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Abstract: Optimization under uncertainty has seen many applications in the industrial world. The objective 

of this paper is to study the stochastic dynamic vehicle allocation problem (SDVAP), which is faced by 

many trucking companies, container companies, rental car agencies and railroads. To maximize profits and 

to manage fleets of vehicles in both time and space, this paper has formulated a multistage stochastic 

programming based model for SDVAP. A Monte Carlo Sampling Based Algorithm has been proposed to 

solve SDVAP. A probabilistic statement regarding the quality of the solution from the Monte Carlo 

sampling method is also identified by introducing a lower bound and an upper bound of the obtained 

optimal solution. A five-stage experimental network was introduced for demonstration of this algorithm. 

The computational results indicated a solution of high quality when Monte Carlo sampling based algorithm 

is used for solving SDVAP, strongly suggesting that these algorithms can be used for real world 

applications for decision making under uncertainty. 

Keywords: Stochastic programming; Monte Carlo Sampling Based Method (MCSBM); Simulation; 

Dynamic vehicle allocation; Multistage 

1. Introduction 

Freight transportation usually involves a significant number of empty vehicle 

movements. To maximize profits in a competitive industry, trucking companies, 

container companies, rental car agencies and railroads, must manage in both time and 

space fleets of vehicles. Understanding and better controlling this phenomenon is very 

important for the managers of freight-companies. From this need arises the vehicle 

allocation problem, which will be investigated in this paper. As customers, generally 

shippers, request the carrier to pick up cargo at specific locations and deliver these items 

to given destinations on a specific day, the demand for that day is determined. Note that if 

any demand is considered unprofitable or the service capacity cannot accommodate it, 

this request will be declined by the carrier. As in the real-world situation, some 

assumptions are made in this paper. Each demand can be served by a single vehicle and 

the vehicle is used for this demand on that specific day.  No vehicles can be shared by 
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different demands. Time is categorized into intervals, typically day-to-day, and on each 

day, each vehicle can either be assigned to pick up a demand or moved empty to another 

region to serve a requested or expected demand, or stay in the same region until the next 

day. Obviously, decisions made on one day will have a direct impact on future vehicle 

supplies of regions. The problem of how to manage such a vehicle fleet forms the 

“Stochastic Dynamic Vehicle Allocation Problem” (SDVAP).   

As noted by many researchers, the major difficulty of SDVAP lies in uncertain 

demand and the increasing level of uncertainty further into the future. This stochastic 

property obviously requires the carrier to be able to estimate future demands and to make 

decisions that anticipate their impacts on future periods.   

Several researchers have formulated SDVAP problems and have proposed 

different methodologies to solve this problem considering its uncertainty and finite and/or 

infinite horizon nature. However, static deterministic, static stochastic, or dynamic 

deterministic formulations are the main focus of previous research. Dejax and Crainic8 

presented a taxonomy of empty vehicle flow problems and models and reviewed the 

existing literature. Several research perspectives are identified and the advantages of 

integrated approaches for simultaneous management of empty and loaded freight vehicle 

movements are also discussed. Jordan and Turnquist12 incorporated uncertainty of 

demands and vehicle supplies into the model for the first time and proposed a network 

optimization model for the allocation of empty freight cars in the railroad carrier case. 

The model was solved by a Frank-Wolfe algorithm and computation was shown to be 

very efficient. Frantzeskakis and Powell10 proposed a heuristic algorithm and contrasted 

it to various deterministic approximations. A rolling horizon procedure was employed to 

simulate the operation of a railroad or a truckload carrier. Computational results indicated 

the superiority of the new algorithm over other approaches tested. 

