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Abstract:

The price transmission model is extended by incorporating seasonality and Shiller lags.
Symmetry is evaluated for the length of the adjustment as well as the amount. Retail/shipping

point tomato prices are used to test the model. Transmission elasticities are estimated. Results
suggest this market is efficient.



Incorporating Seasonality, Product Volume, and Shiller Lags
into a Price Linkage Model

A large body of research has focused on empirical tests to examine symmetrical price
response between the farm and retail levels. The Houck procedure for estimating nonreversible
functions has served as the basis for most of these studies. This methodology has been extended
and applied across a variety of commaodities (e.g., Boyd and Brorsen, Griffith and Piggott,

Heien, Kinnucan and Forker, Mohamed et al., Pick et al., Powers, and Ward, ).

Several limitations are inherent in these studies. First, firms are assumed to operate under
constant returns to scale, but this precludes the possibility that retailers of highly perishable
products adjust their prices as the volume of product harvested changes or that the parameters of
the consumer demand function may change. Second, except for Griffith and Piggott, studies of
price symmetry have implicitly assumed the estimated price transmission parameters do not vary
seasonally. Griffith and Piggott used the traditional dummy variable slope shifter method of
accounting for seasonality, which can be costly in terms of losing degrees-of-freedom. Recent
work has offered a solution for this problem (e.g., Lambregts and Capps and Herrman et al.).
However, to consider lagged effects of independent variables, these approaches also result in
losing degrees-of-freedom. In addition, the Griffith and Piggott approach does not allow for
differences in the harvest cycles of commodities across years (primarily due to weather).

A Price Linkage Model

Polynomial distributed lags have been used to account for the lagged effects of a
particular independent variable (e.g., Ward, Kinnucan and Forker, and Boyd and Brorsen).

Shiller developed a less restrictive procedure in which the troublesome decision of choosing the

polynomial degree is replaced by a set of parameter restrictions that are stochastic.
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Heien developed the theoretical underpinnings of the markup model. For an efficient
market, lags in price linkages should equal the amount of time necessary to move the product
from one level to the next, else price adjustment is inefficient (Powers). Retail level product is
assumed to be marketed using fixed proportions. Firms are assumed to operate under constant
returns to scale, which implies constant marginal costs. Firms are also considered to operate
under competitive market structures.

The direction of causality for the markup model is considered to be from shipping point
to retail levels. Methods for testing causality (e.g., Granger) have been shown to be misleading
and unreliable (Conway et al.). Furthermore, previous studies of vertical price linkages in fresh
produce that used the markup model have specified retail prices as functions of price movements
at lower market levels (e.g., Ward, Pick et al., Mohamed et al., and Powers).

The Houck procedure allows for separate lags for increases and decreases in upstream

price changes. For the ith commodity:
r f r* f*
RPi,t - Z 61,i,mSPF|\’,t—m + Z 62,i,mSP|:i,t—m + Z 6:%,i,m-I-CR,t—m + Z 64,i,mTCFi,t—m + el,t ’ (1)
m=0 m=0 m=0 m=0

where RP = retail price change from period 0 to period ¢, SPR = sum of all week-to-week
increases in the FOB shipping point price from period 0 to period ¢, SPF = sum of all week-
to-week decreases in the FOB shipping point price from period O to period ¢, TCR = sum of
all week-to-week increases in transportation costs from period 0 to period ¢, TCF = sum of all
week-to-week decreases in transportation costs from period 0 to period ¢, r = lag length for

rising prices, f = lag length for falling prices, r" = lag length for rising costs, f *= lag length



for falling costs, and e is a random error term with the traditional assumptions.

To account for the different yearly seasonal effects, a vector be defined and assigned
integers exogeneously based on variations in the data from year to year. Defiriimg
manner can be interpreted as inserting a priori information into the estimation process, because
weather patterns and other conditions affecting immediate production plans and harvest
projections can be predicted with a fair amount of accuracy. This allows the constant returns to
scale assumption to be relaxed, since the volume of shipments will now be a variable in the price
transmission process.

Equation (1), reflecting the information in j, can be rewritten as

r f*

f r*
RPi,t = Z 61,i,m(j *SPRl,t—m) + Z 62,i,m(j*SPFi,t—m) +Z 6Cf‘:,i,mTCR,t—m + Z 64,i,mTCFi,t—m + el,t . (2)
m=0 m=0 m=0 m=0

The marginal effects depend on the volume of shipments. Use of the Shiller procedure
with seasonally varying dta produces an additional modeling advantage concerning the effects of
weather. There are currently no methods available to account for the effects of weather.
However, requiring a model’s seasonal parameters to vary smoothly can be regarded as a way of
approximating the average effects of weather on the parameters (Gersovitz and Mackinnon).

