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ABSTRACT 
 
This study examines several different empirical models of inter-modal terminal characteristics using a 
combination of available data from the Surface Transportation Board waybill survey and Oak Ridge 
National Laboratories national freight transportation database in the estimation process.  Empirical models 
included ordinary least squares, fixed-effects models, and random effects models.  The data also presented 
issues of heteroskedasticity and autoregressive processes which are addressed in the paper.  Due to the 
spatial context of the intermodal facilities, the data was also evaluated for spatial interactions and 
autocorrelation.  Substantial evidence of underlying spatial relationships in the data were observed and 
noted. The results of this analysis identify those empirical variables and characteristics that contribute to 
the economic and operational sustainability of inter-modal facilities, and the relative importance of each 
factor.  These assessments may then be used to evaluate infrastructure investment decisions, particularly by 
public entities.  This methodology offers an unbiased framework for identifying and evaluating public and 
private benefits resulting from such investments, and serves as a guide for transportation policy involving 
inter-modal freight. 
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INTRODUCTION 
 
The inter-modal terminal is the node linking the highway, rail, and, in many cases, port 
transportation networks together.  At these facilities, goods are transferred between truck and rail  
(or ship-to-rail and ship-to-truck) for shipment to domestic markets, or through ports, to 
international destinations.  As with other transportation infrastructure investment, public entities 
are interested in inter-modal transportation in facilitating the efficient movement of goods to and 
from municipalities, states and regions.  As such, the potential exists for public agencies to 
provide public monies for use in infrastructure investment in inter-modal freight terminals.  Plans 
for investment in such facilities raise three key questions:  Will such an investment generate a 
sufficient, sustainable return? And, is public funding justified by some measure of public benefits 
resulting from the investment?  What basic criteria need to be identified in evaluating potential 
locations for intermodal terminal sites? 
 
Problem Statement 
 
When examining freight mobility, inter-modal transportation allows the efficiencies of each 
transport mode to be realized across the entire move.  As noted in a forthcoming publication by 
Casavant, et al, (2004), trucks, with low costs of collection and local distribution, but high 
variable costs over long distances, are combined with rail, which has high terminal and 
infrastructure costs, but low variable costs of movement over long distances.  These inter-modal 
freight movements are highly dependent on the structure, location and efficiency of the transfer 
facilities servicing such moves.  As a result, a need exists for a rigorous conceptual and 
mathematical model to detail the specific impacts of these various factors on the efficiency of 
existing, and future, inter-modal terminals.   
 
Objective 
 
The primary objective of this research project is to examine various candidate empirical 
estimation models and compare/contrast the results of these different models.  This is 
accomplished by examining the relative impact of individual location and operational factors on 
the economic performance of inter-modal facilities.  An important consideration is the availability 
of data in construction and estimation of the models. 
 
Summary of Data and Research Methods 
 
The method of investigation in this project was to use data from a variety of sources in order to 
determine the best empirical model for estimation.  The data used in the study was obtained from 
Oak Ridge National Laboratories, Center for Transportation Analysis and from the Surface 
Transportation Board of the US Department of Transportation.   Databases were merged together 
using a combination of data queries in a standard database management program and spatial 
queries in ArcGIS software. 
 
The data obtained did not lend itself to estimation procedures characterized by binary or 
multinomial choice.  As a result, logit, probit and Tobit models were excluded from the study.   
 
The first action taken was to examine the structure of the data and determine the best modeling 
approach.  In addition, the data was approached from both cost minimization and profit 
maximization frameworks.  This initial specification search involved the use of multivariate 
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adaptive regression splines in order to determine the contributory power of different variables 
identified in the data, and to identify potential interaction variables. During the second part of the 
study, the identified explanatory variables as well as characteristic indicator variables were used 
in ordinary least squares estimation and general linear modeling for fixed and random effects, 
autoregression, heteroskedasticity and spatial processes. 
 
THEORY AND RELATED LITERATURE 
 
Currently, there does not exist a wide body of literature addressing empirical estimation of the 
factors and characteristics that influence and contribute to inter-modal facility success.  Most of 
the literature is designed to examine freight traffic flows and facility locations within a theoretical 
freight transportation network, or with the theoretical operating characteristics of inter-modal 
facilities.  Other studies examine costs and prices within freight networks, but not as 
characteristic indicators of facility viability.  Another strand of literature discusses the dynamics 
of location decisions within the context of manufacturing plants, or within the context of 
international trade.   
 
 Within the context of networks, several model types have been analyzed and implemented as in 
Sheu (2003), Melkote and Daskin (2001), and Barber (1975).  Most of these models address 
issues related to theoretical location decisions and the creation and implementation of ideal 
transportation networks.  From these base theoretical models, additional models addressing 
economies of scale in costs in Horner and O’Kelly (2001), flows (O’Kelly and Bryan, 1998; 
Fernandez, et al, 2003), and elasticities (as in Beuthe, et al, 2001) have been developed.  These 
approaches are generally referred to as “hub network” problems.  While hub networks are useful 
in describing inter-modal facility locations, they typically require a large number of decision 
variables that can be prohibitively expensive in empirical estimation.   A good survey of 
mathematical models in freight transportation network planning can be found in Friesz (2000). 
 
Spatial processes underlying transportation and freight networks have been noted by Nierat 
(1997) amongst others, though their focus is on market areas and the spatial extent of competition 
between terminal facilities. 
 
One promising approach has been developed by Arnold, et al., (2004) using data for European 
rail and highway networks and applied to inter-modal freight terminal locations in the Iberian 
Peninsula.  This system, known as Intermodal Terminal Location Simulation System (ITLSS), 
approaches the question of potential terminal location based upon flows moving through the 
existing transportation network and optimizing costs.  This study integrated two European 
transportation databases to build an integrated multi-modal transportation database.  However, 
within the context of inter-modal terminal infrastructure, the model is concerned with estimating 
the increase in transport supply resulting from a new terminal, or optimizing the existing inter-
modal network in order to achieve transportation cost efficiencies.  Another approach, developed 
for the analysis of grain terminals, is that of McCarl, Hilger and Uhlig (1985).  This study 
produced a mixed-integer mathematical programming model of cost minimization that seeks to 
create determine the lowest cost providers of terminaling services to grain shippers.   
 