These research efforts provided several insights for SDVAP. However, few 

efforts are oriented to simultaneous consideration of the dynamic and stochastic 

properties of the SDVAP problem. The main purpose of this paper is to formulate and 

solve an instance of the SDVAP under a finite planning horizon. Particular attention is 

given to solving this multistage stochastic model using a Monte Carlo sampling-based 
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algorithm (MCSBA). Numerical results and vehicle allocation recommendations are 

presented and analyzed. This paper is organized as follows. Section 2 presents the 

problem statement and the assumptions that are made in this paper. Section 3 presents the 

model formulation and candidate solution methodologies for stochastic programming 

problems. Section 4 discusses the details of the Monte Carlo Sampling Based Method 

(MCSBM), along with a probabilistic statement regarding the quality of solution through 

the presentation of its lower bound and upper bound. Section 5 presents the 

computational results of the experimental network. Finally, section 6 concludes the paper.  

2. Problem Statement 

In this section, a stochastic programming formulation is presented for the SDVAP 

with a planning horizon of N days. As Powell (1990) noted, the SDVAP can be restated 

as follows: at the present time period and with the available vehicle fleet allocated among 

different cities, a truck carrier must decide which loads to accept or refuse and how many 

vehicles to relocate or hold to achieve a more favorable future vehicle allocation, and 

eventually to maximize the total expected profits over a planning horizon of N days under 

the condition of independent random future demands with a known distribution.    

Figure 1 gives a graphical view for SDVAP through network flow representation. 

(Further notations can be seen later in Section 3.) To facilitate the formulation of the 

SDVAP, several assumptions are made as listed below: 

1) The travel times between all cities are uniformly equal to one day, either for a 

loaded or an empty movement; 

2) At the beginning of each day, the truck carrier knows all the demands of that day. 

Therefore, the first day demand is deterministic. However, he doesn’t know any 

of the demands that will be requested on the following days.  And certainly, the 

carrier can make the decision by solving the model once per day; 

3) Any demands that cannot be satisfied for a specific day could be lost; 

4) All vehicles are available for the first time on the first day; 
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5) The demands of all pairs of cities conform to a Poisson distribution and the 

parameters (mean values) are known but not necessarily equal. 

In order to formulate the SDVAP as a cost minimization problem, revenues from 

carrying a load are treated as negative costs while costs of empty movement are regarded 

as positive revenues. Additionally, since each vehicle carries only one load, the two 

terms, “flow of vehicles” and “number of vehicles” are essentially the same. In addition, 

to present the formulation of the SDVAP, some notations are introduced and a stochastic 

programming model is developed and described in the following model formulation.  

3. Model Formulation 

Indices/Sets: 

R, ∈ji      Regional origins and/or destinations 

Tt∈        Time periods 

Parameters/Data:

  ijr = net revenue for pulling a load from i to j. 

 ijc = cost of moving empty from i to j. 

1ijL  =  number of loads known at time t = 1 to be available moving from i to j at the first  

          time period. 

1S i  =  supply of trucks at region i at period 1. 

 

Random Variables: 

ijtd~  =  random demands denoting the number of loads that will be requested to go from i  

to j during period t,  t = 2,…,N 

 

Decision Variables: 
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w
ijtx  =  number of trucks moving loaded from region i to region j, in the beginning of  

period t in scenario w,  t = 1,2,…, N 
w
ijty  =  number of trucks moving empty from region i to region j, in the beginning of  

period t in scenario w,  t = 1,2,…, N 
w
itS  = supply of trucks at region i during period t in scenario w, t = 2,…, N.  

       ∑
∈

−− +=
R

)1()1( ][
k

w
tki

w
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Objective Functions: 

The optimization model for each time period t =2, 3, …, N-1 is: 
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The optimization model for the last period N is: 
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An N-stage stochastic programming procedure was formulated as follows to maximize 

total profits over the N time period horizon: 

(3c)                                            ,           )(                      
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  As illustrated in Figure 1, it should be noted that in the above model formulation, 

the first set of constraints implies that all loaded movements must be no more than the 

requested demand for those movements. The second set of constraints guarantee that the 

total number of loaded and empty vehicles that move out of region i at time period t 

cannot exceed the vehicle supplies available at that time period. The third set of 

constraints in (1) and (3) presents the flow conservation properties, i.e., the number of 

vehicles available at region j at time period t+1 is equal to the number of loaded or empty 

movements to region j at time period t.  