The Shiller approach for incorporating lag structure into a regression model constrains
the parameter means, instead of the parameters themselves. This permits a more flexible lag

structure compared to prior approaches and thus constitutes a better representation of prior

! The value of is assigned according to the level of shipments, which in the empirical
work that follows is rounded to the nearest millionth digit.
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information (Shiller and Taylor). Requiring the shipping point price parameters of equation (2)
to lie on a polynomial of degregpimposes a set of restrictions that reflects information specific

to the rising and falling segmented variables, respectively.
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Applying the Shiller approach to equation (2) also has implications regarding the seasonal
effects in the model. An interpretation of smoothness priors is that the estimated coefficients can
deviate from any polynomial as long as they do so smoothly (Maddala). This implies the lagged
seasonal effects in the model will vary smoothly over time.

From equation (2), the sum of the J,;,'s and &,;,,'s represent the price transmission
process. The time required for the price adjustments to occur is reflected in r and f, and if
they are equal, the transmission speeds are the same. A formal test of symmetry in price

adjustment can be developed by constructing the hypothesis

r
Z Bl,i,m = Zoéz,i,m ' (3)

This null hypothesis can be assessed using an F-test composed of the sum of squared errors
with and without the restriction (3). Also, the speed of adjustment (intra period) can be tested

by the null hypothesis

2if - (4)

Similarly, an F-test using the sum of squared errors with and without the restrictions in



equation (4) can be used to evaluate each of these equalities (Boyd and Brorsen).

Although Shiller's original work was presented in a Bayesian format, Taylor
demonstrated the mixed estimation procedure developed by Theil and Goldberger (TG) is a
straightforward method of incorporating smoothness priors into the estimation process. But
Swamy and Mehta (1969) and Mittelhammer and Conway point out a logical inconsistency,
so an alternative procedure should be employed. The Prior Integrated Mixed Estimator (PIME)
developed by Mittlehammer and Conway overcomes the weakness.

PIME has two advantages relative to TG: 1) it has a smaller mean square error matrix and
2) it is consistent with Theil’s notion of incorporating “best guesses” and Swamy and Mehta’s
(1983) belief that a researcher’s best guess should be a constant (Venkateswaranet al.). Further,
the subjective probability distribution defined by PIME subsumes TG as a special case. Lindley
and Smith suggest a procedure to estimate equation (2).
Data and Empirical Model

Tomatoes were selected for an empirical application. They were chosen based on
abundance of seasonal fluctuations throughout the growing periods and steady seasonal demand
at the final consumption level. Weekly price data for shipping point and retail levels were used.
Shipping point data were obtained from the Florida Tomato Committee and reflect the average
weekly FOB price received by producers for a twenty-five pound box of tomatoes. The shipping
cycle began in October and continued through June. Retail prices were obtained from a
supermarket chain in a metropolitan area in the Southeast. They are for bulk tomatoes priced on
a per pound basis. Both series covered the June 1988 through December 1993 period.

P, (the base period retail price) is determined for the start of each harvest season by using



the date of the initial price used to consti@PRandSPFE Model results from the Houck
procedure can be sensitive to initial starting values of the data (Powers), therefore a four-week
moving average of the retail price was used in pladg it the start of each harvest cycle.
Analyses of the shipping point price and volume data indicate that each year had its own pattern,
primarily due to weathet.

Transportation costsave been used in previous studies of vertical price transmission
(e.g., Powers). However, they are not used here. The retailer supplying the data purchases
fresh produce from brokers and wholesalers in various locations, including those used in this
study. Fresh produce transportation is part of the chain's distribution system, so
transportation costs can be interpreted as fixed in the sense of no seasonal variation since
warehouses, trucks, and drivers are part of the overhead (Eastwood et al.). Also, locally
grown produce is not delivered directly to the chain's outlets.