Terminals may be viewed as collection and processing conduits for railcars; railcars are collected, 
stored and assembled into trains for shipment and delivery to other terminals.  The terminals also 
route the railcars through to their final points of delivery.  With inter-modal terminals, the 
terminals also serve as loading and unloading centers for freight trucks.  As such, inter-modal 
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terminals serve both as cost centers and profit generators, and the estimation procedure will 
consider both cost and profit as dependent variables. This is analogous to Casavant, et al (2004) 
who identify cost minimization and profit maximization (internal rate of return) as important 
considerations in determining economic viability where  
 
    )( ixfViabilityEconomic =  
  
and ( )if x  is some vector of characteristics. 
 
The empirical models being estimated in this study are designed to use the survey and 
transportation databases in order to construct an econometric estimation of those factors that 
contribute to the long-run economic viability of an inter-modal terminal.  Several model 
specifications were considered and analyzed to aid in identifying the best explanatory model.  In 
the context of this report, “best” refers to the model that succeeds in best identifying economic 
characteristics of cost minimization and profit maximization of inter-modal terminals. 
 
Models that were considered other than ordinary least squares were the fixed effects model which 
has the theoretical form (Greene, 2003) 
   
                                       α β ε= + +'

it i it ity x  
 
where α i may be a group-specific intercept term and ε it  is iid normal.  A possible problem with 
this model estimation is the high probability of loss of degrees of freedom as there are 483 
observations and 145 rail nodes (SPLC’s).  Another specification that was considered was the 
random effects, or error-components, model, which includes a group-specific error term.  The 
model then has the theoretical form of 
 

        '
it it i ity xα β υ ε= + + +  

 
where iυ  is the group-specific component of the error term , which can be rewritten as  
 
                it i itω υ ε= +  
 
This model assumes that there are zero covariances across time periods and groups.  Due to the 
unbalanced nature of the cross-sectional panels used in the estimations, the likelihood of 
heteroskedasticity was virtually assured.  Therefore a random effects model that addresses 
heteroskedastic panels was estimated under feasible generalized least squares regression (FGLS). 
 
Other possible effects resulting from estimation of the data may be the presence of autoregressive 
errors of order 1, i.e., AR (1), and/or a spatially autoregressive system.  Temporal autocorrelation 
is a common feature of time-series data and, by extension, cross-sectional data.  In regards to 
inter-modal terminals, it is reasonable to expect that large volumes of cars moving through a 
facility will be followed the next year by large volumes.  In fact, the number of observations in 
the 1% Waybill Survey has increased substantially between 1988 and 2002 on the order of 
approximately 70%.  As a result, errors in the estimation results are likely to persist over time.  In 
order to address this possibility, a model was estimated using heteroskedastic panels and 
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autoregressive errors of order 1; however, following Mizon (1995) no further correction for 
autocorrelation was done.  Models of spatial autocorrelation follow Anselin (1988), which takes 
the form 

          
1

2
2(0, )n

y W y X
W

N I

ρ β υ
υ λ υ ε

ε σ

= + +

= +  

 
where the W’s are known weighting matrices defined either contiguously or by some measure of 
distance (as in this case).    The other model components are the same as the FGLS model.  
 
DATA AND ESTIMATION 
 
In order to conduct this research data relevant to inter-modal transportation was sought.  A 
comprehensive database of the geographical locations of inter-modal facilities in the United 
States and a database of rail nodes and the rail network were obtained from Oak Ridge National 
Laboratories.  This information is also available from the National Transportation Analysis 
Database maintained by the US Department of Transportation’s Bureau of Transportation 
Statistics.  Data and information regarding commodity and rail shipment flows were obtained 
from the Surface Transportation Board, which conducts an annual survey of all railroad waybills.  
 
Originally, the estimation process sought to use the inter-modal facilities database created by the 
Center for Transportation Analysis and match up railcar flows as estimated in the 1% Waybill 
Survey from the Surface Transportation Board.  Waybill data from 1984 through 2002 was 
obtained from the STB for this purpose.  However, no obvious connecting variable exists between 
the two datasets.  The waybill data files are organized around freight movements between rail 
stations.  As a result, the files contain information on the originating and terminating rail nodes 
such as census regions, FIPS, the freight station accounting code (FSAC), and the standard point 
location code, or SPLC.  The SPLC was the most useable identifier since the FSAC is maintained 
by the individual railroads for internal accounting purposes.  For facilities that share service at a 
rail node, use of the FSAC would have led to potential duplication of observations.  The SPLC 
would uniquely identify a specific rail node. 
 
This left the SPLC as the most promising candidate for linking the two databases.  Unfortunately, 
the CTA’s inter-modal facilities database did not include a SPLC identifier for each terminal.  
Conversations with industry personnel confirmed that more than one inter-modal terminal could 
have the same SPLC, in much the same way that two factories could share a ZIP code.  
Moreover, the SPLC’s were not inter-modal specific; other types of rail equipment moved 
through the rail node.   
 
In order to address these issues, the data was queried in order to separate inter-modal moves from 
other types of rail movements.  Identifying waybill shipments that had an intermodal equipment 
flag for the originating and terminating SPLC accomplished this task.  Within the STB data, 
determination of inter-modal facilities came from the “2002 Surface Transportation Board 
Carload Waybill Sample: 900-byte Master File Record Data Element Description.”  The data files 
contain up to 193 variables, however, the identification of observations for use in the study relied 
on information contained in the fields “Origin Intermodal Flag” and “Destination Intermodal 
Flag.”  Any waybill observation that satisfied the flag criteria for both the origin and destination 
was selected.  This criterion selection noted which rail nodes were capable of handling an inter-
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modal move and removed rail nodes that could not handle inter-modal moves from consideration 
in the estimation phase of the study.  The selection criteria are designated by inter-modal 
equipment type as follows: 
 
 “1” – Circus type ramp 
 “2” – Overhead crane 
 “3” – Side lifter 
 “5” – Stack train 
 
Any observations that had other flag codes were excluded from the study. 
Non-intermodal moves may be included in the observations, but they are moving through rail 
nodes identified as inter-modal and contributing to measures of capacity and throughput for the 
rail node.  The results were then totaled for each observational year, such that each variable is the 
sum (or average in the case of miles traveled) of all activity in a specific rail node over one year.   
The CTA maintains an Intermodal Transportation Network that contains the inter-modal facilities 
database.  This file identifies individual facilities that originate and terminate inter-modal 
shipments.  The only locational identifier in this database is a latitude-longitude measure placing 
the facility in a geographical coordinate system (NAD 1927).  The Bureau of Transportation 
Statistics of the US Department of Transportation, maintains the National Transportation 
Analysis Database, which uses the rail network information constructed by CTA.  This database 
includes a rail network that also identifies rail nodes by SPLC with a geographical coordinate 
location within the United States.   By performing spatial joining queries in ESRI’s ArcGIS 
geographical software, we were able to map these rail node locations with the inter-modal 
terminals using a minimal distance criterion (based on conversations with personnel at railroads 
and inter-modal terminals, most terminals are within 1 mile of a SPLC node).  This then allowed 
us to determine the railcar flows for the inter-modal terminals from the waybill survey 
accordingly. 
 