Problems involving uncertainty in the objective function and/or constraints fall in 

the domain of Stochastic Programming. Furthermore, it can be seen that the SDVAP is a 

linear programming problem with uncertain constraint coefficients in the right-hand-side. 

As described by Powell (1990), the great difficulty arising from these problems is the 

required truncation of their infinite planning horizon to a certain number (N) of finite 

time periods and this might cause deviations from the infinite planning horizon optimal 

solution. As a result of this transformation, the SDVAP can be treated as a Multiple-stage 

(here N-stage) Stochastic Linear Programming (SLP) problem with recourse. 

Several approaches have been proposed to solve Multiple-stage Stochastic Linear 

Programming during the past decades. Generally speaking, these approaches for solving 

multi-stage SLP problems can be classified into two main groups: 

1) “Exact” Optimization Methods 

As the main focus on solving Multiple-stage Stochastic Linear Programming in 

the early stages, exact optimization methods have been extensively investigated by many 

researchers. Generally speaking, these methods can be further divided into three 

categories, which consist of the Simplex method, Interior point methods, and the 

Decomposition method. Decomposition is the most popular approach to solve SLP 

problems, which includes Dantzig-Wolfe, Benders, L-shaped and Cutting plane 

algorithms. These methods are very efficient at solving SLP problems including multi-

stage SLP problems, especially when the problem size is manageable.  
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However, if the number of scenarios is very large or the involved random 

variables are a continuous random vector from a certain probability distribution, then 

performing an “Exact” evaluation of the objective function may be difficult or even 

impossible unless the sub-problem has some very special structure like a simple recourse. 

In this case, some researchers resort to approximation methods to get some ideas of how 

good the solution is.  

2) Approximation techniques 

Existing approximation techniques to solve SLP problems can be categorized in 

two classes. The first, “Approximation and Bounding Techniques”, use Jensen and 

Edmundson-Madansky (EM) bounds, and Sequential approximation methods to provide 

bounds for network recourse problems. The second kind of Approximation technique is 

known as “Monte Carlo Sampling-Based Algorithms”. Monte Carlo sampling is an 

approximation technique and provides qualitative upper and lower bounds for the optimal 

objective function value. The best that the approach can do is to compute a feasible 

solution that yields an objective function value within an interval that contains the 

optimal objective value with a certain percentage confidence.  The Monte Carlo sampling 

method is capable of solving difficult problems.  

As approximation techniques, both methods are efficient in solving SLP 

problems. Due to its great flexibility and easily-implemented properties, the Monte Carlo 

Sampling Based Algorithm is employed as the solution methodology for SDVAP in this 

paper. In the following sections, the characteristics underlying the Monte Carlo sampling 

method are described. Quantitative upper and lower bounds are also presented for the 

optimal solution from the Monte Carlo Based Sampling Method. 

4. Monte Carlo sampling method 

4.1. Introduction 

As mentioned before, since the loading demand that might be requested conforms 

to a Poisson distribution and the scenario is too large to be seen, it is very difficult to 
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solve the SDVAP using the “Exact” Optimization Methods. In this paper, the Monte 

Carlo sampling method is employed to solve SDVAP.  

When handling stochastic programming problems, it is always good to know the 

difference between the quality of solution obtained from a deterministic method and that 

of a sampling-based method. For the deterministic method,  is a solution that yields an 

objective function value within 1% of the optimal objective function value. While for the 

Sampling-Based Method,  is a feasible solution that provides 95% confidence that  

yields an objective function value within 1% of the optimal objective function value. As 

mentioned by Morton (2002), the loss of ability to make more precise statements 

regarding the solution quality, is replaced by the capability to solve more difficult 

problems. Obviously, however, the “quality statement” given by a Deterministic Method 

would be preferred if it is available. 

x̂

x̂ x̂

Essentially speaking, as an innovative approach to solving stochastic optimization 

problems, the basic idea of the Monte Carlo sampling method is to generate a random 

sample and approximate the expected value function by the corresponding sample 

average function. Figure 2 illustrates a scenario tree for multi-stage stochastic 

programming models. In this figure, the nodes in the tree represent states at a particular 

period. Decisions are made at the nodes and the arcs represent realizations of the 

uncertain variables. Decisions to be made further down the scenario tree depend on the 

decisions already made through parent nodes and the uncertain properties of children 

nodes. Note that the generation of scenarios is based on simulation and the decision 

makers can specify the probability distribution function so that the statistical properties 

are preserved. A single simulation scenario consists of realizations of the uncertain 

variables in each simulation (time) period. In practice, only the first-stage solution at the 

top node will be used for decision making. The decisions made at stage two or after that 

are only made in order to find the right incentives for the first-stage decisions (Fleten, 

2002).  

