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ABSTRACT 
Linear Regression is used as a prediction tool in transportation planning, traffic data analysis and safety. 
Many researchers have attempted to address several transportation issues using these types of models. The 
accuracy and stability of these models is mainly dependent on the size of the available data. Unlike other 
science fields, where sophisticated algorithms are used to deal with problems of small datasets, the majority 
of freight demand modeling relies on simple statistical techniques. Limitations of these modeling 
methodologies, caused by their high dependence on data availability, and several assumptions that need to 
be made can result in erroneous models. In cases in which limited data are available, more advanced 
algorithms that can be legitimately used on small datasets should be applied. In this paper a description and 
classification of algorithms and processes used for creating these types of models under limited data is 
presented. To demonstrate the applicability of these algorithms, along with implementation problems, 
limitations, and the different performance measures, a case study is used. Different models are created and 
results are presented and discussed. 
 
INTRODUCTION 
Linear regression is one of the most commonly used predictive tools in transportation planning and 
modeling applications. It is a simple statistical technique that enables relationships between an output 
(predicted) and several input (predictive) variables to be constructed. Transportation planners and engineers 
have extensively used different types of regression techniques to model various transportation problems 
that include traffic demand and supply, roadway accident prediction, pavement analysis, origin-destination 
matrix estimation, and in transportation economic analysis on problems such as the estimation of highway 
maintenance costs. These models range from simplistic to sophisticate depending on the type of problem. 
The accuracy and stability of these models is mainly dependent on the size of the available data.  

Freight demand modeling and truck trip activity estimation is one of the transportation areas where 
linear regression algorithms have been extremely used.  Insufficient data and accuracy is a critical 
limitation in freight demand modeling (Ortuzar and Willumsen 2001, Allaman et al. 1982) affecting the 
accuracy and validation methods of the produced models. Unlike other science fields where sophisticated 
algorithms are used to deal with problems of small datasets, the majority of freight demand modeling relies 
on simple statistical techniques such as ordinary and stepwise linear regression (NCHRP 298, 2001). 
Limitations of these modeling methodologies, caused by their high dependence on data availability, and 
several assumptions that need to be made can result in erroneous models. Transportation planners are 
forced to adopt other demand modeling techniques that encounter their own type of challenges (Holguin-
Veras and Thorson, 2000) and do not necessarily perform better. In cases in which limited data are 
available, more advanced algorithms that can be legitimately used on small datasets should be applied. In 
this paper a description and classification of such algorithms and processes used for creating linear 
regression models under limited data is presented. A systematic approach for selecting the appropriate 
approach depending on the conditions of the problem is also obtainable within this paper.  
BACKGROUND 
There are two main reasons why the least squares estimates, from linear regression models, may not be 
satisfactory: a) Prediction Accuracy, and b) Interpretation. Subsequently, computational problems from 
multi-collinearity between the predictors, instability of the estimated parameters and ill-conditioned 
problems occur under limited training data (Bjorkstrom 2001). As the available dataset decreases more 
advanced algorithms should be used that provide flexibility over the modeling process, allowing the 
introduction of assumptions that will make the model more representative of the problems’ conditions and 
hypothesis. Furthermore algorithms that allow cross-validation to be performed without affecting the 



accuracy of the produced model should be used so that validation measures are not merely based on the 
statistical properties of the model. Fig. 1 presents a suggestive approach selection hierarchy based on the 
size of the available training dataset of the algorithms presented in this paper. 

 
 

Fig. 1. Statistical Approach Ranking with Data Availability 
 

At the bottom of the pyramid (fig. 1) lies the classical ordinary least squares linear regression. If a 
substantial amount of training data is available (20-50 training cases per variable) then usually this method 
performs adequately and cross-validation can be used in order to test the model. As the available dataset 
decreases variable selection techniques come into play to reduce collinearity problems. Stepwise linear 
regression (SLR) enters the most significant variables into the model and removes the non-significant 
variables based on statistical criteria. The basic criterion for a variable to enter or exit the model is the F-
statistic. Freedman, 1983, pointed out though that when many predictors are used and there is no 
relationship between the predictors and the response, classical variable selection techniques lead to models 
with high statistical goodness-of-fit measures (R2 and F values). Furthermore under limited training 
datasets the coefficients become correlated and are affected by outliers entering the model with incorrect 
size and sign (Pazzani and Bay 1999). Ridge and Lasso regression (Hastie et al. 2003) are shrinkage/ 
variable selection methods that penalize the coefficients of the linear model. They both produce more stable 
results than simple regression and can partially remedy/reduce multi-collinearity effects. Based on the idea 
of penalization of the regression coefficients ordinary linear least squares regression can be examined as an 
optimization problem. The Constrained Linear Least Squares Optimization (CLLSO) algorithm uses an 
objective function that minimizes the sum of squares and at the same time adds constraints, not only to the 
values of the coefficients, but also to the values of the predicted variables, producing more stable and 
logical results.  Linear regression can also be approached from its Bayesian perspective where both 
observable quantities and model parameters are considered to be random. Using a Bayesian framework 
allows the training of models that depart from the classical linear regression assumptions, i.e normality of 
the error terms, and independent observations with equal variances, allowing for a variety of parametric 
models with unequal variances and different error structures to be implemented and evaluated (Gelman et 
al., 2003). 