After these steps, the file contained 934 observations for 203 rail nodes between 1994 and 2002.  
Observations were not included for years prior to 1994 as the inter-modal flag was not part of the 
STB’s waybill survey.  Also, information for 1997 was missing information on costs and 
revenues.  As a result, observations prior to 1998 were dropped and a cross-sectional panel of 
information from 1998 through 2002 was retained with 493 observations and 144 rail nodes. 
 
Using the STB expansion factor from the waybill survey, estimates of total carloads, tonnage and 
miles were created for each inter-modal location.  Also, summing revenue, transit charges and 
miscellaneous charges created figures for total revenues.  Subtracting the total variable costs from 
the total revenues also created an estimated profit per move.  Multiplying total tons by the total 
miles created an additional tonmiles variable.  Total miles were then averaged over all moves to 
approximate the average shipment length for moves serviced at each node. 
 
Also, within the GIS system, information regarding the population of the census region where the 
rail node was located was obtained, as well as distances to highways and marine or inland 
waterway ports. Variables for the inverse distances of the nodes and highways or ports were then 
created.  The next step involved identifying characteristic variables for the rail nodes, and by 
extension, the intermodal facilities contained in the waybill data. These variables were:  the 
number of commodities serviced by the facility as determined by the different STCC’s (Standard 
Transportation Classification Code), the number of railroads servicing the node and the number 
of terminating nodes each SPLC was connected with.  Finally, variables for profit per carload and 
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cost per carload were created.  These last two variables were the dependent variables used in 
initial estimation procedures.  Summary statistics for these observations can be found in Table 1. 
 
Table 1.  Summary Variable Statistics 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
    avgmiles |       484    1230.529    663.0951          1       3094 
    carloads |       484    27137.79    80718.84         31     677239 
    tonmiles |       484    667.5985    2209.839      .0067    18595.9 
        tons |       484    446761.8     1215053        160   1.04e+07 
         ppc |       484    187.3876    553.1618   -1240.61    4306.53 
-------------+-------------------------------------------------------- 
         cpc |       484    931.8206    529.8929          0     3570.5 
    invwdist |       484    1.353884    2.883658          0      21.43 
    invhdist |       484    3.655393     6.97217        .01      49.46 

 
The following variables were then determined to be candidates for the adaptive regression splines 
estimation procedure: 
 
Dependent Variables 
 

Cost per Carload    cpc 
Profit per Carload   ppc 

 
Independent Variables 
 

Total Carloads    carloads 
Average Total Miles   avgmiles 
Total Tons    tons 
Total TonMiles (Millions)   tonmiles 
Population    pop 
Inverse Distance to Highway  invhdist 
Inverse Distance to Port   invwdist 

 
Categorical Variables 
  

Number of Terminal Connections  termcnt 
Junction Frequency Count  concnt 
Number of Commodities (STCC)  comnum 
Number of servicing Railroads  rrs 

 
These variables were then input into a statistical package MARS™, or Multivariate Adaptive 
Regression Splines, which uses a step-wise regression procedure to identify variable contributions 
and interaction variables that have explanatory power.   
 
Cost Model 
 
The estimation results that provided the lowest standard errors identified the following variables 
as having the greatest explanatory importance for cost per carload:  avgmiles, pop, carloads, 
tonmiles and termcnt.  Also, rrs was identified as an important categorical variable and invhdist 
as an important weighting factor.   
 
The relative variable importance as determined in the step-wise procedure is provided in Table 2. 
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Estimation results also indicated some higher-order interactions between the variables that were 
of explanatory importance. 
 
Table 2.  Variable Importance for Cost per Carload (cpc) 

Variable Cost of 
Omission Importance  

AVGMILES 106000.188 100.000 ||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
POP 58310.043 61.886 |||||||||||||||||||||||||||||||||| 
CARLOADS 51468.902 54.266 ||||||||||||||||||||||||||||| 
TONMILES 39972.656 38.176 |||||||||||||||||||| 
TERMCNT 38263.988 35.161 ||||||||||||||||||| 

   
These variables are identified below: 
 

TonMiles x Population (Millions)   tmpop 
Average Miles x Carloads    amcars 
Carloads x Population    carpop 
Terminal Connections x carpop   tccarpop 
TonMiles x carpop    tmcarpop 

 
Profit Model 
 
Similar results were obtained for profit per carload, however the interaction variables were 
different in some instances.  Variables of importance to profit per carload were identified as:  
avgmiles, carloads, invwdist, pop, tonmiles and tons.  The results for tonmiles and tons having 
simultaneous importance was surprising, since this would indicated a probable collinearity 
problem in least-squares estimation.  However the importance appears to be more relevant to the 
creation of the interaction terms and the tons variable was dropped in later estimation procedures.  
Table 3 provides a table of variable importance determined by the step-wise process for profit per 
car. 
 
The count of servicing railroads and the number of terminal connections were identified as having 
categorical importance within the structure of the model.  The variables invhdist was again 
identified as an important weighting variable.   
 
Table 3. Variable Importance for Profit per Carload (ppc) 

Variable Cost of 
Omission Importance  

AVGMILES 212831.938 100.000 ||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
CARLOADS 212494.578 99.825 |||||||||||||||||||||||||||||||||||||||||||||||||||||| 
INVWDIST 206829.469 89.935 |||||||||||||||||||||||||||||||||||||||||||||||||| 
POP 184410.797 51.959 |||||||||||||||||||||||||||| 
TONMILES 112690.422 46.524 ||||||||||||||||||||||||| 
TONS 97893.641 17.114 |||||||| 
 
The higher-order variable interactions identified during the step-wise procedure were the 
following: 
 

TonMiles x Population (Millions)   tmpop 
Average Miles x Carloads    amcars 
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These are the same as the interactions noted for cost per carload model.  Additional higher-order 
explanatory variables identified are: 
 

Inverse Distance to Port x amcars   invwam 
TonMiles x invwam    tminvwam 
Population x tminvwam    ptminvwam 
Average Miles x Population   ampop 

 
Several dummy variables were then constructed based upon the results of the adaptive regression 
spline estimation procedure.  These categorical variables reflect the characteristics of each rail 
node that were determined in the step-wise process to provide valuable explanatory variables.  
Characteristic indicator variables that were common to both the cost minimization model and the 
profit maximization model are: 
 