In all, the Monte Carlo Sampling Based Method for solving Multi-stage 

Stochastic Programming can be restated as follows. At the beginning of the first period, 

the decisions are made based on the current information (and simulation of the stochastic 
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future), and then, at the end of the first period, the consequences of this decision are seen. 

Given this consequence and new information for the next period, a new decision is made 

at the beginning of the second period. Based on the outcomes from the second period and 

given new information for the third period, the decision is made again. The whole process 

continues, and in principle, indefinitely. 

Note that for each scenario tree with generated random variates, one can use 

“Exact” Optimization Methods (e.g., L-shaped Method) to solve it. In fact, the first-stage 

decision is obtained this way. To test the solution quality at the current stage, qualitative 

upper and lower bounds are provided for the optimal objective function value and these 

are discussed in the following two subsections.  

4.2 Upper Bound 

Consider a general multi-stage stochastic programming model as shown in the 

APPENDIX. Note that for simplicity of the following descriptions, theoretical 

foundations of stochastic programming including some well-known solutions (e.g. the 

expected value strategy and wait-and-see bound) are also included in the APPENDIX. 

According to Morton (2002), the commonly used method for setting upper bounds is to 

guess a feasible solution  and then estimate Xx∈ˆ ), xEh(xc ξ~ˆˆ +  by sampling; i.e., from 

∑
=

+=
n

i
)i, xh(

n
xc(n)U

1

~ˆ1ˆ ξ  where n,ξξ ~,~1 L  are iid. from the distribution of ξ~ . 

Obviously, the associated confidence intervals can be determined. There are many 

methods that can be used for obtaining upper bounds. Some methods for obtaining the 

“guess”  are more sophisticated than others. Such methods include: x̂

(1) ][minargˆ )ξh(x,cxxx
Xx

EV +∈=
∈

, where x is replaced by the expected value. 

(2)  may be the average of some sampled wait-and-see solutions. That is, x̂
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(4) Stochastic Quasi-gradient Methods. 
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In this paper the third method is used to obtain the upper bound. 

4.3 Lower Bound 

The theorem for A Monte Carlo Method for Lower Bounds is given in the 

APPENDIX. Note that the method to get the lower bound is similar to that for the upper 

bound except that only the first-stage decision is needed. 

The following sections discuss the solution procedures of how the upper bound 

and lower bound are generated using this approach. For simplicity and without loss of 

generality, an N-stage stochastic programming model is illustrated using the Monte Carlo 

Sampling Based Method. The solution procedures are described as follows. 

4.4 Solution Methodology 

The whole procedure for obtaining lower and upper bounds are as follows: 

Input: Related required data for SDVAP-N include , the reward for satisfying a unit 

of demand on each arc, and , the cost for running an unloaded truck on each 

arc, and the confidence level α. (For the lower bound, the sample size (i.e., the 

number of scenario trees) is  and batch size (i.e., the number of scenarios inside 

a tree) is . For the upper bound, the sample size is  and batch size (i.e., the 

number of scenarios inside a tree) is . One sample tree for generating lower and 

upper bounds is given in Figure 3. 

  ijr

 ijc

ln

bn un

bn
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Output: Candidate solution ,  and approximate (1-2α)-level confidence interval  x̂ ŷ

 ( ) ]~~0[ Lu εεLU, ++−
+  on *)~,ˆ,ˆ(ˆˆ zyxEhycxr −+− ξ . 

