the three



regression coefficients for the Bayesian restricted estimates were N(µ = 0, ) = 250) on

the intercept and Half-N(0, 250) on the quantity and income coefficients with truncation

to restrict the prior support to negative and positive values, respectively.  The mean

squared errors of the price and income flexibilities are computed for restricted and

unrestricted estimates relative to the “true” flexibilities from each data set (although the

true model parameters don’t change, the flexibilities vary slightly by data set with the

mean of the price, quantity, and income variables).  The results of these nine

experiments are shown in Table 1.

These results show a general superiority of the restricted estimates with the

relative efficiency of the restricted estimator increasing as the number of violations

increases (in conjunction with the variance of the error terms).  This result is expected;

however, it is worth noting that the restricted estimator appears to enjoy an advantage

over the unrestricted estimates even with as few rejections as 3 or 5 out of 1000 data

sets.  All of the violations of the economic theories imposed in these experiments come

on the income coefficient.  The restricted estimator of the price flexibility still has a MSE

that is progressively smaller than the MSE of the unrestricted price flexibility as the

number of rejections of the restriction on the income coefficient increases.  While the

relative advantage of the restricted estimator of the price flexibility is not as great as

that of the restricted estimator of the income flexibility, it is still a significant advantage

even though that coefficient never violates its associated restriction and the two prior

distributions on these parameters are independent.

Profit Function Experiments

Using the normalized quadratic profit function data generating mechanism, the



convexity of the profit function in output and input prices was imposed in the restricted

estimation algorithm; no individual coefficient signs were restricted.  For each of these

experiments, the variances of the error terms in the stochastic output and output price

processes were varied around a base value of 0.50.  One variance was fixed at 0.5,

while the other was set to 0.1, 0.25, 0.5, 0.75, and 1.00.  Thus, ten Monte Carlo

experiments were conducted, each with 1000 data sets.  The (0.5, 0.5) variance pair is

included twice to check precision of the results.

Results of the experiments with convexity restrictions are shown in Table 2

where only the ratio of the MSEs is shown for these experiments to save space.  Out of

90 elasticities, the restricted estimator is preferred on the basis of MSE in 75 cases. 

Except for the first elasticity (output supply price elasticity) which always favors the

unrestricted estimator, there are only five other cases where the restricted estimator is

not superior.  The explanation of the contrary results on the output price elasticity of

supply appears to be that the restricted estimator adds positive bias to this parameter

in order to ensure convexity.  Overall, these results show a clear superiority by the

restricted estimator.

The advantage of the restricted estimator in terms of MSE is not only pervasive,

but quite large in percentage terms.  For the 75 elasticities where the restricted

estimator is superior the average ratio of MSEs is approximately 1.27, implying that

imposing the restrictions from economic theory led to a 27 percent improvement in the

MSE of the elasticity estimates.  In 22 cases, the restricted estimators have MSEs that

are less than half the size of the unrestricted estimators (ratios greater than 2).  

The size of the two variances appears to have little effect on the results.  In the



cases with a very small variance in the stochastic output price process (0.10 and 0.25),

the two estimators have MSE ratios that are closer to one than in general for the rest of

the experiments.  Other than for these two cases, no general trend is noticeable with

respect to changes in the variances of the two stochastic process.  This is probably

because there is little correlation between the variances and the number of generated

data sets which lead to unrestricted estimates that violate the economic restrictions. 

The number of draws in the Bayesian importance sampling algorithm which are

assigned zero weights due to violating the restrictions is clearly and positively

correlated with the output price variance, but not with the output variance.  

Further, in about 3 percent of the simulations the Bayesian method relies on

fewer than 100 draws due to large numbers of violations in the random sample.  In a

nonautomated situation, a Bayesian econometrician would surely add draws to the

numerical approximation algorithm in cases with many zero-weight draws to ensure

numerical accuracy; such a practice should further increase the efficiency of the

restricted Bayesian estimator.