D1 serviced by 2 railroads 
D2 serviced by 3 railroads 
D3 serviced by 4 railroads 
D4  serviced by 5 railroads 
D5 serviced by more than 5 railroads 
D6 more than 100 terminal connections at the node 
D7 75-99 terminal connections at the node 
D8 50-74 terminal connections at the node 
D9 25-50 terminal connections at the node 
D10  more than 500 commodities handled at the node 
D11 300-499 commodities handled at the node 
D12 100-299 commodities handled at the node 
D13 50-99 commodities handled at the node 
D14 25-49 commodities handled at the node 

 
The termcnt variable was reformulated as characteristic variables d6-d9 and applied to both 
models.  An additional criterion identified during the adaptive regression spline procedure was a 
carload value that we have interpreted as a capacity or throughput threshold.  For the profit model 
the threshold was at 3,757 carloads per year, and for the cost model it was 3,440.  A dummy was 
created for each model that identifies carload counts greater than or equal to the threshold value. 
 

D15 carload threshold; >= 3,757 for ppc, >= 3,440 for cpc 
 
For the cost model, population was also identified with a threshold value of 62,527,588.  A 
dummy for this variable was included in the profit model as well.   
 

D16 population greater than or equal to 62,527,588 
 
These characteristic indicator variables were then added to the previously identified independent 
variables and interaction terms and estimated using ordinary least squares regression.  
Encouragingly, all of the variables identified by the regression spline procedure are theoretically 
supported, except for the population variable.  The interaction terms identified by the process can 
also be theoretically supported as indicators of higher-order processes of capacity, throughput and 
connectivity.  Further estimation of these variable terms for movements over the entire rail 
network would be warranted to fully substantiate these results. 
 
The results of the cost estimation model are presented in Table 4.  Table 5 provides the results 
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from the profit model estimation. 
 
Table 4.  Ordinary Least Square Results for Cost per Carload 
      Source |       SS       df       MS              Number of obs =     484 
-------------+------------------------------           F( 27,   456) =   18.74 
       Model |  71329907.9    27  2641848.44           Prob > F      =  0.0000 
    Residual |  64289941.3   456  140986.713           R-squared     =  0.5260 
-------------+------------------------------           Adj R-squared =  0.4979 
       Total |   135619849   483  280786.437           Root MSE      =  375.48 

 
Table 5.  Ordinary Least Square Results for Profit per Carload 
      Source |       SS       df       MS              Number of obs =     484 
-------------+------------------------------           F( 27,   456) =    6.00 
       Model |  38718171.9    27  1434006.37           Prob > F      =  0.0000 
    Residual |   109073999   456  239197.365           R-squared     =  0.2620 
-------------+------------------------------           Adj R-squared =  0.2183 
       Total |   147792171   483  305987.931           Root MSE      =  489.08 

 
Population was dropped from both models since it was determined to be statistically insignificant.  
We would expect the population indicator variable to address any lingering estimation issues in 
this regard.  Both models indicated the presence of heteroskedasticity using a Breusch-Pagan test.  
For the cost model the test statistic was chi2 (1) = 193.58, and for the profit model it was chi2 (1) 
= 204.12.   
 
The presence of heteroskedasticity could be due to several factors; one, the nature of the data 
structure is quite similar to unbalanced cross-sectional panel data, and two, the possibility of 
model misspecification in the dependent variable, where the dependent variable should be 
estimated in log form.  In order to analyze these probabilities, a graph of the estimated residuals 
v. predicted values was made for each model.  Figures 1 and 2 are the resulting graphs. 
 
The plots and histograms indicate that the heteroskedasticity problem is likely to be the result of 
model misspecification and that the variables should be log transformed and then run as a least-
squares dummy variable fixed effects model.   
 
Since heteroskedasticity may also be present due to the unbalanced nature of the cross-sectional 
panel, the model can be estimated as a fixed-effects model by adding dummy variables 
corresponding to the year of the observation.  The dummies added to the model are: 
 

Dy2002  for observations occurring in 2002 
Dy2001  for observations occurring in 2001 
Dy2000  for observations occurring in 2000 
Dy1999  for observations occurring in 1999 

 
The base year for analysis in the study is 1998.   
 
Estimation then proceeded by implementing a fixed-effects linear panel data model for both the 
lognormal cost and profit functions.   Due to the presence of negative values in the profit data, 
scaling the data for the profit model made transformation to lognormal possible. 
 
  Cost Minimization Model 
 
A fixed-effects model was implemented with the log of cost per carload as the dependent variable 
and the previously noted independent variables also log transformed, except for the interaction 
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variables.  Also, dummy variables for the observation year were included to capture any 
information regarding changes over time or between years.   
 
Figure  1. cpc residuals v. fitted            Figure 3. ppc residuals v. fitted   
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The structural format estimated was as follows: 
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The results of the model estimated effects over 106 groups (the number individual rail node 
SPLC’s in the observation file) and 483 observations.  Summary regression statistics are found in 
Table 6. 
 
Due to problems with multicollinearity and degrees of freedom D1 through D14 and D16 were 
dropped during the estimation procedure.   Estimates for the other variables and constant are in 
Table 7. 
 
Due to the large number of variables dropped in the fixed-effects estimation a random effects 
model was also run to compare against the fixed effects specification.  Since the difference 
between the models has to do with the error terms, the empirical model specification is quite 
similar to the fixed effects model.   
 
Table 6.  Regression Statistics for Cost Minimization Fixed-Effects Model 
Fixed-effects (within) regression               Number of obs      =       483 
Group variable (i): splc                        Number of groups   =       145 
 
R-sq:  within  = 0.5191                         Obs per group: min =         1 
       between = 0.7641                                        avg =       3.3 
       overall = 0.7272                                        max =         5 
 
                                                F(10,328)          =     35.40 
corr(u_i, Xb)  = 0.1270                         Prob > F           =    0.0000 
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Table 7.  Variable Statistics for Cost Minimization Fixed-Effects Model 
       lcost |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      lmiles |    .077291   .0545014     1.42   0.157    -.0299254    .1845074 
       lcars |  -.4540581   .0416479   -10.90   0.000    -.5359888   -.3721274 
     ltmiles |   .3775419   .0406632     9.28   0.000     .2975483    .4575355 
      amcars |   2.76e-09   1.44e-09     1.91   0.057    -8.28e-11    5.60e-09 
    tccarpop |  -3.00e-15   2.00e-15    -1.50   0.136    -6.94e-15    9.46e-16 
      dy1999 |  -.0182909   .0349473    -0.52   0.601      -.08704    .0504582 
      dy2000 |   .0745132   .0365205     2.04   0.042     .0026693    .1463571 
      dy2001 |    .049178   .0366199     1.34   0.180    -.0228614    .1212174 
      dy2002 |    .014544    .036958     0.39   0.694    -.0581606    .0872486 
         d15 |  -.0383621   .0714075    -0.54   0.591    -.1788365    .1021124 
       _cons |   8.200405   .4958842    16.54   0.000      7.22489     9.17592 

 
For the random effects estimation procedure the year dummy variables were dropped from the 
regression, so the model becomes 
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Tables 8 and 9 detail the results of the random-effects estimation. 
 