The whole procedure can be described as follows: 

Step 1: Set stage=1. 

do i=1 to ln

Generate a scenario tree as show in Figure 3.1 and solve the generated  

tree. 

Obtain  as the optimal solution and  as the optimal objective 

values.  

iŷ ,ˆ ix iL  

 enddo 
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Step2: Set stage=stage+1. 

do i=1 to ln

Generate a scenario tree as show in Figure 3.stage.  

do tmp_stage=1 to stage 

Fix the decision variables in previous stages as . stagestage ˆ  ,ˆ yx

enddo 

  Solve the generated tree as shown in Figure 3.stage. 
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Obtain  and  as the optimal solution.  ix̂ iŷ

 enddo 
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If stage<N-1, goto Step2, else goto Step 3. 

Step3: do i=1 to un

do tmp_stage=1 to stage-1 

Fix all the decision variables in tmp_stage as . tmp_stagetmp_stage ˆ  ,ˆ yx

enddo  

Generate a scenario tree as show in Figure 4.  
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It is noted that Step 1 generates the lower bound procedure and Step 2 produces 

the feasible solutions through the methods mentioned before. Step 3 evaluates all the 

feasible solutions in the previous N-1 stages in a stochastic environment (as shown in 

Figure 4) for N-th stage and gets the upper bound for the optimal solution.  

 

12

 



 

5. Numerical Results 

5.1 Example Network Descriptions 

A 5-stage experimental network was designed to show the quality of the solution 

when the Monte Carlo sampling based method is used to solve SDVAP. The following 

describes the example input information required for SDVAP. 

A planning horizon of 5 days and freight transportation between four cities are 

taken in this model instance. The net revenue per loaded truck ( ) and the cost per 

empty truck ( c ) are expressed in matrices and both use $ as the unit. Also as the 

previous notations showed, d is the demand at day 1 and 

 r

 

  ,

ij

ij

1ij ijkd k=2,3,4,5 denotes the 

mean value of the random demands (Poisson distributed) at day 2 ~ 5 respectively. In 

addition,  is the initial number of trucks available in region i at day 1. (All demands 

are expressed as units of “trucks”.) All the data are summarized as follows: 

1iS

N = 5. R = 4. α=0.05. 

  ijr = = =  
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As described before, SDVAP is a typical multistage stochastic programming 

problem. Although it involves vehicle allocation within only four cities, this is a large 

problem. In each stage, the demands on all of the 16 arcs are stochastic. Assume the 

simplest case that on each arc, there are only two situations, namely high demand and 

low demand. Then, the total number of scenarios of this problem is 216×4 = 264. Therefore, 

even in such a simple case, to solve it using regular deterministic stochastic programming 
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methods is impossible. Furthermore, in this model, the demands are Poisson distributed, 

making it intractable using traditional stochastic programming methods. Therefore, the 

Monte Carlo Sampling Based Method is a reasonable choice. In this paper, GAMS with 

CPLEX Solver is used as the optimization tool and the main codes have been 

successfully tested. 

5.2 Computational Results 

 It should be noted that when CPLEX is involved with generating random 

variates, the speed of code executions is sharply reduced. To expedite the simulation 

process, a C++ programming code was developed to generate all the random demands 

(that are needed and Poisson distributed) in all the scenario trees. These data are written 

into a file as inputs for the GAMS codes.  

The most promising property of using the Monte Carlo Sampling Based Method 

to solve the SDVAP problem is that the execution time is very short. About 1 minute is 

required for generating all the input data and about 68 seconds for the GAMS code 

execution of the scenario tree. Furthermore, as will see in the next sections, the 

computational quality of the solution is very good. Obviously, these two characteristics 

strongly suggest that this Monte Carlo Sampling Based Method could be applied to solve 

the SDVAP problem efficiently and effectively.  

The following matrix shows the recommended loaded movement ( ), empty 

movement ( ) and overall movement ( ) of trucks for day 1 through the Monte 

Carlo Sampling Based Method. 
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As seen, the first-stage decision ( ) provides the optimal movement of the 

number of trucks from region i to region j in a matrix form. (e.g., 18 trucks should be 

moved from city 1 is city 1 and the number of trucks needed to move from city 1 to city 3 

is 4, etc.) As a result, the trucks available at each region on the second day are: 

1ijM

 T
2iS = ( )  T48424144

Comparing this recommended allocation of trucks with the demands at day 1, one 

can see that some demands are refused while some vehicles are assigned to move empty. 