Estimates based on the Prais-Winsten procedure (Judge et al.) were used to identify the
appropriate lag lengths for r and f.* In addition to identifying r and f, other model selection
criteria included minimizing the mean square error and noting whether parameter signs were

consistent with the Houck procedure. After the appropriate GLS model was identified for

2 A complete analysis of the data is available upon request from the authors.

% Initial estimates of equation (3) involved finding the “best” OLS model and then
using these results to begin the Shiller procedure. This was accomplished by arbitrarily setting
r, f = 8 and eliminating the last lag periods if they were insignificant, then re-estimating
equation (3). This process was continued until the last lag period was statistically different
from zero at the five percent level. These results indicated significant first-order
autocorrelation for a no-intercept regression equation (Table Source: Farebrother).
Consequently, Generalized Least Squares (GLS) was utilized to identify the “best” model to
begin the Shiller procedure.



each equation, the parameter estimates and error variances were used to initiate the Shiller
procedure. A lag length of five weeks was considered best for ba@thd f.
Empirical Results

Price correlations between the retail price series and lags of the shipping point prices are
presented in table 1. A distinct pattern is revealed for the retail series. The correlations
consistently increase up to peried, and then begin to decline. This pattern indicates a source
of a priori information in that the lagged shipping point prices should follow a second degree
polynomial. Differences in the correlation coefficients vary from period to period both up to and
beyond their peak, thus the Shiller procedure is more appropriate for incorporating this a priori
information rather than restricting the lagged coefficients to lie exactly on a polynomial.

The Shiller estimates of equation (2) are contained in table 2. The rising and falling
coefficients are of the correct sign and are significant across all time periods, indicating
significant price adjustments occur each week of the transmission process? The R indicates
fifty-five percent of variation in period-to-period retail price changes is explained by the lagged
shipping point prices. The F-test for equation fit is significant at the .01 level.

The five week lag for both rising and falling shipping point prices leads to the conclusion
that the chain used the same amount of time to adjust retail prices to rising and falling shipping
point prices. The F-value for symmetry indicates the total impact of a positive shipping point
price change is not significantly different from a negative one. For the pairwise comparisons
within the same lag period, the F-value leads to the inference that there is no difference in the
chain's retail pricing behavior with respect to rising versus falling shipping point prices.

Table 3 contains seasonal elasticities of the retail price with respect to shipping point
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prices evaluated at the beginning, end, “peaks”, and “valleys” of the shipping seasons. For the
season-beginning elasticities, peak response at the retail level occurred intpeaods-2 for
both the rising and falling prices. The peak responses of the season-ending elasticities occurred
in periodst-3 andt-4 for both the rising and falling prices. Compared to the beginning of the
shipping season, the chain seemed to wait longer to evaluate upstream price changes. Since
shipments from the Florida market will soon end, the chain is likely beginning to assemble price
information from other sources, therefore the priority placed on reaction to the last few weeks of
the Florida market is diminished and thus occurs later in the transmission grocess.

For elasticities evaluated at “peak” levels of shipments, the highest elasticity response for
both the rising and falling prices clearly occurred in peti@d This suggests that in periods of
great supply, the chain will wait no longer than peti@dbf the transmission process to make its
largest retalil price adjustment. Elasticities evaluated at “valley” levels of shipments indicate the
highest retail level response for the rising prices was shared by peBeaslt-3. A different
result was found for the falling prices, where peti@dwvas clearly the peak retail respondée
“peak” elasticities are much larger than those evaluated at “valleys”. This suggests that when
shipments are very large, the chain is more sensitive to upstream price changes relative to
periods of very low shipments. The limited shelf-life of tomatoes likely causes the chain to be

more sensitive to upstream price changes in times of great supply, therefore, moving the

* A different arguement could be made using the beginning of the shipping season as a
point of reference. In order to capitalize on any potential trends that may be developing, the
chain may choose to evaluate the Florida market more rapidly at the beginning of the season.



produce quickly through the system becomes a top priority.’
Conclusions

Empirical results suggest the retail chain is behaving efficiently in its reallocation of
resources between what is available at the shipping point level and what is consumed at the retail
level. This inference is supported by the results that the long-run effects of upstream price
increases on retail prices are similar to decreases and that the retailer responds similarly to intra
period rising and falling upstream price changes. Further, the results of the elasticities evaluated
at various points in the Florida shipping cycle indicate market information from upstream sources
readily influences retail level price responsiveness. For example, changes in the chain’s peak
response to rising and falling shipping point prices occur as it switches to and from reliance on
the Florida market for its fresh tomatoes. Also, drastic changes in supply at the shipping point
level are reflected at the retail level, as noted by the differences in elasticities at the “peaks” and
“valleys” of the shipping seasons.