In this paper these approaches are implemented on a vehicle-based freight-modeling problem with 
limited training data. Different models are trained and linear relationships between truck traffic volumes on 
roadways and their adjacent land use and economic activity are created.  Through this case study the 
applicability of these algorithms, implementation problems, limitations, and the different performance 
measures are demonstrated. Furthermore different software packages that can implement the above 
approaches are presented and their performance is briefly discussed. 
STATISTICAL ALGORITHM DESCRIPTION 
In this section the general formulation of the statistical techniques previously mentioned is described. 
Stepwise Linear Regression (OLR) 
Suppose we have a training set (Xij, y1), ……,(Xij, yi), where j=1,..,m number of predictors and i=1,..,n 
number of training cases, Xij are column vectors in R and yi Є R, i=1,2,3,…, n. The comparison class 
consists of the linear function Y=X* b (throughout this paper X={X1j,X2j,……Xij} is refereed to as the 



independent variable dataset and Y={y1, y2,…..yi} as the dependent variable dataset). The least squares 

linear regression method recommends computing the column vector 
^
b  (coefficient vector) that minimizes: 
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where: bo is the intercept 
The basic criterion for the goodness of fit of the model is the R2 value i.e. the fraction of the variance 

in the data that is explained by the regression model. Often, it is not known which independent variables 
should be included in the model. In order to select among a set of candidate models, different approaches 
have attracted considerable attention that include forward, backward and stepwise regression, model choice 
criteria (Akaike Information Criterion (Akaike, 1973) and Bayes Information Criterion (Schwarz, 1978) 
which are based on the maximum likelihood estimates of the models' parameters) and different Bayesian 
techniques. SLR is one of the best-known approaches for variable selection. Drawbacks of this method 
include the choice for the appropriate value of the F-statistic and the difficulty in performing cross-
validation under limited training data. On the other hand SLR can be easily performed using standard 
software statistical packages (SAS, SPSS, Minitab) with minimum computational effort. 
Ridge Regression and Lasso Regression (RR and LR) 
RR and LR (Hastie et al. 2003) regression are linear regression methods that penalize the coefficients of the 
linear model. The formulas for both methods are given below in equations (2) and (3). In these equations 
bo is the intercept, bj are the regression coefficients, and Xij is the value of the independent variable j at yi. 
The difference between these two algorithms is that while RR does not omit any of the independent 
variables, LR, due to the type of the constraint used, can zero-out some of the coefficients. Adjusting for 
the tuning parameters s and t produces different model estimates. Validation of RR and LR models relies 
on the calculation of the R2 value and both methods respond similarly to cross-validation under limited 
training data, as SLR. 
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It can be shown (Hastie et al. 2003) that RR has a closed form solution as shown in equation 4 and is easy 
to implement. The independent set of observations is first standardized and the intercept is calculated as the 
mean value of the yi’s as shown in equation 5.  

( ) YXIXXb TT 1−−

+= λ   (4) 

N

y
bo

N

i∑
= 1

^  (5) 

where: λ is a complexity parameter and I is the identity matrix 
Grandvalet, 1998 proved that Least Absolute Shrinkage is equivalent to Quadratic Penalization and 

derived an EM (expectation maximization) algorithm. This allows for the computation of the LR solution 
and has been used in this paper. One drawback of these two methods is the difficulty in deciding on the 
values of the tuning parameters. Usually, cross-validation is used but this requires a significant amount of 
training data to be available. Under limited training data instead of cross-classification multiple values for 
the parameters can used. As shown in figure 1 the values for the tuning parameters are first initialized. RR 

and LR are performed and if all the predictions ( ^^
* jij

j
i bXy ∑= ) are positive the process stops. If not the 

parameters are decreased by 5% and the algorithms are re-performed. Out of all the different values used, 
the ones that produce the highest R2 value and the most positive predictions should be chosen. RR and LR 
are algorithms conceptually easy to apply. Unfortunately, only RR is part of the mos5t common statistical 
packages (SAS, SPSS, MatLab, R, SPLUS), while LR requires programming effort. 



