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Abstract 

The cyclical nature of the aviation industry makes investments in air transportation 

infrastructure difficult. Given the long lead times and large capital expenditures in the 

provision of this infrastructure, timing the investments with the market is of critical 

importance; however, given the technological, market and political uncertainties inherent 

in aviation, decision-makers face a very challenging task. A flexible strategy for 

infrastructure delivery is suggested as a means of managing the risk in these type of 

investments. The central idea is to structure the investment so that it would benefit from 

the upside potential if circumstances are resolved favorably, but it would be protected 

from downside losses otherwise. Traditional evaluation techniques, such as the Net 

Present Value rule or Decision Analysis, have some shortcomings that make it difficult to 

determine the value of such strategies. 

 

In this paper, an evaluation methodology based on system dynamics and Monte Carlo 

simulation in a real options framework is utilized to evaluate different flexible capacity 

delivery strategies. A hypothetical yet common situation of an airport with limited 

capacity and uncertain demand growth is utilized to illustrate these strategies which vary 

in terms of the timing of the investment, size of the capital expenditure and time to 

deliver the capacity expansion. As the airline industry starts a slow recovery from one of 

its worst crisis in history, flexibility in the structuring of capital investments may be 

important to ensure a sound return to profitability. The methodology presented here 

provides a means of identifying and evaluating such strategies.  

                                                 
1 Doctoral candidate. E-mail address: brunom@mit.edu 
2 Associate professor. E-mail address: johnpaul@mit.edu 



2 
 

1. Introduction 

Air transportation is a cyclical industry characterized by periods of high growth followed 

by periods of deep capacity reductions and other desperate measures by airlines to remain 

operational [Skinner et al, 1999; Stonier, 1999]. Planning in the face of this volatility 

becomes a major problem for many stakeholders, in particular airports and aircraft 

manufacturers. Because of the large capital requirements and long lead times generally 

associated with new runways, passenger buildings or aircraft assembly lines, the timing 

of these investments is of particular importance: a premature investment may result in 

unused capacity that sits idle without generating any returns whereas a tardy investment 

may miss the potential market completely.  

 

A flexible approach for infrastructure delivery is suggested as a means of managing the 

risk in these type of endeavors. The central idea is to structure the project so that it would 

benefit from the upside potential if circumstances are resolved favorably, but it would be 

protected from downside losses otherwise. Traditional evaluation techniques, such as the 

Net Present Value (NPV) rule or Decision Analysis (DA), have some shortcomings that 

make it difficult to determine the value of such strategies. In this paper, a new 

methodology to determine the strategic value of air transportation infrastructure based on 

Monte Carlo and system dynamics simulation in a real options framework is presented. 

This methodology is illustrated by considering a simple yet common situation where a 

service facility (e.g., a runway, a passenger building, etc) has fixed capacity and 

stochastic demand. 

 

In the next section, the research objective of this work is presented. In section 3, some 

difficulties with traditional valuation methodologies are highlighted. In sections 4 and 5 a 

brief overview of financial and real options, respectively, is given. In section 6, the 

evaluation of real options with uncertain exercise price is introduced. In section 7, the 

methodology proposed here is explained. In section 8, an airport capacity expansion 

project is used as an example to demonstrate this methodology. In section 9, numerical 

results are presented. Finally, section 10 concludes the paper. 
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2. Research objective 

The objective of this research is to develop a methodology to support investment 

decisions in air transportation infrastructure by determining the value of flexible capacity 

expansion strategies. Two main hypothesis underlie this work: first, that the value of 

flexibility arises from the coupling of internal (project) dynamics to external (market) 

dynamics. This suggests using systems dynamics as a modeling tool. Second, that the 

value of flexibility also arises from uncertainties related to the technology and market 

conditions. This merits the use of Monte Carlo simulation to take multiple sources of 

uncertainty into account. 

 

3. Difficulties with traditional valuation methodologies 

Traditional evaluation methodologies, such as the Net Present Value rule and Decision 

Analysis, have some shortcomings that make it difficult to determine the value of 

flexibility in the face of uncertainty. For example, NPV considers only one course of 

action, dismissing from the beginning any flexibility that project managers may have to 

react as uncertainties get resolved [Copeland and Antikarov, 2001]. DA is an 

improvement over NPV, because it does allow project managers to choose alternative 

courses of action as more information is obtained and uncertainties are resolved. In 

addition, DA models risk explicitly by assigning probabilities to different possible 

scenarios [Amram and Kulatilaka, 1999]. A serious drawback of DA is its limitation to 

account for several sources of uncertainty as the decision tree(s) may become very large. 