The price linkage efficiency found in this study is likely due to the biological nature of
fresh tomatoes and how retailers in the distribution channel have adjusted to accommodate those
demands. A tomato’s limited shelf-life ensures retailers make timely changes in prices to ensure
losses are minimized.. Also, to gain more control over the biological demands, most retailers can
purchase fresh produce directly from shipping point sources. This practice can facilitate efficient
price adjustment by eliminating intermediate channel participants who may provide barriers to

smooth transition of information through the distribution channel.

®> The result is more exaggerated here, however note that in gengra¢ther suggests
that in periods of high shipments the chain will be more sensitive to upstream price changes.
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Table 1. Descriptive Statistics and Lagged Price Correlations of the
Shipping Point and Retail Price Series

Descriptive Statistics

Retail Shipping Point
Mean (dollars) 1.22 9.48
Range (dollars) 0.39-2.99 2.99 - 38.67
Coefficient
of
Variation 0.34 0.62

Lagged Price Correlations

Shipping Shipping Shipping Shipping Shipping Shipping Shipping
Point Point Point Point Point Point Point
Price, Price,, Price,_, Price_, Price_, Price g Price

Retail
Series .67 73 g7 .69 .59 46 .36




Table 2. Shiller Estimates of the Shipping Point to Retail Price Linkage Relationship *

Independent Variables

SPR, 0.00211
(0.00125)*

SPR,, 0.00551
(0.00081)*:

SPR,, 0.00734
(0.00083)*:*

SPR, ; 0.00748
(0.00082)*:

SPR, , 0.00669
(0.00077)*

SPR, ; 0.00573
(0.00124)*:*

SPF, 0.00226
(0.00125)*

SPF,, 0.00514
(0.00082)*:

SPF,, 0.00682
(0.00083)*:*

SPF, ; 0.00739
(0.00082)*:

SPF, , 0.00683
(0.00078)*:

SPF, ; 0.00520
(0.00120)*

R? 0.55

Equation F 11.905%*

Symmetry F 0.04365

Intra Period F°¢ 0.00793

Durbin-Watson 1.289

* Standard errors are in parentheses. A single asterisk indicates significance at the .10
level, double asterisks, the .01 level.

® Distributed as F(1,119) under the null hypothesis.

¢ Distributed as F(6,119) under the null hypothesis.
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Table 3. Seasonal Elasticities of Retail Price With Respect to ShippingPoint Prices
Evaluated at Beginning, End, “Peaks”, and “Valleys” of the Shipping S€asons

Beginning End “Peaks” “Valleys”
j j ] j
Elasticity 1 4 1 4 1 4 1 4
£, 0.279 1.116 0.545 2.179 3.564 14.254 0.067 0.270

€1 0.591 2.365 1.654 6.617 6.745 26.980 0.177 0.707
£y 0.531 2.123 2.719 10.876  10.592  42.368 0.188 0.752
€3 0.351 1.406 3.666 14.665  7.436 29.744 0.191 0.766
Eia 0.228 0.912 3.666 14.664  8.151 32.603 0.146 0.585
€5 0.122 0.486 3.078 12.313  6.983 27.931 0.102 0.407
& 0.446 1.785 0.605 2421 4.124 16.494 0.029 0.116
£iq 0.760 3.039 1.586 6.342 7.023 28.092 0.043 0.172
Eir 0.628 2.512 2.589 10.357 11.033  44.133 0.057 0.229
£i3 0.335 1.341 3.639 14556  7.759 31.036 0.024 0.097
Eia 0.218 0.870 3.623 14.492  8.409 33.637 0.022 0.090
Eis 0.115 0.459 2.693 10.770  5.760 23.041 0.017 0.068

. SPR,.
it

. A _ SPE,_
&-m = ®spr, . RR, (62yi,m*1) * [ RF: m]
it

& For the beginning (end) of the shipping sea$®®, ,, SPF,,, , and RP, were defined as their
averages over the first (last) two weeks of each growing season for which observations were
available on all independent variables. Their values corresponding to the “peaks” (“valleys”) of
the shipping season were defined as averages taken over the significantly high (low) levels of

shipments across the various seasons.



13

References

Boyd, M.S. and B.W. Brorsen. “Price Asymmetry in the U.S. Pork Marketing
Channel.” North Central J. of Agri. Econ. 10,1(1988): 103-109.

Conway, R.K., P.A.V.B. Swamy, J.F. Yanagida, and P. von zur Muehlen. “The
Impossibility of Causality Testing.” Ag. Econ. Res. 36(1984): 1-19.

