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Abstract

A variety of crop revenue insurance programs have recently been introduced. A critical
component of constructing revenue insurance contracts is a measure of the risk associated with
stochastic prices. This paper evaluates distributional implications of alternative methods for
estimating price risk and deriving insurance premium rates. We utilize a variety of specifica-
tion tests to evaluate distributional assumptions. Discrete mixtures of normals provide flexible
parametric specifications capable of recognizing the skewness and kurtosis present in commodity
prices. Conditional heteroscedasticity models are used to evaluate determinants of futures price
variability.
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Measurement of Price Risk in Revenue Insurance:

Implications of Distributional Assumptions

1 Introduction

A variety of crop revenue insurance programs have recently been developed to supplement the
standard multiple peril crop insurance that has existed in the U.S. since the 1930s. In general, these
programs guarantee producer revenues by protecting against any revenue-diminishing combination
of low prices and/or low crop yields. The revenue insurance contracts guarantee producers a
minimum level of revenues. If, because of any combination of poor yields or low prices, revenues are
beneath the guaranteed level, insured farmers receive an indemnity payment equal to the difference
between realized and guaranteed revenues.

Three alternative crop revenue insurance products currently exist: crop revenue coverage (CRC),
income protection (IP), and revenue assurance (RA).! Conventional crop insurance programs have
been hampered by actuarial problems that have led to significant losses. In particular, program
outlays exceeded $8.9 billion between 1990 and 1997 (US-GAO (1998)). These high losses have been
attributed to adverse selection and moral hazard issues. Inaccurate premium rates and performance
monitoring problems underlie the actuarial shortcomings of crop insurance programs. In the case of
revenue insurance, a critical component of the proper insurance premium is a rate that accurately
reflects the price dimension of risk. A variety of methods for measuring price risk have been
proposed. A report recently released by the General Accounting Office (US-GAO (1998)) is critical
of the actuarial methods underlying all three revenue insurance plans.

An advisory meeting intended to provide recommendations to the Federal Crop Insurance Cor-
poration on proper actuarial methods for rating revenue insurance contracts was held in June 1996.
Considerable disagreement existed among participants regarding the proper approach for rating
price risk. Three alternative approaches to rating price risk were discussed. The current CRC pro-
gram uses a historical series (1973-1996) of futures prices, quoted at planting time (F}) and harvest
time (P;) to derive a “forecast error” e, = P, — Fy, that is then assumed to be normally distributed.

The portion of premium associated with price risk is then calculated using standard results for a

! Although the issues discussed in this paper are pertinent to all three products, the specific provisions of the
contract and examples are taken from CRC.



normal distribution. An alternative approach which utilized proportional errors (e;/P;) under the
assumption of normality was recommended as an alternative to existing procedures. This approach
assumes that errors are proportionally larger as prices are higher and is thus analogous to assuming
a log-normal distribution for prices. A third approach to rating price risk would utilize existing
options markets to derive market-based measures of price risk (volatility). This approach, while
clearly preferable, is not appropriate for all revenue insurance contracts since the necessary options
contracts do not exist for all crops currently insured.

The assumption of log-normality would seem to have considerable precedent in the financial
literature. Models of price variability and options price determination have typically assumed
that prices are log-normally distributed. In particular, the Black-Scholes (1973) option valua-
tion formula, which is based upon the assumption of log-normally distributed prices, has realized
widespread application and acceptance. In spite of this prominence, however, relatively little atten-
tion has been given to evaluating the extent to which prices adhere to distributional assumptions
and the potential implications of distributional misspecification. More recent research (see, for
example, Cornew, Town, and Crowson (1984); Hudson, Leuthold, and Sarassoro (1987); and Hsieh
(1989)) has documented leptokurtosis, skewness, and other distributional characteristics inconsis-
tent with normality and log-normality. Recognition of these points has led to the development of a
variety of approaches to easing distributional restrictions and providing modeling techniques that
allow for non-normal distributions.