This is as expected because the goal to maximize profits results in unprofitable demands 

(with lower net revenue) not being satisfied and spare empty trucks are allocated to a 

more favorable allocation position to serve future demands with potentially higher net 

revenue. 

The lower bound procedure is solved as mentioned in the solution methodology. 

The estimated lower bound for the objective function is: L  = - $ 10055, which means 

that the company can earn at most 10055 dollars. 

To examine the quality of the recommended allocation of trucks at day 1, one 

might estimate both an upper and a lower bound for the objective function. In a multi-

stage problem, not only the first stage decision but also feasible decisions at subsequent 

stages except the last stage are required in the upper bound procedure. The detailed steps, 

as illustrated before are used to derive those intermediate-stage allocations. The following 

matrices list the feasible resulting allocations of trucks for days 2, 3 and 4.   

2ijM  = ,  = ,  =  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1611138
8121210
111299
138914

3ijM

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1710138
8121211

10131010
137714

4ijM

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1611138
6141210

1111119
138814

Given the decisions on days 1, 2 3 and 4, the estimated upper bound for the 

objective is: U  = - $ 9647. Based on the estimated lower bound and upper bound, a 

confidence interval is also constructed, as shown in Table 1. The sample mean for the 

lower bound means that the company can earn an expected profit of no more than 10055 
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dollars. The sample mean for the upper bound means that the practicing company can 

earn at least an expected profit with 9647 dollars. And one can say that the quality of the 

solution using Monte Carlo Sampling Based Method: “I am 90% percent sure that the 

different between the expectation of the upper bound and the analytical optimal 

expectation of profits falls in between the interval [0, $442]. Namely, statistically if I 

strictly follow the decision that was made in the first stage using this method, the worst I 

can earn is 442 dollars less than the best I can possibly do.” Therefore, this bound is very 

tight and looks very good. 

It is interesting to know that for the expected value strategy, that is to say, if the 

problem is solved replacing random demands by their expected values, the result is: EV = 

- $ 10689, which means that one can earn 10689 dollars. This is expected because in this 

case, the problem has changed from a stochastic programming problem to a deterministic 

optimization problem. When the demand is deterministic instead of random, one has 

perfect information about the demand, as a result, one can get a better solution. Also 

mathematically it is noted that the magnitude of the objective function for the expected 

value problem is less than that of the stochastic problem, which is in accord with the 

principle of Jensen’s inequality. Note that this is also the commonly used approach in the 

truck industry, where the first-stage decisions are made usually only based on the 

expected demand strategy. However, if the solution of the expected value problem is 

evaluated in the random demand environment, (namely, if the decision made at each 

stage is strictly followed but the demand is random instead of deterministic,) the 

objective function of the stochastic problem becomes: EEV = - $ 9388, which is higher 

than the estimated upper bound U . This is as expected because this is not an optimal 

solution for the stochastic programming problem. Therefore, one can only earn an 

expectation of 9388 dollars, which is much less than that one can get from the optimal 

solution of the Monte Carlo Sampling Based Method.  

Another interesting thing one might want to know is that a wait-and-see solution 

is also obtained when solving several separate stochastic linear programming models 

each consisting of a separate (unrelated) sampling tree as shown in Figure 5. The 

statistically optimal solution is WS= - $ 10128. Note that the objective of the wait-and-
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see problem is statistically less than that of the stochastic problem. This is as expected 

because one can always earn more if perfect information about the demand at each stage 

is known. However, it is higher than that of the expected value problem, which is 

predicted by the theorem that WS ≥ EV if only right-hand-side variables are random (See 

APPENDIX for more information). In addition, when the solution at each stage of the 

wait-and-see problem is evaluated in the random demand environment, the objective 

function of the stochastic problem has the value of: EWS= - $ 9636, which is higher than 

the estimated upper bound U , indicating a worse solution (worse upper bound) than that 

of the previous method. That is to say, the upper bound using this wait-and-see solution is 

lousy----one can possibly earn an expectation of 9636 dollars, which is worse than the 

solution from the Monte Carlo Sampling Method ($9647). Although this amount seems 

to be insignificant (one might argue), the aggregated value can be quite attractive when 

Monte Carlo Sampling Based Method is used to solve a large network under a long time 

horizon (say annually or in principle, infinite), especially when the scale or absolute 

value of the net revenue of each truck movement enlarges. 