 

In the past decade, real options analysis (ROA) has emerged as an alternative project 

valuation technique. It is based on financial options theory, but, instead of finding the 

value of holding an option on a financial asset, it is applied to “real” projects to estimate 

the value of flexibility in the face of uncertainty [Dixit and Pindyck, 1994]. ROA is a 

powerful evaluation technique that circumvents some of the difficulties of more 

traditional approaches; however, in under to understand real options, it is necessary to 

explain financial options first. 
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4. Basics on financial options 

Financial options are securities that give you the right, but not the obligation, to buy or 

sell an asset, at a pre-determined price, within a specified period of time [Black and 

Scholes, 1973]. The price paid for the asset when the option is exercised is called the 

“exercise price” or “strike price.” The last day on which the option may be exercised is 

called the “expiration date” or “maturity date.” A “European option” can only be 

exercised on the expiration date; an “American option” can be exercised at any time up to 

the maturity date. 

 

If you own an option, you are able to defer the decision to fully invest until you have 

more information about the state of the world. Thus, you can protect your downside 

losses by not investing if conditions are not favorable, and you maintain the right to 

invest and reap benefits if conditions are favorable. 

 

The payoff of a European call option, w, on a non-dividend paying stock, S, is shown in 

Figure 1.3 If the stock price, S, is less than the strike price, X, the option does not get 

exercised and the payoff is zero; however, if S is larger than X, the option holder has the 

option of buying the stock for X and then selling it for S, thus, making a profit of S – X. 

Mathematically, the payoff of a call option can be expressed as the maximum of S-X or 

zero, i.e., max[S-X, 0]. This profit must be compared to the cost of obtaining the option 

to determine the net profit. 

 

Stock price, SExercise price, X

Payoff of call 
option

S - X

Stock price, SExercise price, X

Payoff of call 
option

S - X

Stock price, SExercise price, X

Payoff of call 
option

S - X

 

Figure 1: Payoff of a European call option on a non-dividend paying stock, S. Source: Authors with 

information from [Brealey and Myers, 1996]. 

                                                 
3 This discussion is based on [Brealey and Myers, 1996].  
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Options are said to be “in the money,” “at the money,” or “out of the money” depending 

on the cash flows that the option holder would obtain if the option would be exercised 

immediately [Hull, 1995]. If exercising the option results in positive cash flow, the option 

is “in the money;” if it results in a zero cash flow, it is “at the money;” and if it yields a 

negative cash flow, it is “out of the money.” For example, a call option is “in the money” 

if S > X, “at the money” if S = X, and “out of the money” if S < X. 

 

Options are valuable because the future stock price is uncertain (see Figure 2). In fact, the 

value of an option increases with the volatility of the stock, because this means that the 

stock can reach higher prices (it can also reach lower prices, but we are not concerned 

about this because the option protects us from downside movements).  

 

Stock price, SExercise price, X

Payoff of call 
option

S - X

Probability distribution of 
future prices of S 

Stock price, SExercise price, X

Payoff of call 
option

S - X

Probability distribution of 
future prices of S 

 

Figure 2: The stochastic nature of stock prices make options valuable. Source: Authors with 

information from [Brealey and Myers, 1996]. 

 

The total value of an option can be considered as the sum of two parts: the intrinsic value 

and the extrinsic or time value [Hull, 1995]. The intrinsic value is the payoff from 

exercising the option immediately. For a call option, the intrinsic value is max[S-X, 0] 

(see Figure 3). The extrinsic or time value is the portion of the option price that is not 

intrinsic value [Summa and Lubow, 2002]. It arises from the probability that, with time, 

the intrinsic value of an option will increase. For example, the intrinsic value of an “out 

of the money” option is zero, but its price is not zero because it has some time value. The 

person buying that option has the expectation that the option will get “in the money” 

eventually and thus, gain some intrinsic value. 
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Stock price, SExercise price, X

Value of call 
option

Max[S – X, 0]

Intrinsic value

Extrinsic value

Stock price, SExercise price, X

Value of call 
option

Max[S – X, 0]

Intrinsic value

Extrinsic value

 

Figure 3: The value of an option consists of an intrinsic and an extrinsic part. The extrinsic or time 

value is highest when the option is “at the money.” Source: Authors with information from [Brealey 

and Myers, 1996; Summa and Lubow, 2002]. 