 
Fig. 1 RR and LR Tuning Parameter Value Selection Process 

 
Constrained Linear Least Squares Optimization (CLLSO) 
Linear regression modeling with inequality constrains arises very commonly in the literature (Liew 1976, 
Judge and Takayama 1966). Based on the idea of establishing constrains on the regression coefficients the 
use of the CLLSO algorithm can be introduced as means of creating more logical and stable models. The 
CLLSO algorithm uses an objective function, as shown in equation 6, that minimizes the sum of squares 
and at the same time adds constraints, not only to the values of the coefficients, but also to the values of the 
predicted variables.  

CLLSO Formulation 
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where: lb and ub are the lower and upper bound vectors for the beta values and di and deq

i are the upper and 
equality bound for prediction 

 
The above constrains provide a better control over the logic of the model formulation. From the 

engineering point of view the first constraint (6a) captures the range of the expectation for the predicted 
variable. This way the model takes into account uncertainty of the accuracy on the measurement of each 
station. The second constraint (6b) can be considered as a weighting factor for the predicted variable used 
for training. At some cases it is known that the observed measurement is accurate and at some cases it may 
not be very accurate. Setting up equality constrains for some or all of the accurate measurements forces’ the 
model to give more weight to them minimizing the transferring of error that exists in the observed 
measurement. The third constrain (6c) can be considered as a weighting factor of the decision variables.  

The upper and lower bounds of the constraints are based on the training data and possibly the 
engineers’ experience with the study area. If a priori knowledge for a variable’s positive effect exists we 
can constrain that variables’ beta coefficient to positive values and vice versa. This is especially important 
since outliers can seriously bias the results by "pulling" or "pushing" the regression line in a particular 
direction, thereby leading to biased regression coefficients. Similar to RR and LR an iterative process (fig. 
2) can be used to select the two bounds so that feasibility is obtained. The values of the lower and upper 
bounds are first initialized (lower bound =75%, upper bound = 100%) and then the CLSSO is performed. If 
a feasible solution is obtained the algorithm stops. If a feasible solution is not obtained the bound that 
causes the feasibility problem is identified and the value is increased (upper bound)/decreased (lower 
bound) by 5% and the CLSSO is re-performed. This process continues until both bounds provide a feasible 
solution. 



The structure of the algorithm relieves the variable selection process from statistical criteria decisions 
usually found in OLR, RR, and LR i.e. F-value range, tuning parameter values etc. We should note that the 
models’ goodness of fit is still based on the R2 value and, that if no constrains are used, the prediction 
corresponds to the least squares regression solution. The flexibility and power of this algorithm allows for 
the initial consideration of any number of prediction variables to be included in the model without any 
computational burden, alleviating the planner from previous limitations of similar models, where only a 
few and specific type of variables were used. The CLLSO algorithm eliminates variables that have no 
predictive power without adding any complexity to the training or use of the model(s). Cross-validation is 
feasible and efficient only by relaxation of the constraint bounds that can resolve in a decrease of the 
models’ R2 value. This algorithm can be easily implemented in any software that implements optimization 
procedures, such as Matlab. 

 
Fig. 2. Iterative Process for Upper and Lower Bound Determination 

 
Bayesian Linear Regression (BLR) 
Looking at the linear regression problem from its Bayesian perspective both observable quantities (Y) and 
parameters (β=regression coefficients) are considered to be random. The components of a Bayesian 
inference problem can be identified as: a) the prior distribution of the parameters involved ( )(βP , and 

)(YP ) that expresses the uncertainty or the information that is available at the start of the study about the 
unknown variables by means of a probability distribution, b) the likelihood of the data given the unknown 
parameters that relates all the variables into a full probability model that summarizes the current knowledge 

of the phenomenon, and c) the posterior distribution for the unknown parameters ( ),|(
^

YXP β , and 

),|(
^^

XYP β , that expresses our uncertainty about the parameters after seeing the data. The task of each 
Bayesian analysis is to build a model for the relationship between parameters and observable, and then 
calculate the probability distribution of the parameters conditional on the data. In addition, the Bayesian 
analysis may calculate the predicted distribution of unobserved data )',|'(

^
XYP β , where 'X  is the new 

input data and 'Y  are the new predictions). This of course is not a free-trouble method. Advantages and 
disadvantages of the Bayesian approach are summarized in table 1. 