Cost Function Experiments

For the cost function experiments, variances for the stochastic processes used

to simulate input prices and output quantities are held fixed at values estimated using

actual data on the chemical and allied products manufacturing sector of the U.S.

economy, not varied as in the profit function experiment.  This is due to the lack of any

clear pattern in the profit function experiments with respect to the amount of

randomness included in the profit function data generating process.  Estimation

efficiency is measured on the sixteen input price elasticities of the four conditional input



demand functions included in the system estimation; the elasticities for the numeraire

input are not included as they are all linear functions of the sixteen elasticities which

are presented.

In this final experiment, a set of 1000 cost function data sets were generated and

the elasticities estimated three different ways: unrestricted generalized least squares,

the Bayesian restricted estimation algorithm, and a restricted maximum likelihood

estimation algorithm.  This allows us to compare the advantage of fully imposing the

economic theory through the Bayesian technique which ignores the part of the

likelihood surface which violates the restrictions versus the restricted maximum

likelihood approach which simply chooses the maximum point on the admissible part of

the likelihood surface.  One can think of both of these restricted estimators as

Bayesian: the  first (the posterior mean) is an optimal Bayesian point estimate under

quadratic expected loss while the second (posterior mode) is optimal under a zero-one

expected loss function (Zellner).

The results of this experiment are presented in Table 3.  Three sets of MSE

ratios are needed to evaluate this experiment.  Table 3 presents ratios of unrestricted

over restricted Bayesian, unrestricted over restricted maximum likelihood, and

restricted maximum likelihood over restricted Bayesian.  The first set of ratios show a

very clear advantage for imposing economic restrictions on the cost function’s

parameter estimates.  All 16 elasticity estimators for the Bayesian restricted method

have smaller MSEs than the corresponding unrestricted estimators (meaning ratios

greater than one).  The second ratio shows that the restricted maximum likelihood

estimator did not improve on the unrestricted estimator in terms of efficient estimation



of the elasticities; in fact, the MSEs are essentially identical for 14 out of the 16

elasticities.  That the restricted maximum likelihood estimator is not an improvement is

somewhat surprising.  Although 458 of the 1000 unrestricted estimators violated the

concavity restriction, this restriction is not directly related to single coefficient

estimates.  Thus, imposing the joint restriction does not appear to improve the

estimation accuracy of the individual elasticities.  The third ratio shows that the

posterior mean estimates derived by the restricted Bayesian method are superior to the

restricted maximum likelihood estimates (equal to the posterior mode).  Since MSE is

compatible with the quadratic loss function used to derive posterior means, this is not

completely surprising.  All of the 16 ratios favor the Bayesian restricted estimator (ratios

greater  than one), generally by a 10-20 percent margin.

This result suggests that not only is there a benefit to imposing economic theory,

but that the most benefit is gained by fully imposing the theory; that is, using the mean

of the posterior distribution which has excluded support for parameter values which

violate the restrictions.

Conclusions

For all three sets of experiments conducted in this investigation the Bayesian

restricted elasticity estimators are superior in terms of mean squared error.  The results

of this study suggest that Bayesian restricted estimates frequently offer an increase in

statistical efficiency.  Further, we have provided evidence that Bayesian methods of

imposing nonlinear and inequality restrictions are superior to standard maximum

likelihood estimation approaches.  Because Bayesian Monte Carlo methods now allow



estimators to be computed for cases with either or both inequality and nonlinear

restrictions in a few minutes of computer time for virtually all economic models,

econometricians need to consider the practice of imposing such nonlinear or inequality

restrictions in all cases, rather than only when they are violated by unrestricted

estimates.

While most of the paper compared restricted to unrestricted estimates and did

not stress that the restricted estimator was Bayesian, the final experiment presents

evidence showing the fully Bayesian restricted estimator to be superior to a standard

restricted maximum likelihood estimator and that the restricted maximum likelihood

estimator is no improvement over the unrestricted estimator.  Thus, one may need to be

a Bayesian to put the “econ” into econometrics.