 

The time value of an option is highest when the option is “at the money” [Summa and 

Lubow, 2002]. To see the reason for this consider the following: if the option is deep “out 

of the money,” the probability that over time it may get “in the money” is very small. If 

the option is deep “in the money,” there is already great certainty that it will be exercised. 

Therefore, there is not much value in waiting. In both cases, the price of the option 

approaches its intrinsic value. If the option is “at the money,” however, its intrinsic value 

is zero but, because there is a high probability that it may expire “in the money”, the time 

value is very high.  

 

5. Basics on real options 

Real options analysis (ROA) uses some of the basics of financial options theory to find 

the value of  options in “real” projects. For example, consider a city that is considering 

building a new airport. Assume further that current levels of demand require only one 

runway, but there are indications that future demand may grow to levels where a second 

runway could be necessary. A real option would consist of building one runway and 

acquiring the land for the second runway now, but not building the second runway until 

the traffic levels require it. 

 

Ownership of the land for the second runway gives the airport developers the right, but 

not the obligation, of expanding capacity if and when it is needed. In this manner, 

capacity can be provided quicker than in a case were one runway was built but no land 
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was purchased, thus increasing the likelihood that the second runway would be better 

timed with the market. Another approach would be to build both runways now; however, 

given uncertainties in demand, there is a risk that the second runway may not be needed. 

The option to build the second runway offers protection against this situation.  

 

Creating and having the option comes at a price: the airport developer must buy a piece 

of land. This is where ROA can be particularly useful because it can help to determine 

the value of this option and, hence, indicate the maximum price that an investor should be 

willing to pay for it.  

 

6. Evaluating real options with varying stock price and strike price 

Most traditional financial option methodologies assume that the strike price is fixed a 

priori and does not change throughout the life of the option. While this may be a valid 

assumption for financial options, it is not necessarily true for real projects, because the 

strike price of real options (generally taken to be a cost related to the project, such as 

capital investments and/or operational or maintenance expenditures) can certainly vary 

over time.  

 

There are a few examples in the financial options literature that address the valuation of 

options when the strike price is uncertain. Stanley Fisher [Fisher, 1978] and Avinash 

Dixit and Robert Pindyck [Dixit and Pindyck, 1994] assume that the strike price can be 

represented by a geometric Brownian motion (GBM) and use this behavior to derive their 

analytical evaluation formulae. While GBMs may be appropriate to model the behavior 

of stock and strike prices for financial options, expected revenues and costs of real 

projects do not necessarily follow these type of stochastic processes, thus, the work by 

these authors may not be generally applicable to real options.  

 

An approach from the ROA literature that can be used to evaluate real options with 

uncertain exercise prices is given by Robert Tufano and Alberto Moel (we will refer to it 

as the “Tufano-Moel approach” here) [Tufano and Moel, 1997]. Their technique consists 

of simulating the underlying asset until the end of the life of the project assuming that the 
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real option is always exercised and then finding its present value. This process is repeated 

thousands of time using Monte Carlo simulation to incorporate multiple sources of 

uncertainty both on revenues as well as on costs. In this manner, a distribution of net 

present values for the project with its associated mean is obtained (see Figure 4, left).  

 

Net present value

pdf 

0

Meanno flexibility

Net present value

pdf 

0

Meanw/ flexibility

 

Figure 4: The approach proposed by Tufano and Moel consists of using simulation to determine the 

distribution of  net present values without flexibility and its associated mean (left).  Flexibility is 

simulated by substituting negative NPV values with zero (right). The mean of the truncated 

distribution is the value of the project with flexibility.  Source: Authors with information from [Tufano 

and Moel, 1997]. 

 

The power of real options is that it allows managers to walk away from projects with 

negative outcomes. Tufano and Moel argue that this can be represented by substituting 

negative NPVs with zero which essentially truncates the distribution (see Figure 4, right). 

The mean of this truncated distribution is the value of the project with flexibility. The 

value of the real option is the difference between the means with and without flexibility. 

 

7. Real options, system dynamics and Monte Carlo simulation 

The methodology proposed by Tufano and Moel can be used to find the value of real 

options when the exercise price is uncertain by simulating the expected net present 

values. Here, we propose an alternative approach that combines the power of simulation 

with the simplicity of analytical solutions. As in the case of Tufano and Moel, the 

methodology developed here assumes a European call-like real option.  

