

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Modeling Risk for Positive Train Control (PTC) Systems

Craig W. Shier craig.shier@lmco.com

Lockheed Martin

Risk Modeling on IDOT PTC

• The IDOT Positive Train Control (PTC) System prevents

- Train-to-train collisions,
- Derailments due to overspeed, and
- Collisions between trains and roadway workers or their equipment while working within their authority limits
- Safety Requirements for PTC
 - Draft Rule CFR §236 subpart H
 - Base case definition
- Risk Model
 - Input
 - Design of the Risk Model
 - Model Validation
 - Output

Future of the Risk Model

IDOT PTC System Architecture

Safety Requirements for Positive Train Control

• CFR Title 49 Parts 209, 234, and 236

- Standards for Development and Use of Processor-Based Signal and Train Control Systems; Proposed Rule
- § 236.909 Minimum Performance Standard
 - Establish with a high degree of confidence that introduction of the product will not result in <u>risk</u> that exceeds the (adjusted) previous condition.

Relative Risk Assessment

Risk (New) \leq Risk (Old)

Safety Requirements for Positive Train Control

Risk Analysis Process

- Risk levels must be adjusted for Exposure expressed as total train miles or total passenger miles traveled per year.
- Severity must identify the total cost, including fatalities, injuries, property damage, etc.
- System View of train control system in addition to MTTHE view at the subsystem level
- "Previous condition" defined as 4 aspect in-cab signal with enforcement of unacknowledged downgrade in aspect (no speed enforcement)

Simulation is the most effective means of accounting for these factors.

Input to Risk Model

	Input Elements	Challenges	
Railroad	Track Configuration	Level of Detail	
Parameters	Local Environment	Statistical Variation Applicability of Rules	
	Train Characteristics		
	Timetable or Schedule		
	Train Movement Priorities		
Human	Stimulus-Response Pattern	Quantification	
Factors	Correlation of Actions	Sequences of Actions	
	Human-Human Interactions		
Train Control	Equipment Characteristics	Field Performance vs Mil	
System	System Characteristics	Hndbk 217	
	Human-System Interactions	System Influence on Human	
	System Maint Practices	Behavior	
	Operating Rules & Practices		

Model the Factors that Reveal Differences in Risk

ASCAP Model (Axiomatic Safety-Critical Assessment Process)

Object Model

Model Validation

• Challenge: Calibration with historical data

- Severe accidents are very low probability (≈10E-8 / train mile)
- Accident reporting process not precise enough for risk analysis of train control systems
- "Close calls" are not recorded, i.e. exposure is unknown

• Techniques

- Expert Reviews of Input and Assumptions
 - Expert panels representing Railroads, Labor, Suppliers, FRA
- Component testing
 - Apply CMMI type software discipline to model testing
- System Testing
 - Statistical summarization of output
- Sensitivity analysis
 - Model range of uncertainty in critical input parameters

	Even	t Lo	gs				
Incident/Accident Type: Broken Rail Derailment (EOI 185)			Train Info: ID = LSF 50 (Freight), 27 cars, 2 locomotives /				
			Train Movement: Northbound, 60 mph at rail intersection, Average Spd Model				
Incident/Accident Date: Friday, Day 27116, Spring			Cab Signal Status: Cut-Out (failed prior to entry into system)				
Incident/Accident Severity and LOO: \$166,017.00, LOO TBD			Wayside Signal System Status: All OP except FUS Rail between 138.67-136.90				
#	Time	Mile Post	Event Type	Speed Limit	Actual Speed	Details	Direct Cause ?
06	10:49:52 AM	139.17	Visual Look–Ahead: Control Point Signal (at 138.67)	60	60	Aspect=Green, Train Crew is Compliant and proceeds	
05	10:50:08	138.90	Visual Look–Ahead: Intermediate Signal (at 136.9)	60	60	Aspect=Green, Train Crew is Compliant and proceeds	
04	10:50:22	138.67	Intersection: Rail (for previous block)	60	60	Rail=Operational (OP)	
03	10:50:22	138.67	Intersection: Control Point Signal (at 138.67)	60	60	Aspect=Green, Train Crew is Compliant and proceeds	
02	10:50:22	138.67	Intersection: Switch	60	60	Switch=Operational (OP), normal position	
01	10:51:38	137.40	Visual Look–Ahead: Intermediate Signal (at 136.9)	60	60	Aspect=Green, Train Crew is Compliant and proceeds	
I/A	10:52:08	136.90	Intersection: Rail (for previous block)	60	60	Rail=Failed-Unsafe (FUS), not detected by track circuit, results in Broken Rail Derailment Incident/Accident	Yes
CP Signal						Intermediate Signal	
6 5 4 ₃₂							11

Preliminary Base Case ASCAP Likelihood Results

Mishaps versus Train Miles

Train Miles Accumulated

Future of Sim-Based Risk Assessment

Configurable Parameters And Rules RR and Suppliers

Railroad Parameter Files

Track Configuration Local Environment Train Characteristics Timetable or Schedule Train Movement Priorities Operating Rules & Practices

Hum Fact Parameter Files

Stimulus-Response Pattern Correlation of Actions Human-Human Interactions

Train Ctrl Parameter Files

Equipment Characteristics System Characteristics Human-System Interactions System Maint Practices Simulation Driver Simulation Specialist

Simulation Control Software

> Core Engine

Incident, Accident Logs and Statistics

FRA Oversight, AAR Consultation

Accomplishments

 Established a System Level risk assessment process that supports the new regulatory requirements for Train Control Systems

Developed a Train Control Simulation

- Incorporates Human, System and Operational hazards
- Models exposure to safety hazards
- Methods for handling uncertain inputs

• Established a team of experts

- Suppliers provide product safety data
- Railroads provide operational data
- Various experts provide assessment and validation