Table 8.  Regression Statistics for Cost Random Effects Model 
Random-effects GLS regression                   Number of obs      =       483 
Group variable (i): splc                        Number of groups   =       145 
 
R-sq:  within  = 0.5058                         Obs per group: min =         1 
       between = 0.7795                                        avg =       3.3 
       overall = 0.7462                                        max =         5 
 
Random effects u_i ~ Gaussian                   Wald chi2(21)      =    812.45 
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000 

 
R-squared results were higher for the random-effects model, but the same variables were shown 
to be significant and close in value, although all of the dummy variables were shown to be 
statistically insignificant. 
 
A Breusch-Pagan test for random effects and a Hausman specification test were run in order to 
compare the fixed effect and random effects models.  The Breusch-Pagan results for testing the 
null of  var(u) = 0, were rejected with a chi2(1) =  39.78.  The Hausman test that the difference 
between the estimated coefficients in the model was not systematic (indicating the fixed effects 
model is a good specification) resulted in a chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B) =  2.69.    This 
would lead us to accept the null hypothesis of a fixed effects specification.  However, a 
Wooldridge test for first-order serial autocorrelation was also done.  The resulting test statistic 
was F (1, 80) = 8.197, which indicates the presence of autocorrelation in the data generating 
process.  As a result, empirical estimation was then done as FGLS random effects with panel-
specific heteroskedastic and AR (1) errors.   
 
The FGLS model followed the same empirical specification as the random effects model above.  
Results obtained were more robust and provided more information regarding the dummy variable 
effects on the log cost dependent variable than any of the other estimated models.  Results are 
given in Tables 10 and 11. 
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Table 9.  Variable Statistics for the Cost Random Effects Model 
           lcost |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      lmiles |   .1138283   .0339566     3.35   0.001     .0472747     .180382 
       lcars |  -.4585273   .0286221   -16.02   0.000    -.5146256   -.4024291 
     ltmiles |   .3656023   .0283328    12.90   0.000      .310071    .4211337 
      amcars |   3.24e-09   9.54e-10     3.40   0.001     1.37e-09    5.11e-09 
    tccarpop |  -3.33e-15   1.18e-15    -2.83   0.005    -5.64e-15   -1.03e-15 
          d1 |  -.0606717   .0552789    -1.10   0.272    -.1690163    .0476729 
          d2 |  -.0462213   .0782659    -0.59   0.555    -.1996197    .1071771 
          d3 |  -.0705685   .2038898    -0.35   0.729    -.4701852    .3290482 
          d4 |  -.0920403   .2055618    -0.45   0.654     -.494934    .3108533 
          d5 |  -.2027097   .4074171    -0.50   0.619    -1.001233    .5958131 
          d6 |   .0156458   .5762113     0.03   0.978    -1.113708    1.144999 
          d7 |    .014028   .5102735     0.03   0.978    -.9860896    1.014146 
          d8 |   .0368028   .1126274     0.33   0.744    -.1839429    .2575485 
          d9 |   .0652129   .0810616     0.80   0.421     -.093665    .2240908 
         d10 |   .2165665   .4757709     0.46   0.649    -.7159274     1.14906 
         d11 |   .1459552   .3019604     0.48   0.629    -.4458763    .7377867 
         d12 |   .0915077   .1029144     0.89   0.374    -.1102008    .2932162 
         d13 |   .0590669    .095692     0.62   0.537     -.128486    .2466198 
         d14 |  -.0447923   .0855975    -0.52   0.601    -.2125604    .1229758 
         d15 |   .0005467   .0605179     0.01   0.993    -.1180662    .1191596 
         d16 |   .1058809   .1167842     0.91   0.365     -.123012    .3347738 
       _cons |   8.001979   .3092241    25.88   0.000     7.395911    8.608047 

 
Table 10.  Regression Statistics for Cost RE Model with Panel-Specific Errors 
Cross-sectional time-series FGLS regression 
 
Coefficients:  generalized least squares 
Panels:        heteroskedastic 
Correlation:   panel-specific AR(1) 
 
Estimated covariances      =       106          Number of obs      =       444 
Estimated autocorrelations =       106          Number of groups   =       106 
Estimated coefficients     =        22          Obs per group: min =         2 
                                                               avg =  4.188679 
                                                               max =         5 
                                                Wald chi2(19)      =  15440.61 
Log likelihood             =  493.8436          Prob > chi2        =    0.0000 

 
Profit Maximization Model 
 
Empirical estimation of the profit maximization model proceeded in the same manner as the cost 
minimization model.  Prior to estimation, the profit variable was scaled upwards in order to 
eliminate any negative values during the log transformation of the variable.  The estimation 
results therefore present a scaled bias framework for estimation, but without loss of generality. 
Tables 13-15 present to profit maximization model estimations for the fixed effects and random 
effects models, without correction for heteroskedasticity.  The empirical model form of the fixed 
effects model is much the same as the cost minimization model, although several of the identified 
interaction variables have changed. 
 