It is often argued that the distribution of market prices may be sensitive to market conditions
and thus that distributional shifts may occur if market conditions change. In such a case, the price
series may display unusual distributional characteristics such as skewness, kurtosis, and multiple
modes. Recent research has applied alternative empirical techniques to derive price distributions
that accurately reflect characteristics that are not consistent with normality. In one line of research,
discrete mixtures of known distributions are used to represent distributional characteristics that are
not compatible with normality. This approach is often motivated by the assumption that, although
a standard distribution is appropriate under a given set of market conditions, different underlying
market conditions may result in different distributions. Thus, when the entire series of prices are
observed, the underlying process is a mixture of the standard distributions. In other research,

mixed-jump processes have been used to represent nonstandard distributions. Jump processes



are appropriate in situations where random shocks shift the entire distribution. In both cases,
the resulting distributions are capable of representing characteristics of a series that may not be
consistent with normality or log-normality. For example, a simple mixture of two normals is capable
of representing a standard, symmetric normal distribution as well as nonsymmetric distributions,
skewness, bimodality, and leptokurtosis.

The objective of this analysis is to explore distributional properties and characteristics associ-
ated with corn and wheat prices. The specific focus of the analysis is to evaluate the measurement
of price risk for the purposes of premium rate determination for crop revenue insurance programs.
The paper proceeds according to the following plan. The next section describes revenue insurance
products available in the U.S. Econometric methods applied to the analysis of price risk are then
developed. The fourth section presents models of conditional corn and wheat price distributions us-
ing standard ordinary least squares techniques as well as maximum likelihood estimates of discrete
mixtures of normals. The fourth section also presents conditional heteroscedasticity models that
relate price variation to a number of explanatory factors. The final section of the paper contains a

brief review of the analysis and offers some concluding remarks.

2 Revenue Insurance Programs

Standard multiple peril crop insurance (MPCI) has been in existence in various forms since the
1930s. This insurance pays indemnities at a predetermined price whenever realized yields are less
than actual yields. A shortcoming of standard MPCI exists in the price (determined prior to
planting season) at which indemnities are paid. When yield losses are widespread, market prices
are likely to be higher. Farmers receiving indemnities for lost yields may actually be reimbursed
somewhat less (in bushel terms) than their guarantee since their indemnities likely reflect a price
that is lower than the market. Revenue insurance had its beginnings with an optional rider that paid
indemnities at harvest-time market prices. In conjunction with an put option contract, this allowed
producers to guarantee a minimum level of crop revenues. This coverage was extended to form the
basis for individual crop revenue coverage (CRC). CRC is currently available in major growing
regions for corn, soybeans, wheat, cotton, and grain sorghum. CRC has been quite successful,

accounting for over 26% of corn crop insurance sales in 1997.



Income protection (IP) was developed at Montana State University under a directive of the
Federal Crop Insurance Act to create a pilot cost of production plan. IP insurance is available
for corn, soybeans, grain sorghum, cotton and wheat in major growing regions. IP guarantees a
minimum level of crop revenues, based upon forecast prices, individual farm yields, and area yields.
If realized revenues fall beneath the revenue guarantee, producers receive an indemnity payment
for the amount of the shortfall.

Revenue Assurance (RA) was developed by the Iowa Farm Bureau as a pilot program for corn
and soybeans in Iowa. RA provides the option for “whole-farm” insurance in that producers insuring
both corn and soybeans receive significant premium discounts. RA provides a guaranteed minimum
level of revenue which is determined by individual farm yields and futures prices (adjusted for the
local historical basis). If realized revenues are beneath the guarantee because of either low prices,
low yields, or both, farmers receive an indemnity payment for the amount of the shortfall. A unique
characteristic of the RA program is the utilization of market-based measures of price risks that are
available in options markets. In contrast, the CRC and IP programs utilize historical futures prices
to develop measures of price risks. RA actuarial procedures utilize estimates of a beta distribution

to model yield risks.