 

First, assume that the probability density function, fs(s),  of the expected revenues from a 

real project (i.e., the stock price, S) at expiration time T is known. In addition, assume 
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that the cost of exercising a real option on this project (i.e., the strike price, X) at 

expiration time T is also known (see Figure 5). 

 

sX

fs(s) 

sX

fs(s) fs(s) 

 

Figure 5: Probability distribution of expected revenues, S, and construction costs, X, at time T.  

 

In this case, the decision-maker would only exercise in those instances when the stock 

price is greater than the strike price. The value of this option, w,  can be calculated as the 

difference of two terms. The first term is the expected value of revenues given that the 

revenues are realized, i.e., given that the option is exercised. Since the option would only 

be exercised if the stock price is higher than the strike price, this expected value can be 

represented as the expected value of S for values of s > X (see first term in Equation 1). 

The second term represents the costs associated with exercising the option. It can be 

computed as the strike price, X, weighted by the probability that it is realized, i.e., the 

likelihood that the option is exercised. This can be expressed as X times the probability 

that X will be incurred, i.e., the probability that s > X (second term in Equation 1): 

∫∫
∞

=

∞

=

⋅−⋅=
Xs

S
Xs

S dssfXdssfsw )()(        (Eq.  1) 

In reality, however, exercise costs can also be uncertain. Therefore, assume that the 

expected exercise cost at time T can be described with a probability distribution, fx(x) 

(see Figure 6): 
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fs(s) 

s, x

pdf fx(x) fs(s) 

s, x

pdf fx(x) 

 

Figure 6: Exercise costs can also be uncertain. Here, they are described by a probability density 

function, fx(x). 

 

Consequently, the value of the option, w, is now a random variable dependent on x (see 

Equation 2): 
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The expected value of w can be determined by applying the definition of expected value 

for continuous random variables (see Equation 3): 
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It is worth highlighting two results obtained from Equation 3 if the distributions fx(x) and 

fs(s) do not overlap. First, if all values of x are larger than all values of s (see Figure 7, 

left), the expected value of  w(x) is zero: 
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s, x

pdf fx(x) fs(s) 

s, x

pdf fx(x) fs(s) 

 

Figure 7: Two limiting cases worth exploring: all values of x greater than all values of s (left) and 

vice-versa. 

 

Intuitively, since the strike price is always larger than the stock price, the option will 

never be exercised and its value is zero. This corresponds to the case of a financial option 

that expires “out of the money.” The second point is that if all values of s are larger than 

all values of x (see Figure Figure 7, right), the expected value of w(x) is the difference 

between the expected value of S and the expected value of X: 
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If all values of s are larger than all values of x, the real option is essentially “deep in the 

money” and it will be exercised with great certainty. Thus, as in the case of financial 

options that are “deep in the money,” the time value of the option is very small and the 

price of the option approaches its intrinsic value. In the case of financial European call 

options, the intrinsic value is max[S-X, 0], which for options “deep in the money” 

approaches S – X. This is analogous to the above result.  

 

In order to find the distributions of revenues and costs of the real project, a combination 

of system dynamics and Monte Carlo simulation is suggested. System dynamics is a 

powerful tool to model the internal dynamics, feedback loops and uncertainties of the 
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project and its behavior given external influences. In addition, system dynamics is 

flexible enough to allow the simulation of other factors such as competitor behavior, if 

desired. Monte Carlo simulation can be combined with the system dynamics model to 

obtain a better representation of the cash flows by including the effects of different 

sources of uncertainty. 

 

As stated, this methodology assumes that costs and revenues are independent. This can be 

a reasonable assumption for those systems where, for example, the couplings between the 

costs of supplying and maintaining the infrastructure and demand are not very strong. In 

the case where these couplings may be significant, the distributions of S and X would 

have to represent conditional probabilities. 

 
Another important question regarding this evaluation methodology is related to the 

choice of the discount rate. The valuation formula from Equation 3 gives the expected 

value of w at exercise time, T. Thus, to find its value today, it is necessary to discount  

the distributions of revenues and costs to the present with a risk-adjusted discount rate. In 

the remaining of this section, the approach used to find the appropriate discount rate is 

explained. 