The profit model for fixed effects has the form 
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Table 11.  Variable Statistics for Cost RE Model with Panel-Specific Errors 
       lcost |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      lmiles |    .210802   .0105027    20.07   0.000     .1902171     .231387 
       lcars |  -.4730562   .0089088   -53.10   0.000    -.4905171   -.4555953 
     ltmiles |   .3931265   .0094862    41.44   0.000     .3745338    .4117192 
      amcars |   2.04e-09   1.98e-10    10.31   0.000     1.65e-09    2.43e-09 
    tccarpop |  -2.16e-15   2.89e-16    -7.49   0.000    -2.73e-15   -1.60e-15 
          d1 |  -.0410579   .0115435    -3.56   0.000    -.0636827    -.018433 
          d2 |   -.043538   .0154987    -2.81   0.005    -.0739149    -.013161 
          d3 |  -.0806243   .0291989    -2.76   0.006     -.137853   -.0233956 
          d4 |  -.0595256   .2253114    -0.26   0.792    -.5011279    .3820767 
          d5 |  -.0896096    .226258    -0.40   0.692    -.5330672    .3538479 
          d6 |   -.048736   .2288964    -0.21   0.831    -.4973647    .3998928 
          d7 |   .0797256    .119428     0.67   0.504    -.1543489    .3138002 
          d8 |   .0397106   .0186917     2.12   0.034     .0030756    .0763456 
          d9 |   .0319579    .015132     2.11   0.035     .0022997    .0616161 
         d10 |   .1566769    .040954     3.83   0.000     .0764085    .2369453 
         d11 |    .112044   .0347208     3.23   0.001     .0439925    .1800954 
         d12 |    .028497   .0172807     1.65   0.099    -.0053726    .0623665 
         d13 |    .020875   .0156589     1.33   0.182    -.0098159     .051566 
         d14 |  -.0401933   .0207655    -1.94   0.053     -.080893    .0005063 
         d15 |   .0622714    .015892     3.92   0.000     .0311237    .0934191 
         d16 |   .1416368   .0329582     4.30   0.000       .07704    .2062337 
       _cons |    7.32566   .0948447    77.24   0.000     7.139768    7.511553 

 
while the random effects model has the empirical specification  
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Table 12.  Regression Statistics for Profit Fixed Effects Model 
Fixed-effects (within) regression               Number of obs      =       484 
Group variable (i): splc                        Number of groups   =       146 
 
R-sq:  within  = 0.3057                         Obs per group: min =         1 
       between = 0.0514                                        avg =       3.3 
       overall = 0.1513                                        max =         5 
 
                                                F(11,327)          =     13.09 
corr(u_i, Xb)  = -0.4027                        Prob > F           =    0.0000 

 
The profit maximization model indicates even more of the error variance attributable to possibly 
random effects in iυ .  R-squared results for both specifications are weak, although it is better for 
the random effects model.  A Hausman test performed on the two specifications yielded a chi2 (8) 
= (b-B)'[(V_b-V_B)^(-1)](b-B)= -1653.30, which fails to meet the asymptotic assumptions of the 
Hausman statistic.  The Breusch-Pagan test statistic for random effects, Var(u) = 0, was chi2(1) = 
12.10.  The null can then be rejected and we find that a random effects model has a better 
specification for the profit maximization model than the fixed effects alternative.   
 
A Wooldridge test for serial autocorrelation was also performed on the log profit variable.  The 
test statistic for no first-order serial autocorrelation was an F (1, 80) = 0.006.  Thus the null 
hypothesis could not be rejected and further estimation would only consider heteroskedasticity in 
the errors.  
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Table 13.  Variable Statistics for Profit Fixed Effects Model 
lspc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      lmiles |  -.0726327   .0377823    -1.92   0.055    -.1469598    .0016944 
       lcars |  -.1688442   .0286636    -5.89   0.000    -.2252326   -.1124558 
     ltmiles |   .1312282   .0281469     4.66   0.000     .0758564    .1865999 
      amcars |  -1.05e-10   1.02e-09    -0.10   0.918    -2.12e-09    1.91e-09 
       ampop |  -1.43e-11   1.74e-12    -8.20   0.000    -1.77e-11   -1.09e-11 
       tmpop |  -1.66e-12   4.81e-12    -0.35   0.730    -1.11e-11    7.80e-12 
      dy1999 |   -.005882   .0240478    -0.24   0.807    -.0531898    .0414259 
      dy2000 |  -.0138638   .0251514    -0.55   0.582    -.0633428    .0356152 
      dy2001 |  -.0194293   .0251956    -0.77   0.441    -.0689952    .0301366 
      dy2002 |   .0728624   .0252433     2.89   0.004     .0232025    .1225222 
          d1 |  (dropped) 
          d2 |  (dropped) 
          d3 |  (dropped) 
          d4 |  (dropped) 
          d5 |  (dropped) 
          d6 |  (dropped) 
          d7 |  (dropped) 
          d8 |  (dropped) 
          d9 |  (dropped) 
         d10 |  (dropped) 
         d11 |  (dropped) 
         d12 |  (dropped) 
         d13 |  (dropped) 
         d14 |  (dropped) 
         d15 |  -.0506624   .0497352    -1.02   0.309    -.1485038     .047179 
         d16 |  (dropped) 
       _cons |   8.670126   .3426575    25.30   0.000     7.996035    9.344217 
 
Table 14.  Regression Statistics for Profit Random Effects Model 
Random-effects GLS regression                   Number of obs      =       484 
Group variable (i): splc                        Number of groups   =       146 
 
R-sq:  within  = 0.3023                         Obs per group: min =         1 
       between = 0.0915                                        avg =       3.3 
       overall = 0.2050                                        max =         5 
 
Random effects u_i ~ Gaussian                   Wald chi2(26)      =     85.36 
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000 

 
Estimation of the profit maximization model was then conducted under FGLS with 
heteroskedastic errors.  The results are presented in Tables 16 and 17. 
 
This last model specification produced more robust and useable information than any of the other 
specification types.  Only two dummy variables were shown to be statistically insignificant, 
which may be a result of minimal observations for those classifications.   
 
Analysis of the regression results for both the cost minimization and profit maximization models 
is discussed in more detail in the Results and Conclusion section of the study.  Additional 
estimation and analysis was performed on the variables of interest to discover if there were any 
spatial processes affecting the estimated results. 
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Table 15.  Variable Statistics for Profit Random Effects Model 
             lspc |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      lmiles |  -.1008227   .0358932    -2.81   0.005    -.1711721   -.0304734 
       lcars |  -.1838648   .0278486    -6.60   0.000    -.2384471   -.1292825 
     ltmiles |   .1539826   .0273864     5.62   0.000     .1003062    .2076589 
      amcars |  -2.31e-10   1.00e-09    -0.23   0.818    -2.19e-09    1.73e-09 
       ampop |  -1.37e-11   1.73e-12    -7.91   0.000    -1.71e-11   -1.03e-11 
       tmpop |   1.94e-13   4.64e-12     0.04   0.967    -8.91e-12    9.30e-12 
          d1 |   .0114345   .1199385     0.10   0.924    -.2236406    .2465095 
          d2 |   .0622469   .1761979     0.35   0.724    -.2830947    .4075885 
          d3 |   .2284736   .4811457     0.47   0.635    -.7145547    1.171502 
          d4 |  -.0815849   .4808399    -0.17   0.865    -1.024014     .860844 
          d5 |   .2727945    .917489     0.30   0.766    -1.525451     2.07104 
          d6 |  -.7905327    1.32239    -0.60   0.550     -3.38237    1.801305 
          d7 |  -.3212806   1.207183    -0.27   0.790    -2.687316    2.044754 
          d8 |  -.1768138   .2571747    -0.69   0.492     -.680867    .3272395 
          d9 |  -.0306182   .1758756    -0.17   0.862     -.375328    .3140915 
         d10 |   .9288914    1.06043     0.88   0.381    -1.149514    3.007297 
         d11 |   .5514398   .6756264     0.82   0.414    -.7727636    1.875643 
         d12 |   .1891518    .208879     0.91   0.365    -.2202435    .5985471 
         d13 |   .0949877    .201379     0.47   0.637    -.2997079    .4896833 
         d14 |   .1211745    .181915     0.67   0.505    -.2353723    .4777213 
         d15 |  -.0577031   .0503494    -1.15   0.252    -.1563861    .0409798 
         d16 |   .7051035   .2681969     2.63   0.009     .1794472     1.23076 
           _cons |   8.758688    .329786    26.56   0.000     8.112319    9.405057 
 