Eastwood, D.B., B.C. Carver, and J.R. Brooker. “Fresh Vegetable Prices: Do
Supermarkets Raise and Lower Them the Same Way?” Consumer Interests Annual.
43(1997): 1-5.

Farebrother, R.W. “The Durbin-Watson Test For Serial Correlation When There Is No
Intercept In The Regression.” Econometrica. 48,6(1980): 1553-1563.

Gersovitz, M. and J. G. Mackinnon. “Seasonality in Regression: An Application of
Smoothness Priors.” J. of the Amer. Stat. Assoc. 73(1978):264-273.

Granger, C.W.J. “Investigating Causal Relations by Econometric Models and Cross-Spectral
Methods.” Econometrica. 37,3(1969): 424-438.

Griffith, G.R. and N.E. Piggott. “Asymmetry In Beef, Lamb, and Pork Farm-Retail Price
Transmission In Australia.” Agric. Econ. 10(1994): 307-316.

Heien, D.M. “Markup Pricing in a Dynamic Model of the Food Industry.” Amer. J. Agri.
Econ. 62(1980): 10-18.

Houck, J.P. “An Approach to Specifying and Estimating Nonreversible Functions.” Amer. J.
Agri. Econ. 59(1977):570-572.

Judge, G.G., W.E. Griffiths, R.C. Hill, H. Lutkepohl, and T.-C. Lee. The Theory and
Practice of Econometrics. Copyright 1985, John Wiley & Sons, Inc.

Kinnucan, H.W. and O.D. Forker. “Asymmetry in Farm-Retail Price Transmission for Major
Dairy Products.” Amer. J. Agri. Econ. 69(1987): 285-292.

Lambregts, J.A. and O. Capps, Jr. “Seasonality in Applied Demand Analysis: An Approach
Using Polynomial Approximations.” Department Manuscript, Texas A&M Univ., September

1990.

Lindley, D. V. and A. F. M. Smith. “Bayes Estimates for the Linear Model.” J. of the Royal
Stat. Soc. B Series 34(1972):1-41.

Maddala, G.S. Econometrics. Copyright 1977, McGraw-Hill Inc.



14

Mittelhammer, R.C. and R.K. Conway. “Applying Mixed Estimation in Econometric
Research.” Amer. J. Agri. Econ. 70(1988): 859-866.

Mohamed, Z., F.M. Arshad, and S. Hashim. “Pricing Efficiency of the Malaysian
Vegetable Market: Testing for Asymmetric Pricing.” J. of Intl. Food & Agrib. Mkt.
7,4(1995): 59-76.

Pick, D.H., J. Karrenbrock, and H.F. Carman. “Price Asymmetry and Marketing Margin
Behavior: An Example for California-Arizona Citrus.” Agribusiness 6,1(1990): 75-84.

Powers, N.J. “Vertical Pricing Relationships for Lettuce.” USDA/ERS Technical Bulletin
1836 (1994).

Shiller, R.J. “A Distributed Lag Estimator Derived from Smoothness Priors.” Econometrica
41(1973): 775-788.

Swamy, P.A.V.B. and J.S. Mehta. “On Theil’s Mixed Regression Estimator.” J. of the
Amer. Stat. Assoc. 64(1969): 273-276.

Swamy, P.A.V.B. and J.S. Mehta. “Ridge Regression Estimation of the Rotterdam Model.”
J. of Econometrics. 22(1983): 365-390.

Taylor, W.E. “Smoothness Priors and Stochastic Prior Restrictions in Distributed Lag
Estimation.” Intl. Econ. Rev. 15,3(1974): 803-804.

Theil, H. Principles of Econometrics. New York: John Wiley & Sons, 1971.

Theil, H. and A.S. Goldberger. “On Pure and Mixed Statistical Estimation in Economics.”
Intl. Econ. Rev. 2(1961): 65-78.

Venkateswaran, M., H. W. Kinnucan, and H.-S. Chang. “Modeling Advertising Carryover in
Fluid Milk: Comparison of Alternative Lag Structures.” Agri, and Res. Econ. Rev.
62(1993):10-19.

Ward, R.-W. “Asymmetry in Retail, Wholesale, and Shipping Point Pricing for Fresh
Vegetables.” Amer. J. Agri. Econ. 62(1982): 205-212.

Wolframm, R. “Positivistic Measures of Aggregate Supply Elasticities: Some New
Approaches-Some Critical Notes.” Amer. J. Agri. Econ. 53(1971): 359-359.