 

In any type of investment, an investor should be concerned about two types of risk: a) 

technical or unsytematic risk and, b) market or systematic risk [Brealey and Myers, 

1996]. In terms of technical risk, it is assumed here that it can be accounted for in the 

calculation of the distributions of revenues and costs with Monte Carlo simulation and 

that investors are well-diversified. Thus, the discount rate needs only to address 

systematic risk. 

 

 It is standard practice in finance theory to assume that investors have two objectives 

when making their investment decisions: maximize expected returns and minimize 

uncertainty (i.e., risk) of those returns [Sharpe, 1991]. A consequence of having these 

objectives is that investors are urged to diversify by holding more than one asset in their 

portfolio. The most diversified portfolio that investors can hold is one that includes all 
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traded assets in the economy: the market portfolio. A market index, such as the Standard 

and Poor’s index of the 500 largest companies in the U.S. (S&P 500), can be used as an 

approximation to the market portfolio. 

 

In addition to risky assets, investors can also hold risk-free securities, such as government 

bonds. The risk-return curve of a portfolio that includes the market portfolio and a risk-

free asset is shown as a straight line in Figure 8:  

 

Market portfolio (e.g. 
S&P 500)

Portfolio frontier

Risk-free 
rate, rf

Expected 
return, E[r]

Risk, σ

+

+

 

Figure 8: Risk-return curve for a portfolio that includes a risk-free asset and the market portfolio. 

 

In Figure 8, the portfolio frontier represents the efficient set of portfolios that can be 

constructed with other risky assets in the economy. Notice that for any level of risk, the 

expected return of the portfolio holding the S&P 500 and the risk-free asset is always 

equal to or higher than that of any other portfolio.  

 

In order to find the appropriate discount rate for the projects considered in this paper, it is 

assumed that investors have two investing opportunities: investing in the portfolio with 

the S&P 500 index and a risk-free asset, or the real project. The compensation (risk 

premium) that investors would demand for investing in the real project is the difference 

between the expected return of this portfolio or the expected return of the real project, for 

the level of risk of the project (see Figure 9): 
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+
Project

Risk premium

Risk-free 
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return, E[r]

Risk, σ

+

+

 

Figure 9: Risk-premium that investors demand for investing in the project. 

 

Thus, the discount rate for the project, r, becomes: 

r = rf + Risk Premium           (Eq.  4) 

 

The expected return and risk of the project can be determined for each time period in the 

Monte Carlo simulation of the real project. In addition, a separate simulation of the 

evolution of the S&P 500 index as a geometric Brownian motion can be performed in 

order to obtain the expected return and risk of this index over time. By using information 

on future values of the risk-free rate, the discount rate for each period in the life of the 

project can be calculated. 

 

The main advantage of this approach as opposed to more conventional techniques, such 

as determining one discount rate with the Capital Asset Pricing Model, is that the 

discount rate is not limited to one single value, but it varies according to how the project 

performs financially over time. A potential drawback is that simulating the S&P 500 as a 

geometric Brownian motion may not capture shocks, such as recessions and market 

bubbles, and, thus, may not give a completely accurate picture of the behavior of the 

market; however, the simulation of the market index could be improved by modeling 

shocks as Poisson arrivals with random magnitude.  

 

8. Example: An airport expansion project 

The example of the city with interest in building a new airport with one or two runways 

mentioned above is used to illustrate the methodology proposed here. In this case, the real 

option consists of the right, but not the obligation, of building a second runway to obtain 
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the revenues from the demand served by the added capacity. The underlying asset, S, are 

expected revenues from travel demand served by the second runway. The exercise price, 

X, are the construction and maintenance costs of the second runway. The maturity of the 

option is assumed to be 5 years and the cost of the real option is the price of the land for 

the second runway. 

 

The purpose of the evaluation methodology is to determine whether the value of the real 

option (building a second runway) is greater than the cost of the real option (buying the 

land). If it is, then the city should follow this strategy and purchase the land for the 

second runway. Several different scenarios are considered to analyze the effect of 

different maturity times, size of the investment and time to deliver the investment on 

project financial performance and on the value of the real option. 