In the case of OLR the observations are assumed to be independent and have equal 
variation: )*,*(~,,| 22 ΙΧΝΧ σβσβY , where I is the identity n*n matrix, n is the number of cases 
(observations), and 2σ is the variance. This case of regression makes several assumptions: a) normality of 
the error terms, and b) independent observations with equal variances. As mentioned before BLR allows 
the training of models that depart from these assumptions and a variety of parametric models for unequal 
variances and different error structures have been successfully used (Gelman et al., 2003). 

Many methodologies have been proposed in the context of Bayesian regression model/variable 
selection. Some of the papers proposing related procedures include: a) the Stochastic Search Variable 
Selection (SSVS) of George and McCulloch (1993), b) the model selection approach of Carlin and Chib 



(1995), c) model averaging and accounting for a models uncertainty using ‘Occam’s Window’ by Madigan 
and Raftery (1993) d) simultaneous variable selection and outlier identification based on the computation 
of posterior model probabilities by Hoeting et. al. (1996), and e) the Gibbs Variable Selection (GVS) by 
Dellaportas et. al. (2000, 2002). In this paper we present a Bayesian hierarchical setup, analogous to the 
ones that exist in the literature used to perform Gibbs variable selection. 
 
Table 1. Advantages and Disadvantages of Bayesian Inference Methods 

Advantages of the Bayesian Approach Disadvantages of the Bayesian Approach 
Basis of Inference is Probability Theory Inferences Need to Be Justified 
Less Computational Burden for Small/Medium 
Problems 

Computational Burden for Very Complex 
Models 

No Need for Significance Tests, P-values etc Reasonable Prior Distribution Selection 
Complex models to meet reality demands Model Adequacy for the Data 

 

Let us assume a linear model of the form: ∑
=
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βγ , where Xij is the design covariate 

matrix and βj the parameter vector (regression coefficients) of the jth term. The indicator γj identifies if 
covariate j will enter the final model (γj=1) or not (γj=0). The model likelihood takes the form of: 

),|( γβYf , while the model prior the form of: ),( γβf = )|( γβf * )(γf . We denote )|( γβf  as the 
coefficient prior and by γβ  and  

γβ \  the coefficients included and excluded from the final model. The 

covariates included and excluded in each model are then sampled 
by: ),|(*)(*),|(),,|( \\ γβββγβγββ γγγγγ ffyfyf ∝  and ),|(),,|( \\ γββγββ γγγγ fyf ∝  respectively, an 

assumption introduced by Carlin and Chib, 1995. The variable indicator γi is sampled from a Bernoulli 
distribution with success probability aj. Typically, Bernoulli priors with probability 0.5 can be assigned to 
the probability of each selection index γj being 1 (Congdon, 2003). In order to quantify uncertainty of the 
success probability, a hierarchical framework is introduced where the success probability follows a beta 
distribution: ),(~ 21 ααBa j

. In most cases introducing a third level of hierarchy by entering a probability 
distribution for the parameters ),( 21 αα  increases the level of detail, but not necessarily the level of 
accuracy (Gelman et. al., 2003). An indicative prior distribution for both 1α , and 2α  is the uniform 
between 1 and 50. 

An advantage of the Bayesian framework is that is allows the modeler to introduce certain constrains 
to the maximum and minimum values of the predicted variable and the regression coefficients, similarly to 
the CLLSO approach, by truncation of the prior distributions (right and left truncation respectively). The 
major advantage of BLR though lies in the fact that multi-case cross-validation can be performed under 
limited training datasets without affecting the accuracy of the final models. This means that testing results 
obtained from a BLR model are what should be expected from the models’ performance in a real world 
application. Two main drawbacks of this approach are: a) the effort required to built the models and b) the 
computational time that increases with the available data. Furthermore, justification of the proposed prior 
distributions can be difficult to establish. The question that should be asked though is: “If a model performs 
adequately in real life problems is any other justification needed?”.  