3 Econometric Methods

Revenue insurance contracts require a forecast of harvest time prices, made conditional on infor-
mation available at planting time. In addition, a measure of the uncertainty associated with the
price forecast is needed to construct a premium rate reflecting the risk of adverse movements in
prices. In all three cases, futures prices are utilized to construct forecasts of harvest-time prices. In
the case of RA, options markets are used to gauge the uncertainty associated with prices. IP and
CRC instead utilize historical price movements to evaluate price risks. The measurement of price
risks in both the RA and CRC programs is heavily dependent upon assumptions regarding the
parametric distributions underlying price movements. RA utilizes standard Black-Scholes (1973)
results to construct implied volatilities from observed options prices. As noted above, such an
approach assumes log-normally distributed prices. In contrast, CRC assumes normally distributed

prices in the construction of the price component of the revenue insurance premium. IP utilizes a



nonparametric “empirical distribution” approach.?

This analysis utilizes two distinct approaches for evaluating price risk. In the first, a set of
annual price data is utilized to estimate price distributions and to evaluate insurance premia un-
der alternative distributional assumptions. The second utilizes maximum likelihood estimates of
conditional heteroscedasticity models to evaluate exogenous determinants of price variability.

Discrete mixture distributions represent a flexible, parametric approach to modeling probability
distribution functions whose intrinsic characteristics are largely unknown. A k-component mixture
density function is given by: .

fl@) =Y ifi(@)], (1)
i=1
where the probability weights, A; satisfy the conditons that Zle A = 1 and A; > 0 for all 4.

Various densities are commonly applied in representing the underlying components of the mixture.

The most common approach involves utilizing normal densities:

o o)
filz) = ——=e 77 . (2)
271'02-2
Mixtures of normals nest a conventional normal distribution (obtained when py = ps = ... = py
and 01 = 0y = ... = 0. Asymmetric and bimodal distributions may result when the uls are not

all equal. Kurtosis is implied when the o’s are not all identical.

Standard maximum likelihood estimation techniques are commonly used to estimate mixture
distributions. There are, however, particular characteristics of mixture problems that may compli-
cate estimation. Nonlinear estimation techniques may have a tendency to concentrate component
densities on individual points. In such a case, the o; associated with that point goes to zero and the
likelihood function becomes numerically unstable. To prevent such instabilities, the A; and o; terms
may be constrained to be positive. The random variable x may also represent a conditional mean
in a manner analogous to the standard linear regression problem. In this case, z may be replaced
by y — X3 and the parameters of the conditional mean equation § may be estimated jointly with

the parameters of the probability distribution oy, p;, and A;.

“Nonparametric density estimation techniques offer complete flexibility in representing characteristics of a distri-
bution. Such flexibility does not, however, come without a significant loss in efficiency. Thus, the nonparametric
techniques may not be appropriate for the small samples which are commonly available for measuring price risk. In
that pdf functions are commonly used as kernel functions in nonparametric density estimation, the nonparametric
techniques are analogous to mixtures of a large number of components.



A second component of our evaluation of price risk utilizes parametric maximum likelihood
estimates of a conditional heteroscedasticity model. We assume that the variance of conditional
prices (i.e., price differences) is proportional to a function of several exogenous factors which we
hypothesize to be related to price variability. In particular, we assume that the variance of prices

for an individual contract 7 quoted at time ¢ are given by:

og = 0> f(Ziy). (3)

We assume that the conditional variance function f(Z;y) is a quadratic version of a linear index
(i.e., (Ziry)?). This ensures nonnegative variances for all observations. Under the assumption of
normality, the following log-likelihood function is maximized in order to obtain estimates of v and,

if applicable, of parameters of a conditional mean equation :