 

8.1 Modeling the airport expansion project with system dynamics 

System dynamics is used to model the airport expansion project (see Figure 10). In this 

particular example developed by Miller and Clarke [Miller and Clarke, 2003], Runway 

capacity  is the limiting factor that leads to Congestion. As demand for air travel (Aircraft 

per hour) increases, the total number of aircraft requesting service on this runway (Total 

aircraft) also increases. Demand is modeled as a mean-reverting stochastic process 

according to the process outlined in [Dixit and Pindyck, 1994]. If Runway capacity is 

held constant, the increase in demand slowly leads to Congestion, which raises the direct 

operating costs of airlines (Airline congestion cost). The higher operating costs are passed 

on to the passenger in terms of higher air fares (Air fare impact) and this leads to less 

demand for travel (Congestion cost loop). In addition, congestion decreases the level of 

service by lengthening passenger travel time (Level of service impact) which also results 

in less demand for aviation services (Passenger comfort loop). When the decision to add 

capacity is taken, i.e., when the option is exercised, a certain amount of capacity 

(Capacity increase) is delivered after a certain period of time (Years to increase 

capacity). The decision to expand capacity is the key managerial intervention in this 

model. Once capacity is added to the runway, Congestion decreases, thus, stimulating 

demand by reducing the Air fare impact and Level of service impact. Delivery Costs 
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represent the expenditure associated with providing the desired capacity expansion. 

Maintenance costs are recurring costs associated with maintaining the added capacity. 

The model assumes that congestion occurs only at a given number of Peak hours per 

year. 

Total aircraft
Aircraf per hour

Congestion

Airline
congestion

cost

Air fare
impact

Runway
capacity

Level of service
impact

-

+

+

-

+

Conge
stion
cost

Pax c
omfort

Capacity
Cost per

hour

+

-

+

Years to increase
cap

Annual growth rate

+

capacity increase

rate of capacity
delivery -

landing feePFC

airport revenues
peak hours

+
++

delivery cost

unit delivery cost

+

+

Decision rule

maintenance costs

unit maintenance
costs

+

 

Figure 10: System dynamics model of the hypothetical situation considered in this study. 

 

There are two main outputs from this model. The first are the benefits from the expanded 

infrastructure accrued to the airport operator in terms of Airport revenues. Here, it is 

assumed that they consist mainly of Landing fees paid by the airlines and passenger 

facility charges (PFC) paid by each traveler. The second output are the costs of 

infrastructure expansion (Delivery cost) and maintenance (Maintenance costs) of this 

expanded infrastructure. These outputs are used to calculate the value of the underlying 

asset, S, and the exercise price, X.  

 

The numbers used to calibrate the model are meant to illustrate a realistic situation but 

they do not represent an actual airport. The airport in this study is assumed to be a one 

runway facility that serves primarily narrow-body aircraft. The current runway capacity 

was set at 40 aircraft per hour. Landing fees were estimated at $200 per aircraft based on 

data given by [de Neufville and Odoni, 2003] and the typical weight of narrow-body 

aircraft. It is further assumed that congestion occurs only at peak hours and there are 

1000 peak hours in a year. The simulation time period is in years and each run covers 30 
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years. Demand was calibrated using historical data for air travel demand in the United 

States between 1979 and 2001 contained in the Form 41 database [USDOT, 1979-2001]. 

 

Monte Carlo simulation is used in combination with the system dynamics model to take 

into account multiple sources of uncertainty. The following variables were assumed to 

behave randomly (see Table 1 ): 

 

Table 1: Variables considered for Monte Carlo simulation and their assumed probability 

distributions. 

Variable Units Prob. Distr. Max. value Min. value 

Average travel time Hours Uniform 2 4 

Time elasticity N/A Uniform -1.6 -0.8 

Price elasticity N/A Uniform -1.6 -0.8 

Unit Maintenance costs $/(a/c/hr) Uniform 0.6 M 1 M  

Unit Delivery costs $/(a/c/hr) Uniform 3 M 10 M 

 

A total of 1000 runs are made in each Monte Carlo simulation. 

 

8.2 Infrastructure delivery strategies 

Different capacity expansion strategies were analyzed to determine the variation in the 

value of flexibility. Three parameters were assumed to define an infrastructure delivery 

strategy: 1) the maturity of the option, 2) the size of the capacity expansion, and 3)  the 

time to deliver the capacity once the decision to expand has been made. For the maturity 

time, three values were considered: 2, 5 and 7 years. The size of the expansion was 

considered to be small (25% of existing capacity), medium (50% of existing capacity) 

and large (75% of existing capacity). Three times to deliver capacity were assumed: 5, 7, 

and 10 years. The life of all projects was taken to be 30 years. 
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8.3 The value of flexibility 

Here, we assume that the value of flexibility is the difference between the value of the 

flexible and the inflexible strategies: 

Value of flexibility =  Value of flexible strategy - Value of inflexible strategy (Eq.  5) 

 

The value of the flexible strategy is calculated with Equation 3. In general, the value of 

the inflexible project is calculated as the mean of the net present values for each run in 

the Monte Carlo simulation; however, when determining the value of the flexible 

strategy, negative expected values for the inflexible strategy are replaced by zero. 