Table 16.  Regression Statistics for Profit RE Model with Panel-Specific Errors 
Cross-sectional time-series FGLS regression 
 
Coefficients:  generalized least squares 
Panels:        heteroskedastic 
Correlation:   no autocorrelation 
 
Estimated covariances      =       146          Number of obs      =       484 
Estimated autocorrelations =         0          Number of groups   =       146 
Estimated coefficients     =        23          Obs per group: min =         1 
                                                               avg =  3.315068 
                                                               max =         5 
                                                Wald chi2(19)      =   1230.64 
Log likelihood             =  271.1023          Prob > chi2        =    0.0000 

 
Spatial Analysis  
 
The spatial analysis follows the modeling framework developed by Anselin (1988) and further 
developed in Anselin and Bera (1998).  The data was examined using a GIS compatible statistical 
package developed by Anselin and known as GeoDa, version 0.9.5-i that incorporates the 
methodology developed by Anselin and Anselin and Bera. 
 
GeoDa has many tools for the visualization of spatial processes and a statistical component for 
estimating spatial lags and spatial errors in conformance with the spatial autoregressive model 
(SAR).  Estimation is straightforward after the calculation of a weighting matrix to be used in  
determining ρ  and λ .  In this study the weighting matrix used the geographic point locations of 
the terminal rail nodes in order to determine distance weights between the points.  A k-nearest 
neighbors weighting option is available, but at present, the GeoDa does not have the capability to 
estimate SAR models using these types of weights. 
 
Figure 6 can be visualized as a 3 x 3 slice of the contiguous states, creating 9 distinct 
geographical regions.  As can be seen, several regions are quite similar in the make-up of their 
cost structures, while other regions exhibit more variation.  
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Table 17.  Variable Statistics for Profit RE Model with Panel-Specific Errors 
               lspc |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      lmiles |  -.1793617   .0136495   -13.14   0.000    -.2061142   -.1526092 
       lcars |   -.208161   .0104438   -19.93   0.000    -.2286305   -.1876915 
     ltmiles |   .2257767   .0112306    20.10   0.000     .2037653    .2477882 
      amcars |  -1.39e-09   2.03e-10    -6.83   0.000    -1.79e-09   -9.90e-10 
       ampop |  -9.88e-12   7.59e-13   -13.02   0.000    -1.14e-11   -8.39e-12 
       tmpop |   6.26e-12   9.93e-13     6.31   0.000     4.32e-12    8.21e-12 
          d1 |  -.0503978   .0120043    -4.20   0.000    -.0739259   -.0268698 
          d2 |   -.039108   .0150455    -2.60   0.009    -.0685965   -.0096194 
          d3 |   .1099296   .0318799     3.45   0.001     .0474462    .1724131 
          d4 |  -.0529668   .1024389    -0.52   0.605    -.2537434    .1478098 
          d5 |   .2564055   .1041193     2.46   0.014     .0523355    .4604755 
          d6 |  -.5227481   .1183885    -4.42   0.000    -.7547853   -.2907108 
          d7 |  -.4950359   .0815225    -6.07   0.000     -.654817   -.3352548 
          d8 |  -.0601844    .016557    -3.63   0.000    -.0926354   -.0277334 
          d9 |  -.0166694   .0093938    -1.77   0.076    -.0350808    .0017421 
         d10 |   .3263136   .0552537     5.91   0.000     .2180183    .4346089 
         d11 |   .1862289   .0494561     3.77   0.000     .0892967    .2831611 
         d12 |  -.0303197   .0122948    -2.47   0.014     -.054417   -.0062223 
         d13 |  -.0682891   .0157724    -4.33   0.000    -.0992024   -.0373758 
         d14 |  -.0098904   .0135488    -0.73   0.465    -.0364455    .0166647 
                d15 |  -.1038717     .01593    -6.52   0.000     -.135094   -.0726495 
         d16 |   .4466509   .0434554    10.28   0.000     .3614798     .531822 
       _cons |   9.360915   .1234469    75.83   0.000     9.118963    9.602866 

 
Visual results such as these do warrant further investigation of the presence of spatial processes 
within the data.  However, regression results were not robust statistically in determining the 
presence of spatial lags or errors.   
 
The log-transformed variables from the previous regression analyses were used in the SAR 
regression analysis, but without the interaction or dummy variables included.  Two specifications 
were estimated for both the cost minimization and profit maximization models using maximum 
likelihood:  spatially lagged regression (ρ  estimation), and spatially dependent errors (λ  
estimation).  Results of the estimations are listed in Tables 20 and 21 for the cost minimization 
model, and Tables 22 and 23 for the profit maximization model. 
 
The spatial lag variable, W_LCPC, and the spatial error term, LAMBDA, were determined to be 
statistically insignificant in determining change in log cost.  However, the likelihood ratio test for 
spatial dependence in the spatial lag model had a value of 2.050098 and DF=1, which does 
indicate spatial dependence with a confidence level of 85%.     
  