. L 1 & (y — pi)?
InL =~ [in(2m) + Ino?) — 3 Z;ln((Zm)Q) ~ 5,2 22::1 (T 4

4 Empirical Application

The empirical analysis consists of two components. The first utilizes a long series of annual ob-
servations on planting and harvest time futures prices. In particular, corn and wheat futures were
collected from selected issues of the Chicago Board of Trade’s Yearbooks for the period covering 1899
to 1960. Data for subsequent years were taken from the Bridge financial database. Monthly obser-
vations for contracts expiring at harvest (September for corn and July for wheat) were constructed
by taking the midpoint of the monthly high and low price quotes at planting times (January for
corn and December for wheat).> The “harvest-time” price for each contract was that quoted in the
month preceding the contracts’ expiration. A second segment of the analysis utilized the Bridge
database of daily settlement prices to construct monthly average futures prices for all contracts in
all months. Expiration prices were the average in the month preceding the contract’s expiration.*

Ordinary least squares and standard nonlinear estimation techniques were utilized to estimate

alternative models of price differentials. In the first segment of the analysis, a price relationship

3This approach was necessitated by the available data— daily prices were not available before 1959. An evaluation
of the difference in the monthly price constructed in this manner and a monthly average of daily closing prices revealed
no significant difference. In particular, the average differential between the alternative monthly prices was nearly
7Z€ero.

“This approach is analogous to the treatment of futures prices in constructing CRC premium rates.



of the form P, = a + OF}; was estimated, where P; represents the harvest-time price and F; is the
planting-time futures price. An “efficient-markets” relationship would imply that futures prices are
unbiased forecasts of expiration-time prices and thus that a = 0, § = 1. Restricted versions of the
price models imposed these restrictions and thus considered relationships among price differentials.

Table 1 presents estimates for the unrestricted and restricted models of futures price relation-
ships for corn and wheat. The models are each estimated in three different ways— ordinary least
squares (OLS), OLS applied to logarithmic prices, and via maximum likelihood techniques applied
to a two-component mixture of normals. In restricted versions of the OLS and logarithmic OLS
models, the approach is analogous to assuming normality and log-normality for the price differ-
entials (i.e., to the extent that normality is used to construct insurance premium rates from the
residuals). The restricted mixture case assumes that the price differential is distributed according
to the mixture and the parameters of the mixture are thus estimated via maximum likelihood.

Bera-Jarque (1980) conditional moment tests of normality are used to assess the extent to which
the OLS residuals and price differentials are consistent with normality and log-normality. The tests
overwhelmingly reject normality and log-normality for both corn and wheat. Such a result makes the
assumptions of normality and log-normality which are used to motivate the construction of revenue
insurance premia questionable and suggests that alternative, flexible distributional specifications
may be preferred. The OLS estimates for the level and logarithmic models have price coefficients
which are slightly less than one. The mixture model for corn has a price coefficient of .81, which is
somewhat far from one and thus may be questionable. The price coefficient for the wheat mixtures
model is very similar to estimates for the other models.

Prices were forecast for the last observation (1997) and insurance rates were based upon a
guarantee of 100% of this forecasted level.> The restricted models guaranteed 100% of the price
quoted at planting time. As would be expected, rates based upon log-normality are considerably
higher than those based upon normality. This reflects the positive skewness inherent in the log-
normal distribution. In contrast, rates for the mixture of normals cases are somewhat lower than
those generated by normality or log-normality. This is particularly true in the case of corn. This

lower rate, however, reflects the lower forecasted price, which implies a much lower price guarantee.

% An insurance premium rate is given by expected loss over total liability. Expected loss is given by the product
of the probability of a loss and the expected price given that a loss occurs. Numerical integration was utilized to
estimate these probabilities and expected loss levels.



The mixture of normals case generates wheat premium rates that are quite similar to those for the
normality case.