In this paper WinBugs has been used to build and implement the BLR models. WinBugs is an open 
source software package that enables a flexible approach to Bayesian modeling, in which the specification 
of the full conditional densities is not necessary and so small changes in program code can achieve a wide 
variation in modeling options. This enables sensitivity analysis to likelihood and prior assumptions to be 
performed with ease. Additional software packages that can perform Bayesian analysis, with more 
intensive programming effort, include R, MatLab and JAGS. 
CASE STUDY: VEHICLE-BASED TRUCK VOLUME ESTIMATION 
DATA DESCRIPTION 
The statistical methods were implemented with data consisting of classification traffic counts as the 
dependent variable and socioeconomic data as the independent variables. The dependent dataset was 
obtained from various locations throughout New Jersey. It consisted of 270 long and short duration truck 
traffic counts (vehicle classes 5 through 13). Long duration counts were obtained by permanent Weight-In-



Motion (WIM) locations. All short duration vehicle classification counts were adjusted for axle correction 
and pattern factors. The data for the independent variable dataset included, population, number of 
employees, sales volume, and number of establishments for each SIC code. In total 34 independent 
variables were included in the final training process. Both the dependent and the independent variables and 
the estimates are based on year 2001 data. 

Econometric data associated with these sections was extracted and used as input in the model training 
and testing process. ArcView, a GIS software package, was used in order to buffer and aggregate the 
independent variable dataset for 9 different bandwidths of influence (0.25, 0.50, 0.75, 1.0, 1.25, 1.5, 2, 3 
and 5 miles). Creating models based on different buffer zone sizes permits the determination of the 
sensitivity of a model with the increasing size of the area of influence of the independent variables (as the 
buffer area size increases the models accuracy fluctuates). Employing this procedure will identify the most 
appropriate buffer zone size and model for a particular type of roadway. In order to reduce the prediction 
error and maximize the correlation between the prediction variables and the predicted truck volumes, the 
dataset was clustered into 6 subsets (Table 1) according to the functional class (FC) of the roadway. 
Building models by considering roadway classes is significant as different roadways attract different truck 
volumes that are dependent on different variables. Roadways are classified under different FC based on the 
type of the roadway, lane width, traffic, and functionality. Roadway information was obtained through the 
NJDOT Statewide Truck Model (STM) and the 2002 New Jersey Straight Line Diagrams (NJSLD). 
Table 2. Clustered Dataset by Highway FC and Count Availability 

Functional Class  Counts 
FC=1,2 (Rural interstate and major arterials) 31 
FC= 6, 7, 8, 9 (Rural minor arterials, collectors, and local) 51 
FC=11 (Urban interstate) 29 
FC=12 (Urban expressways and parkways) 20 
FC=14 (Urban major arterials) 59 
FC=16, 17, 19 (Urban minor arterials, collectors, and local) 80 

 
MODEL FORMULATION 
Several models where created using: a) SLR, b) RR, c) LR, d) CLLSO, and e) BLR. The SLR approach is 
similar to OLR and is very easy to implement. For that reason the formulation of the SLR models are 
omitted from this paper. An analytical description of SLR modeling can be found at Kleinbaum et al., 1988. 
RR and LR Models 
The main issue with RR and LR was the choice of the values for the tuning parameters s and t. The limited 
training data did not allow cross-classification to be performed. Instead multiple values for the parameters 
where used. The values of the tuning parameters were calculated following the procedure described in 
section 3. Out of all the different values used two were chosen for both approaches: a) the one that 
produces the model with the highest R2 value, and b) the one that produces a model with all the predictions 
positive. Computational time for each functional class varied from a few seconds to a maximum of 1 
minute. 
CLLSO Model 
The CLLSO model implemented for this study is given in equations 7a-7c. 

CLLSO Final Formulation 
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CLLSO offers the advantage of controlling the values of the predictions in terms of size and sign. For both 
the coefficients and the predicted variables, corresponding to the functional class of the highway and the 
geographical location of the count, the constraints on the minimum and maximum value of the expected 
traffic volumes may vary so that the models account for space variations.  

The second constraint (7b) requires that the value of the estimated truck volume fall within 25% to 
125% of the observed value. This range of the predicted truck volumes is not necessarily the same for all 
the stations. It may vary based on the functional class of the roadway, the type of the observed count and 



the count location. The limitation of using constraint 7b is that for relatively small training datasets and 
strict lower and upper bounds the solution may be infeasible. A pseudo-increase of the data was performed 
for all the subsets and the results showed that both interval bounds are positively correlated to the amount 
of the training data. In this study lower and upper bounds (0.25 and 1.25 respectively in equation 7b) were 
determined using the iterative process described in section 3. Computational time for each functional class 
varied from a few seconds to a maximum of 3 minutes. 