Table 1.  Flexibility MSEs from Potato Experiments

   Unrestricted      Restricted        Ratio

  k   price     income   price      income    price      income # of violations

 0.33 0.00643   0.00035 0.00642   0.00035  1.00190   1.00010   0

 0.67 0.02346   0.00138 0.02350   0.00138  0.99853   0.99977   0

 1.00 0.05583   0.00317 0.05483   0.00305  1.01826   1.03886   0

 1.33  0.09706   0.00544 0.09304   0.00483  1.04316   1.12654   3

 1.67 0.15910   0.00886 0.14615   0.00716  1.08858   1.23816   5

 2.00 0.25664   0.01224 0.23226   0.00912 1.10496   1.34243  31

 2.33 0.32095   0.01626 0.27933   0.01063 1.14897   1.53020  53

 2.67 0.41905   0.02256 0.36142   0.01520 1.15946   1.48409  70

 3.00 0.53118   0.02719 0.44107   0.01703 1.20430   1.59628 107

k is the multiple of the original data variance used to generate the data sets.  Ratio is the ratio of the

unrestricted estimator’s MSE to the restricted estimator’s MSE; thus values greater than one indicate

superiority of the restricted estimates.  The # of violations is the number of unrestricted estimates that

violated the restrictions (out of the 1000 total data sets).



Table 2.  Ratios of MSEs for Elasticities from Profit Function with Con vexity Restriction

Variance Elasticity

- 5 1 2 3 4 5 6 7 8 9    # Violations   p=02 2

0.10 0.50 0.907 2.164 1.151 2.047 2.365 1.215 1.120 1.207 1.267   90   95.6

0.25 0.50 0.908 3.031 1.211 2.614 3.094 1.261 1.139 1.237 1.267 116 101.4

0.50 0.50 0.908 2.243 1.122 2.111 2.476 1.192 1.093 1.197 1.242 102   96.6

0.75 0.50 0.909 2.036 1.086 1.923 2.217 1.155 1.068 1.151 1.318 108   96.7

1.00 0.50 0.909 2.026 1.181 1.923 2.188 1.236 1.136 1.218 1.330 121  98.7

0.50 0.10 0.997 1.003 1.004 1.002 1.002 1.002 1.003 1.002 1.007    3  0.01

0.50 0.25 0.982 1.131 1.108 1.124 1.167 1.147 1.093 1.140 1.124   99  18.6

0.50 0.50 0.911 2.528 1.146 2.310 2.724 1.240 1.117 1.223 1.227 102  90.7

0.50 0.75 0.827 2.918 1.011 2.664 2.269 0.928 0.947 0.934 1.571   77 159.9

0.50 1.00 0.763 2.712 1.354 3.128 2.969 0.866 1.063 0.878 1.682   93 223.8

-  is the variance of the stochastic part of production, 5  is the variance of the stochastic part of the output price’s dynamic process.  All values in2 2

columns 3-11 are MSE of unrestricted estimates over the MSE of restricted estimates.  Column 12 (# Violations) is the number of data sets which

had unrestricted estimators that violated at least one of the sign restrictions (out of 1000).  The last column (p=0) is the average number of draws

(out of 1000) in the Bayesian importance sampling algorithm that violated the restrictions and, therefore, received zero prior weight.



Table 3.  Ratios of MSEs for Elasticities from 
Cost Function with Concavity Restrictions :

Three Way Comparison

Elasticity U/B U/R R/B

     1 1.150 0.999 1.151

     2 1.154 1.006 1.147

     3 1.102 1.000 1.101

     4 1.117 1.000 1.117

     5 1.198 0.981 1.221

     6 1.137 0.998 1.139

     7 2.023 1.002 2.019

     8 1.159 0.965 1.201

     9 1.072 1.000 1.072

    10 1.349 1.003 1.344

    11 1.164 0.996 1.167

    12 1.222 0.997 1.226

    13 1.108 0.999 1.108

    14 1.166 1.002 1.164

    15 1.224 0.997 1.227

    16 1.131 0.999 1.131

Ratios are: U/B = unrestricted MSE over restricted Bayesian MSE; U/R = unrestricted

MSE over restricted maximum likelihood MSE; and R/B = restricted maximum likelihood

MSE over Bayesian restricted MSE.   458 out of 1000 data sets had unrestricted

estimates that violated the concavity restrictions.  The average number of draws from

the importance sampling algorithm which received zero weight was 602. 
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