Again, the spatial lag and spatial error terms were determined to be statistically insignificant.  
However, in the profit model, the likelihood ratio test for spatial dependence in the error terms 
had a statistic = 2.315287, with DF=1, so the presence of spatial errors can be noted with a 
confidence level of 87%. 
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Figure 6.  Regional Box Plots of cost in the lower 48 United States 

 
 

 
 

            
 
Table 20.  Regression Results for Spatial Lag, Cost Model 
  Variable Coefficient Std.Error  z-value  Probability  
 
    W_LCPC     -0.1360781       0.1436525      -0.9472722     0.3435001 
    CONSTANT        3.87285          1.477871         2.62056     0.0087786 
    LMILES      0.6221565       0.1415516        4.395262     0.0000111 
    LCARS      -0.131833      0.09625096        -1.36968     0.1707870 
    LTMILES      0.1033856       0.1000521        1.033318     0.3014550 
    LINVW     0.04688526      0.02577761        1.818837     0.0689362 
    LINVH   -0.002813229      0.04119376      -0.0682926    0.9455526 
 
Table 21.  Regression Results for Spatial Errors, Cost Model 
Variable     Coefficient      Std.Error     z-value       Probability  
 
  CONSTANT      2.785503        1.202699        2.316044     0.0205558 
  LMILES     0.6159394        0.139649        4.410627     0.0000103 
  LCARS    -0.09654452      0.09141661       -1.056094     0.2909254 
  LTMILES    0.07065259      0.09757204       0.7241069     0.4690000 
  LAMBDA    -0.08202683       0.1664072      -0.4929284     0.6220632 
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  Table 22.  Regression Results for Spatial Lag, Profit Model 
   Variable         Coefficient      Std.Error     z-value       Probability  
 
    W_LSPC      0.1084052       0.1181445       0.9175645     0.3588468 
    CONSTANT      8.284887       0.9760228        8.488416     0.0000000 
    LCARS      -0.188933      0.02770839       -6.818618     0.0000000 
    LMILES     -0.1360784      0.03981119       -3.418094     0.0006307 
    LTMILES      0.1441624      0.02874566         5.0151     0.0000005 
    LINVW   -0.002545369     0.007362101      -0.3457394     0.7295387 
    LINVH     0.01515958      0.01158904        1.308096     0.1908408 
 
Table 23.  Regression Results for Spatial Errors, Profit Model 
Variable     Coefficient      Std.Error     z-value       Probability 
  
 CONSTANT      9.096343       0.3548825        25.63199     0.0000000 
 LMILES    -0.1370037      0.04045678       -3.386421     0.0007082 
 LCARS    -0.1949627        0.027802       -7.012544     0.0000000 
 LTMILES      0.149896      0.02883397        5.198591     0.0000002 
 LINVW    -0.00261208      0.007577508      -0.3447149     0.7303088 
 LINVH    0.01541025      0.01162593        1.325508     0.1850030 
 LAMBDA     0.2092167        0.144606        1.446805     0.1479516 
 
RESULTS AND CONCLUSION 
 
The results of this study are two-fold.  First, the selection of a model framework several diverse 
data sources to estimate cost efficiencies in inter-modal facilities was made.  Due to the structure 
of the available data the best model framework for this effort was a FGLS model with 
heteroskedastic and AR (1) errors for cost minimization, and a FGLS model with heteroskedastic 
errors for profit maximization.  Evidence of spatial dependence in the data was found, although it 
was not found to statistically significant.  The results do, however, suggest a more thorough 
examination of the spatial characteristics of the inter-modal freight network would be of value.   
 
Estimates of the FGLS cost minimization model identified lmiles, lcars, ltmiles, amcars and 
tccarpop as significant explanatory variables.  The first four are capacity and throughput 
measures, while tccarpop is a connectivity measure.  Moreover, many of the characteristic 
indicator variables were found to be significant and are discussed below. 
 
The average miles coefficient, lmiles, was positive which can be explained by the nature of 
railroad cost curves.  While rail does have cost efficiencies over long distances, variable costs 
can, and do, increase as total mileage of a haul increases.  Since most inter-modal rail movements 
are over long distances, we can expect that some components of cost will be increasing as the 
average length of haul increases.  The tonmiles variable, ltmiles, also has a positive sign that may 
indicate another component of long-distance costs increasing over miles traveled.  This may also 
capture the effect at an originating terminal of building large trains with more fully loaded 
railcars that will then move over longer distances.  The positive, though small, sign on amcars 
would indicate that some increase does accrue to facility costs as the number of cars traveling 
long distances are built or transferred at a facility.  A countering force on costs is the number of 
carloads, noted by the variable lcars; as total carloads increases, variable costs do decrease in 
terminal facilities.  Also, the tccarpop variable has a negative sign.  This is a more ambiguous 
interaction term, but it does measure the impact that increasing connectivity between terminals, 
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coupled with high numbers of carloads in proximity to large population centers does have the 
effect of lowering terminal costs. In sum, these interactions lower costs of operation at the 
servicing inter-modal terminal facilities. 
 
Supporting this contention, the characteristic indicator variables for the number of servicing 
railroads indicate that the more railroads that service a facility, more cost efficiencies are realized.  
Terminal connectivity did show a positive to cost in the characteristic dummies for ranges 
between 25 and 100 terminal connections.  A facility with fewer than 25 connections is the base 
case, while more than 100 terminal connections did appear to have a negative impact on costs, 
though statistically insignificant.  Also, breaking down cost efficiencies by the number of 
commodities serviced by a terminal found that costs increased as the number of commodities 
increased, while terminals handling fewer than 50 commodities realized cost efficiencies.  This 
would indicate that intermodal facilities would benefit from specialization in handling specific 
commodity types in high volumes, rather than focusing on a large variety of commodity types. 
 
Finally, it should be noted that the carload and population threshold characteristic variables (d15 
and d16) were both positive.  This could indicate the presence of marginal or variable costs that 
begin to increase after a threshold level is breeched; i.e., terminal capacity begins to approach its 
maximum and costly delays, traffic jams within the facility, etc. begin to wear on cost 
efficiencies.   The population dummy may indicate that variable costs will be higher when 
locating a facility near a large population center.   
 
For the profit maximization model, the same characteristic variables were of significance, as were 
the variables lmiles, lcars, ltmiles, and interaction terms amcars, ampop and tmpop.  In the FGLS 
estimation, the average distances, the number of carloads, and the distances of from major 
population centers negatively affect profit. As these variables increase, profit decreases.  
However, tonmiles traveled and tonmiles traveled in conjunction with major population centers 
were positive for profit.  This would indicate that large volumes of fully loaded cars moving to 
major population centers are profit-generating movements for the servicing railroads.   
 
Of note, the fewer servicing railroad connections a terminal had, the lower the profit expectations.  
Indications from the data are increasing profitability for terminals having more than 3 servicing 
railroads.  Also, profits were highest with terminals servicing large numbers of commodities, 
although, as noted above, this is accompanied by increasing costs.  Finally, profits were estimated 
to increase if the terminal was located in proximity to a major population center.  This would 
indicate the benefits of being near to a major attractor and generator of higher value goods that 
would generate large railroad profits during shipment. 
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