The third constraint (7c) indicates that the predictive variables should have a positive effect on truck 
volume production. This constrain was used because due to the small amount of data, one or two outliers, 
were enough to enter a variable into the model with an incorrect sign (which was the case with SLR). To 
verify the assumption of the positive effect for all the independent variables, Mean Coefficient Regression 
(Pazzani and Bay, 1999) was performed for each dataset and the results showed positive correlation 
between predictors and predicted variables in isolation. 
BLR Model 
For the Bayesian approach a linear regression form on the expectation of Y (predicted truck volumes), with 
a variety of different error structures was assumed. Specifically: 

ijiiimu ββββ ++++= .......210
 (8) 

)/1,(~ 2σimuNYi  (9) 
where j=1:34, i=1:n, n=number of training cases, mi is the mean, σ2 is the standard deviation 
 

Priors for the regression coefficients where set to a neutral value so that all the terms have priory a zero 
mean value (Dellaportas and Forster, 1999). Further prior information for the beta values did not exist. 
Results from the SLR models were used as prior information for the intercept that was removed from 
models with small values (FC=6-9, FC=14, FC=16-19). The assumption of zero intercept for models used 
on local access roads is valid since truck traffic on these types of roadways should not be expected if the 
traffic generating variables are all zero.  Both distributions (beta coefficients: β and intercept: inter) where 
truncated at zero (10 and 11). A gamma distribution (12) was used instead of a vague prior for the 
coefficient precision (betaTauj). 

),0(~ jj betaTauNβ (10) 

)60.1,0(~int −ENer  (11) 
)20.1,20.1(~ −− EEGammabetaTau j
(12) 

A Bernoulli distribution, with success probability aj (13), was used as the means for the variable 
selection. In order to quantify the uncertainty of the success probability, a hierarchical framework was 
introduced (14 and 15) where the success probability follows a beta distribution. Using this distribution for 
the success probability we assume that priory all of the covariates have the same probability (50%) of 
entering the model.  The full model is graphically presented in fig.3 

)(~ jj aBernγ  (13) 

jjjbeta γβ *= (14) 

)2,2(~ Betaa j
(15) 

 
Note: g=γ, b=β 

Fig. 3. WinBugs Graphical Presentation of the Model 
 
MODEL EVALUATION 
This part of the paper evaluates and compares the performance of each approach. Furthermore, at the end of 
the evaluation and based on the results of the case study, a scoring table is presented.  



For the first part of the evaluation the R2 values of the best model from each approach for each 
roadway functional class are compared. For all approaches results show that the best model for a roadway 
depends on the type and the function that the roadway serves, but is also dependent on the buffer zone size 
of influence of the independent variable considered. Table 3 and 4 present the best R2 value for each type of 
roadway and the corresponding band buffer used to extract the socioeconomic data. Table 3 and 4 show 
that higher-level roadways (Expressways (FC=12) and Urban interstates (FC>12)) have a larger optimal 
band size compared to lower level roadways. This result satisfies the underlying assumption that trucks will 
use local roads only to access local facilities and they will travel over higher level roadways for the rest of 
their trip. 

It can be seen that SLR produces some models that are unrealistic (R2 values close to 1) and most 
probably over-fit the learning dataset (negative predictions). On the other hand RR, LR, and CLLSO 
produce models with more reasonable R2 values. CLLSO models managed to meet both of the criteria, set 
in equation 8, and produce better results than SLR. RR and LR models did not always meet both criteria 
simultaneously. For large values of the parameters, the correlation coefficient was more than satisfactory 
(R2>0.65, p<0.05) but some of the predicted values on the learning dataset were negative. As the values of 
s and t are increased constrains in (2) and (3) become less restrictive and the solution approaches the least 
squares. When the value of the tuning parameters was decreased, the predictions were positive but the R2 
value was below satisfactory levels (as set in equation 8). Compared to the SLR approach however, RR and 
LR models produced better results. They reduced the number of negative predicted truck volumes by 80% 
to 100% compared to the same number in the SLR models and produced models for all the band buffers of 
the six different clusters of roadways. The two different models that are presented in table 3 for the RR and 
LR approach as described in the Model Formulation section.  
Table 3. R2 values and Band Buffer for the best model for each FC (CCLSO and SLR) 

 

CLLSO 
(No R2 

Problem, No 
Prediction 
Negativity 
Problems) 