6. Conclusions 

Optimization under uncertainty has seen many real world applications. The 

stochastic dynamic vehicle allocation problem (SDVAP) is faced by trucking companies, 

container companies, rental car agencies and railroads. To maximize profits in a 

competitive industry, scientific tools and computer-based advanced algorithms are 

needed to manage fleets of vehicles in both time and space. 

This paper has formulated a multistage stochastic programming based model for 

SDVAP. A Monte Carlo Sampling Based Algorithm has been proposed to solve SDVAP. 

A probabilistic statement regarding the quality of the solution from the Monte Carlo 

sampling method is also identified by introducing a lower bound and an upper bound of 

the obtained optimal solution. A five-stage experimental network was introduced for 

demonstration of this algorithm. The computational results indicated a solution of high 

quality when Monte Carlo sampling based algorithm is used to solve SDVAP, suggesting 

that these algorithms can be used for real world applications. 
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Due to the limitation of computation time and solver capability, the problem 

solved for demonstration in this paper is a small network with a short time horizon. It is 

expected that as the sample size increases, the lower bound will become larger and a 

better probabilistic statement can be obtained. Further research is expected on the 

computation for large networks with large-sample-sized Monte Carlo Sampling Based 

Methods for solving SDVAP problems. 
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Figure 1. Network Flow Representation of SDVAP 
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Figure 2 Scenario Tree for Multi-stage Stochastic Programming Models 
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Figure 3. Lower bound and upper bound determination. Note that only the demands at day 1 are 

deterministic and the initial number of trucks at day k (k>1) is given from the feasible solutions that are 

calculated in previous stages.  
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Figure 4. Evaluation of lower bound and upper bound solution under stochastic environment. Note that 

only the demands at day 1 are deterministic and demands at day 2 ~ N are randomly Poisson distributed. 
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Figure 5. Wait and See Solution Strategy 

 

Table 1. Confidence Interval 

 Sample mean Sample standard 
variance 

Sample size t ε 

lower bound -$10055 69.34 30 1.697 21.49 

upper bound -$9647 244.52 1000 1.645 12.72 

90% CI for (E U~  – Z*):       [0, $ 442] 
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APPENDIX Properties of Stochastic Programming Problems 

 

Suppose one want to deal with a stochastic programming problem: 
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Lower Bound and Upper bound for Solution from Monte Carlo Sampling Based Method: 

Theorem 1: Let nξξξ ~,~,~ 21 L  be iid (independently identically distributed) fromξ~ , and  
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Theorem 3 (Jensen’s Inequality): If )(•f  is convex and ξ~  is a random vector. Then, 

)~()~( ξξ EfEf ≥ . For the above-mentioned general stochastic programming, if  ),( •xh  is 

convex, then: XxExhxEh ∈∀≥ )~,()~,( ξξ  

 

Theorem 4: Let )~(min ξx, EhcxEV
Xx

+=
∈

 (expected value strategy), 

)~(min ξx, EhcxRP
Xx

+=
∈

 (recourse problem) and )]~(min[ ξx, hcxEWS
Xx

+=
∈

 (wait and see 

bound). Also, let )]~([argmin* ξx, Ehcxx
Xx

EV +∈
∈

, )]~([argmin* ξx, Ehcxx
Xx

RP +∈
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 and 

)~( ** ξ, xEhcxEEV EVEV += .  If )~(vec~ d=ξ  and B, f and D are deterministic, then: 
. EEVRPWSEV ≤≤≤
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