Following the spirit of real options, an inflexible strategy with a negative expected value 

would not be undertaken and, consequently, its expected value would be zero. Thus, the 

appropriate comparison to find the value of flexibility should be between the value of the 

flexible strategy as calculated with Equation 3 and the intrinsic value of the inflexible 

strategy, which in this context would be max[ E[NPVinflexible], 0]: 

Value of flexibility = Value of flexible strategy  – max[ E[NPVinflexible],0]   (Eq.  6) 

 

Recall that the value of financial options is the sum of the intrinsic value and the extrinsic 

or time value. Thus, the time value can be expressed as: 

Time value  = Value of financial option - Intrinsic value     (Eq.  7) 

 

Thus, the value of flexibility as defined here is analogous to the time value in financial 

options. The relevance of this point will be clear in the next section. 
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9. Numerical results 

 
9.1 The value of flexibility: comparison to the Tufano-Moel approach 

A comparison of option value between the methodology developed here and the Tufano-

Moel approach mentioned earlier is presented in Figure 11: 
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Figure 11: Percentage difference in the value of the flexible strategy between the methodology 

presented in this paper and the Tufano-Moel approach. Notice that the scale on the x axis is 

logarithmic. 

 

Both methods agree in the calculation of the value of flexibility, especially as the value of 

the flexible strategy increases. For lower values of the flexible strategy, the percentage 

difference between both methods is considerably larger.  A reason for the discrepancy is 

the fact that the distributions for S and X as calculated with the system dynamics and the 

Monte Carlo simulation are discrete, whereas the evaluation formula given in Equation 3 

calls for continuous distributions.  

 

9.2 The value of flexibility in the delivery of airport infrastructure 

9.2.1 Strategies with small (25%) capacity increase 

Projects that consider a 25% increase in capacity have, in general, a positive expected 

NPV (see Figure 12). The intuition is that small increases in capacity are sufficient to 

meet the expected demand. Therefore, there is no need to incur large capital expenditures 

and the costs can be recovered more rapidly. Another important consideration is the 
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timing of the investment: as the capital delivery is pushed further into the future (in other 

words, as maturity and/or time to deliver capacity increase), the expected value of the 

project decreases. Delaying the infrastructure expansion results in the airport not being 

able to capitalize on the demand that would materialize if the capacity was there. For 

example, the only case were the project has a negative expected NPV is when the 

maturity is 10 years and it takes 10 years to deliver the capacity. In this situation, capacity 

is added so late in the life of the project that there only a handful of periods available to 

generate revenues and recover the investment. 
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Figure 12: Expected value of projects without flexibility for strategies that consider 25% capacity 

increase and 5, 7, and 10 years to increase capacity. 

 

The value of flexibility for these projects is minimal (see Figure 13). Since they are very 

likely to succeed by following an inflexible strategy, having a flexible approach does not 

improve their expected value. 
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Figure 13: Value of flexibility for strategies that consider 25% capacity increase and 5, 7, and 10 

years to increase capacity. 
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9.2.2 Strategies with medium (50%) capacity increase 

 Projects that consider a medium capacity increase are not clear winners. Depending on 

the maturity of the real option and the time to deliver capacity, the expected NPV of the 

inflexible strategies may be negative, close to zero or positive (see Figure 14). This 

indicates that the timing of the infrastructure delivery must be considered carefully. In 

general, early exercise results in too much capacity relative to demand, thus, it is difficult 

to recover the investment. As the exercise date recedes into the future, demand can grow 

to levels where the large added infrastructure can be better utilized. Notice, however, that 

a short time to deliver capacity is always preferable. A long time to deliver capacity may 

result in the project not being able to generate enough revenues to recuperate costs or to 

miss the market completely. 
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Figure 14: Expected value of projects without flexibility for strategies that consider 50% capacity 

increase and 5, 7, and 10 years to increase capacity. 