SLR 
(Prediction 
Negativity 

Problem and 
R2 Problem) 

RR 
(Negative 

Predictions) 

RR 
(R2 Problem, No 

Prediction 
Negativity 
Problem) 

LR 
(Negative 

Predictions) 

LR 
(R2 Problem, 
No Prediction 

Negativity 
Problem) 

FC R2 Band R2 Band R2 Band R2 Band R2 Band R2 Band 
1-2 0.82 0.25 0.97 0.25 0.9 0.25 0.54 0.25 0.65* 0.25 0.65 0.25 
6-9 0.79 0.25 0.84 0.5 0.85 0.25 0.62 0.25 0.76* 0.25 0.76 0.25 
11 0.77 0.5 0.92 0.75 0.55 0.5 0.34 0.5 0.75 0.5 0.41 0.5 
12 0.87 0.75 0.99 1.0 0.77 1.0 0.28 1.0 0.65 1.0 0.44 1.0 
14 0.87 1.0 0.13 0.25 0.49** 1.0 0.1 1.0 0.29** 1.0 0.1 1.0 

16-19 0.82 1.25 0.59 0.25 0.44** 1.25 0.1 1.25 0.38** 1.25 0.18 1.25 
*No Negative Prediction Problem,** R2 Problem 

 
Table 4 summarizes the R2 values of the BLR models BLR produces a distribution for the predicted 

truck volumes and not a point estimate. Thus for the Bayesian approach 3 different R2 values are presented 
each corresponding to the 2.5%, median and 97.5% interval of the predicted truck volumes. It can be seen 
that over-fitting has been remedied (Median R2 values).  Looking at the R2 values the RR, LR, and BLR 
models for FC=12 do not perform adequately, something that was expected since only 20 observations 
were available, with an R2 range from 0.08 to 0.15. On the other hand the SLR model assigns 99% 
accuracy to a model, showing a complete over-fit of the training data, and should be rejected. Following the 
same pattern CLSSO overestimates the accuracy of the model for FC=12. 
 
Table 4. R2 Values from Bayesian Regression and SLR 

R2 
FC Band Used 

2.50% Median 97.50% 
1-2 0.25 0.44 0.54 0.84 
6-9 0.50 0.37 0.50 0.56 
11 0.50 0.54 0.63 0.99 
12 0.75 0.08 0.08 0.15 
14 1.00 0.14 0.12 0.15 

16-19 1.25 0.48 0.36 0.04 

 



The second part of the evaluation compared the predictive power of the models on 14 selected 
highways. Although RR and LR models had a better predictive power (less negative predictions) than SLR, 
results are presented only for CLSSO since it was the method with the strongest predictive power (zero 
negativity in the predictions). Results for highway US9 and US206 are presented in Fig. 3 and Fig. 4. These 
figures show predicted truck volumes for each section of the highway (light blue for SLR, red for CLLSO). 
Observed counts (yellow) are also shown for sections of the highway, for which such information exists. 
As can be seen in figures 4 and 5, the negativity problem in the predictions has been answered. It is also 
obvious that the CLSSO approach tends to reduce, but not eliminate, the over-estimation problem. This 
pattern is followed in all the 14 highways (205 sections) that were selected to test the models. 

US9 Observed and Predicted Truck Volumes
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Fig. 4. Observed and Predicted Truck Volumes from CLLSO and SLR models for Highway US9 

US206 Observed and Predicted Truck Volumes

-1500

-500

500

1500

2500

3500

4500

5500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Vo
lu

m
e

SLR CLLSO Observed

 
Fig. 5. Observed and Predicted Truck Volumes from CLLSO and SLR models for Highway US206 

 
Table 5 presents estimations from SLR, CLLSO, and BLR models for the 6 highway functional classes 

that were defined. Predictions from the BLR models are made using selective multi-case cross-validation. 
The cases removed and used for validation purposes were selected to cover the full range of the observed 
truck volumes of each training dataset. Thus we were able to test if the posterior distributions cover the full 
range of the expected truck volumes. FC=12, where a single-case omission is used, corresponds to the 
exception, due to the extremely small number of observed cases (20 cases with 34 independent variables). 
Predictions from the SLR and CLSSO models are made from data already used for training the models for 
reasons explained in section 2. This means that though the results obtained from the Bayesian approach are 
what should be expected from the models’ performance in a real world application, claiming the same for 
the other models is rather questionable. As can be seen in table 5 for the BLR models, the majority of the 
observed truck volumes lie between the predicted range for the Bayesian models and the negativity 
problem has been solved. 