Differences in the premium rates and underlying distributions are revealed in plots of the den-
sities implied by OLS and the mixture of normals cases. Figure 1 illustrates nonparametric kernel
estimates of the densities associated with the OLS residuals and the parametric mixture of normals
cases.5 Strong positive skewness is revealed in the estimates. In several cases, slight bimodality is
revealed, suggesting that large, positive errors are sometimes observed. The distributions do not
resemble normal densities and thus the assumption of normality would again seem questionable.

In all, this segment of the analysis suggests that current premium rates may be higher than
the underlying price risk would suggest. Rates calculated in this manner are, however, based
solely upon historical information and thus may not reflect the uncertainty underlying market
participants’ actions at the time contracts are offered.

A second segment of the analysis evaluates exogenous determinants of price variation. Restricted
versions of the models (i.e., for price differentials) are used. Thus, models relating the variance
of the expected expiration price, conditional on prices quoted prior to contract expiration, are
estimated using maximum likelihood methods.” In that the pooled data set consists of many
overlapping contracts, a complex form of moving-average error correlation is inherent in the price
differentials. To allow for such correlation, we specify a first-order autoregressive correlation process
among the monthly prices.® Maximum likelihood estimates and summary statistics are presented
in Table 2. The default is a January contract quoted in the previous January. The estimates
reveal that increased months to maturity decreases price volatility. This result is consistent with
the “Samuelson Hypothesis” (Samuelson (1976)) which maintains that prices will reflect more
information and thus be more volatile as contract expiration nears.” The results reflect significant
differences in price variability across alternative contracts. Contracts which expire in the months

immediately preceding harvest (July for corn and May for wheat) appear to have the most volatile

5Note that the nonparametric densities do not assume normality. OLS is a nonparametric estimation technique
providing unbiased parameter estimates regardless of the underlying distribution. It has been noted, however, that
least-squares estimation may make sample residuals more symmetric than the actual errors (see Huang and Bolch
(1974).

"Note that the models assume that the conditional errors are normally distributed with a conditional variance
that depends upon a number of explanatory factors.

8The correlation structure is restricted to prevent correlation corrections across alternative contracts.
“Recent results presented by Hennessy and Wahl (1996) were not consistent with the Samuelson hypothesis.



prices. Significant differences in the variability of prices over the growing season are also revealed
in the estimates. Corn prices appear to be the most variable in June and July, the most critical
growing period. Likewise, wheat prices appear to be the most variable in April. Wheat prices also
appear to be quite variable in June, perhaps reflecting harvest realizations or growing conditions
for substitute spring wheats.

In all, the results show that futures price variability may be conditioned upon a number of
explanatory factors, including months to maturity, month of contract, and month of price quote.
These results may offer benefits for constructing premium rates for the price-risk component of
revenue insurance contracts. The modeling approach allows a much larger sample to be utilized in
constructing premium rates, potentially improving inferences. Price uncertainty can be conditioned

upon the months of the contract and price quote used in constructing revenue insurance contracts.

5 Concluding Remarks

This analysis evaluates distributional implications of modeling price uncertainty. The issue of price
uncertainty has taken on increased importance with the introduction of three revenue insurance
programs. In addition, changes in the farm policy environment that occurred with the 1996 Farm
Bill have led to increased concerns regarding the stability of farm prices.

The results indicate that conventional approaches to measuring price variability and rating
revenue insurance may be misspecified. Our empirical results strongly reject both normality and
log-normality. Flexible distributional specifications based upon discrete mixtures of normals reveal
a slight tendency for bimodality and strong positive skewness. Insurance premium rates based upon
the mixture of normals case (which effectively nests normality and log-normality) are slightly smaller
than those implied by normality and significantly smaller than those implied by log-normality. An
analysis of the conditional variance of corn and wheat prices reveals that variance decreases as time
to maturity rises and is highest during important growing periods.

Future research will consider additional explanatory factors (such as options premia, stocks,
demand shocks, and growing conditions) which may be used to condition variance forecasts. Ad-
ditional attention will also be given to modeling the complex correlation structure underlying our

analysis of overlapping contracts.