 

The value of flexibility for these cases is higher than for those projects with 25% capacity 

increase (see Figure 15). In addition, notice that the value of flexibility is highest for 

those situations where the expected value of the inflexible project is close to zero. Recall 

the analogy of the value of flexibility to the time value of financial options. As mentioned 

earlier, the time value of financial options is highest when the option is “at the money.” 

Those projects with an almost zero expected NPV can be considered to be “at the money” 

or very close to it, thus, their value of flexibility is highest. 
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Figure 15: Value of flexibility for strategies that consider 50% capacity increase and 5, 7, and 10 

years to increase capacity. 

 

9.2.3 Strategies with large (75%) capacity increase 

Strategies with large capacity increase result in projects with negative expected net 

present values in almost all situations (see Figure 16). In general terms, these strategies 

lead to excess capacity (over-investment) with a large expenditure that can not be 

recovered with the expected traffic. 
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Figure 16: Expected value of projects without flexibility for strategies that consider 75% capacity 

increase and 5, 7, and 10 years to increase capacity. 

 

The value of flexibility for projects with large negative expected net present value is zero 

(see Figure 17). This is analogous to financial options deep “out of the money,” where 

the time value of the option is essentially zero. Notice, again, that the value of flexibility 

is higher for those projects with an expected NPV close to zero.  
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Figure 17: Value of flexibility for strategies that consider 75% capacity increase and 5, 7, and 10 

years to increase capacity. 

 

10. Conclusions 

 

10.1 New methodology to determine the value of real options 

The methodology developed here can be used to evaluate European call-like real options 

with uncertain stock and strike prices. Numerical results are in agreement with results 

obtained using the Tufano-Moel approach which is one of the best examples found in the 

literature to evaluate European call-like real options with uncertain stock and strike 

prices.  

 

If the distribution of costs and revenues can be expressed analytically, the methodology 

developed here can find a closed-form solution for the value of the real-option. A benefit 

over similar analytical approaches, such as the ones proposed by [Fisher, 1978] and 

[Dixit and Pindyck, 1994] is that the stock and strike are not restricted to behaving like 

geometric Brownian motions. With respect to the Tufano-Moel approach, the 

methodology developed here would have the advantage of not being tied to simulating 

the behavior of the stock and strike prices. 

 

Another potential advantage of the methodology developed here is the possibility of 

managing cost in the face of a given demand. For example, if demand is well understood, 

the formula developed here could be used to find the cost profile that would maximize 

the value of the project.  
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10.2 Strategies with small capacity increases have better chances of success 

In general, strategies with small (25%) capacity increase are likely to have a higher 

expected NPV, all else equal. The intuition is that small increases in capacity are 

sufficient to meet the expected demand in the system modeled here. Therefore, there is no 

need to incur large capital expenditures and the costs can be recovered more rapidly.  

 

10.3 If capacity increases are large, it pays to wait to exercise 

If capacity increases are medium (50%) or large (75%), the project developer is better off 

delaying the exercise date. In general, early exercise results in too much capacity relative 

to demand, thus, it is difficult to recover the investment. As the exercise date recedes into 

the future, demand can grow to levels where the infrastructure can be better utilized.  

 

10.4 Short times to increase capacity are best 

Regardless of the capacity increase or the exercise date, a short time to increase capacity 

results in a higher expected value. Once the decision to increase the capacity has been 

taken (and the resources committed), the sooner the capacity is in place, the sooner its 

costs can be recuperated. 

 

10.5 Flexibility is most valuable in uncertain situations 

The value of flexibility depends on the performance of the inflexible project. For projects 

deep “in the money” or deep “out of the money,” flexibility is not very valuable because 

there is little action that a manager can take to improve the project; however, if the 

project is “at the money,” flexibility can be very valuable.  

 

10.6 Implications for the air transportation industry 

The results indicate that small infrastructure increases are the best alternative to ensure 

profitability; however, small capacity expansions may not always be feasible in air 

transportation infrastructure projects, such as airports. Generally, capital expenditures 

imply the construction of a whole new runway which adds a considerable amount of 

capacity to the facility. It is in these cases that flexibility becomes very valuable, because 
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the size of the expansion imply spending a considerable amount of resources that may not 

be recovered if demand does not materialize. Thus, having the option to walk away if 

conditions are not favorable can be very valuable. 

 

In addition, a short response time in the capacity delivery is very important. By being 

able to react quickly to the market, project managers can capture and maybe even 

stimulate demand that otherwise could be lost by if the response time was slow. Building 

flexibility into their projects gives management this ability. 
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