Some of the locations on the 14 highways experienced extreme values in the predictions. One major 
advantage of using CLLSO and BLR is the power to add constrains to the maximum and minimum values 
of the predicted variable via truncation. Table 6 presents results from 4 models (SLR, CLSSO, BLR, and 
BLR Right Truncated models) for a specific highway location (Highway US 1, FC=1-2) where an extreme 
prediction was produced.  
 
 



Table 5. Observed and Predicted (SLR, RR, LR, BLR) Truck Volumes  
    BLR 

FC Observed SLR CLLSO Mean 2.50% Median 97.50% 

3506 2427 4165 2845 705 2793 5149 

7178 4455 4885 3129 865 3100 5571 1-2 
 

1038 -571 108 1048 8 928 2730 

165 280 176 311 15 273 818 
6-9 

1266 1579 1296 812 96 778 1711 

1514 -25284 7738 3115 2079 3084 4297 

3914 -304 1101 1775 784 1735 2982 11 

7426 3989 2060 6175 4386 6135 8157 

12 2258 -4094 6187 5345 4475 5322 6348 

1738 1443 1732 1159 64 1050 2924 

167 887 983 1156 58 1054 2801 

8497 909 1628 1366 87 1281 3171 
14 

926 1547 402 1009 52 889 2619 

515 -292 1105 304 140 286 574 

1618 530 1640 1947 1459 1942 2465 

178 1205 499 318 136 307 569 

885 1940 1469 839 551 828 1200 

310 497 442 707 35 574 2140 

16-19 

48 149 168 303 2 268 795 

 
Table 6. Extreme Prediction Value Problem and Solution 

 Location: Highway US1, Section 13 

 Mean 2.50% Median 97.50% 
Observed Truck Volumes 7124 Does not apply 

SLR 273500 Does not apply 
CLLSO 27171 Does not apply 

Bayesian Model 86860 22580 65290 166400 
Truncated Bayesian Model 15830 7686 16550 19840 

Difference Between Bayesian 
Models for US1, Section 13 82% 66% 75% 88% 

 
Initially the Bayesian model was used with no truncation. The result was an extremely high prediction 
following the pattern of the SLR model. We introduced a constraint, right truncating the posterior density 
of the predicted truck volumes so that the values should not exceed an upper limit of 20,000 (150% of the 
maximum observed truck volume for highways of FC=1-2). The truncated model was applied to make 
predictions for highway sections with FC=1-2. The change in the prediction for the specific location was 
more than satisfactory (86%) and had an insignificant effect to the remaining locations (change in the mean 
value of the predictions varied from 0% to 23% between the two Bayesian models, with 53 observations 
varying from 0 to 7%, 5 observations varying from 9% to 11%, and 6 observations varying from 15% to 
23%). 

Based on the case study results a performance matrix has been created (table 7) in which each row 
describes a different approach and each column describes the performance or the level of difficulty of each 
method against a criterion. The individual performance assessment is alphabetical with each letter 
corresponding to a specific numerical range in order to assist the model selection process. The expected 
consequences of each option are assigned a numerical score, between the suggested range, based on their 
strength for each option for each criterion and the modelers’ opinion. 
 
 
 
 



Table 7. Suggestive Scoring of Different Approaches 

Cross Validation 
Accuracy 

Models’ Expected 
Accuracy 

Software 
Availability/ 

Implementation 
Difficulty 

Flexibility to 
Incorporate 

Extra 
Assumptions/ 

Hypothesis 

Modeler 
Mathematical and 

Statistical 
Background Method Computational 

Effort 

Data 
(+) 

Data 
(-) 

Data 
(+) 

Data 
(-) 

   

OLS A A D A D A D A 
SLR A A D A D A D A 
RR B A C A C B D B 
LR C A C A B-C D D B 
CLLSO B-C A B A B-C B B B 
BLR C-D A A A A D A D 
A=100-75, B=74-50, C=49-25, D=24-0 
 
CONCLUSIONS 
In this paper a description and classification of algorithms and processes used for creating linear predictive 
models was presented. A case study was used and the applicability of these algorithms, implementation 
problems, limitations, and the different performance measures, was presented and discussed. A scoring 
table that can assist transportation planners and engineers in choosing the most appropriate approach based 
on several features of the problem, that are known at the beginning of a study, was also presented. 
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