Table 1. Maximum Likelihood Parameter Estimates and Summary Statistics

Parameter ‘ OLS ‘ Log-Normal OLS ‘ Mixture Restricted Mixture
Corn
o 13.8443 0.4676
(7.1627)* (0.1693)*
16} 0.9120 0.9063 0.8087
(0.0438)* (0.0353)* (0.0293)*
A 0.8928 0.5958
(.0522)* (0.0888)*
1 18.6397 0.3371
(4.2833)* (2.1784)
o1 18.5889 10.8401
(1.8038)* (1.7450)*
Lo 108.7290 3.2680
(27.6845)* (9.8612)
09 38.9203 53.4498
(18.2851)* (7.6627)*
P 239.4381 240.7328 228.5558 247.3750
Pr{P < P} 0.5015 0.4962 0.6246 0.5212
Rate 5.6702 7.3446 5.1426 4.5163
Bera-Jarque Test 13698.38 1156.53
Wheat
o 11.5468 0.2652
(6.5464) (0.1297)*
B8 0.9371 0.9486 0.9344
(0.0296)* (0.0253)* (.0263)*
A 0.7464 0.3337
(.0860)* (0.0951)*
1 7.8977 —0.9985
(4.1681)* (7.8967)
o1 14.1964 52.3440
(1.8793)* (8.5388)*
112 24.3102 —0.3426
(14.9832) (1.9365)
09 54.9053 12.1927
(10.2585)* (2.1578)*
P 330.4983 331.9241 330.2235 340.3750
Pr{P < P} 0.4934 0.4962 0.5553 0.4971
Rate 3.7265 4.9878 2.9860 2.9216
Bera-Jarque Test 7895.48 1658.61

®Numbers in parentheses are standard errors. Asterisks indicate statistical significance at
the o = .05 or smaller level.
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Table 2. Maximum Likelihood Parameter Estimates and Summary Statistics

for Conditional Price Heteroscedasticity Models

Variable Corn Wheat
P 0.9476 0.9061
(0.0028)* (0.0045)*
o? 8.35629 16.9135
(0.3616)* (0.7325)*
Months to Maturity —.0220 —0.0105
(0.0020)* (0.0028)*
March Contract 0.0336 —0.0160
(0.0292) (0.0316)
May Contract 0.0352 0.0044
(0.0313) (0.0315)
July Contract 0.1061 —0.0594
(0.0332)* (0.0297)*
September Contract 0.0030 —0.0286
(0.0294) (0.0311)
February Quote 0.0242 —0.1609
(0.0408) (0.0399)*
March Quote —0.0697 —0.0864
(0.0400) (0.0497)
April Quote 0.2950 0.3775
(0.0508)* (0.0561)*
May Quote 0.1683 —0.0733
(0.0571)* (0.0454)
June Quote 0.8301 0.2589
(0.0687)* (0.0576)*
July Quote 1.2130 —0.0967
(0.1060)* (0.0496)
September Quote 0.0918 0.5949
(0.0470)* (0.0610)*
October Quote 0.1971 —0.0445
(0.0470)* (0.0422)
November Quote 0.1117 0.1308
(0.0470)* (0.0477)*
December Quote 0.0820 —0.1842
(0.0447) (0.0386)*
R? 0.9441 0.9103
n 2575 2080

®Numbers in parentheses are standard errors. Asterisks indicate statistical significance at

the o« = .05 or smaller level.
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Figure 1.A. Corn Price Density: OLS Residuals

Figure 1.B. Wheat Price Density: OLS Residuals
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Figure 1.C. Corn Price Density: Unrestricted Mixture Fiqure 1.D. Wheat Price Density: Unrestricted Mixture
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Figure 1.E. Corn Price Density: Price Differences Figure 1.F. Wheat Price Density: Price Differences
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Figure 1.G. Corn Price Density: Restricted Mixture Figure 1.H. Wheat Price Density: Restricted Mixture
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