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Abstract 
This paper argues that localised price spikes should be a regular feature of competitive 
commodity markets. It develops a rational expectations model of physical arbitrage in which 
trade takes time, and shows that inventory management plays a crucial role in the way regional 
prices are determined. In equilibrium, arbitrageurs choose export quantities to ensure inventories 
in the importing centre regularly fall to zero. They earn enough profits from high prices on these 
occasions to offset small losses at other times. An analysis of detailed data from Chicago and 
New York corn markets provides empirical support for the model.  
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INTRODUCTION 
 
Many people detest price gouging.  It is an anathema to them that merchants can make large 
profits at times that demand is unusually large or supplies are unusually short. This distaste has 
led to the enactment of statutes such as the Virginia Post-Disaster Anti-Price Gouging Act that 
prohibit merchants from raising prices during disasters. Such laws are still occasionally used to 
prosecute wayward merchants, most recently in the aftermath of the September 11 hijackings.  
 
Episodes of price gouging are examples of a more general phenomenon, localised price spikes. 
These occur when the price in one location exceeds the price in another by more than it costs to 
ship goods between them. While such episodes appear to contradict the law of one price, this 
paper develops a model of commodity price arbitrage in which these price spikes must occur if 
arbitrage is to take place.  Indeed, if markets are competitive, arbitrage activity will not occur 
unless there are localised price spikes at times when supplies are unusually tight —that is, unless 
from time to time there is price gouging — because arbitragers will not cover their costs.  
 
The key feature of the model is that shipping takes time. This means arbitrageurs cannot 
immediately obtain additional supplies in a centre where local demand is unusually high or local 
supply is unusually low, so inventory management has a vital role in the arbitrage process. If 
competitive arbitrageurs simultaneously manage their shipments and inventories to maximise 
profits, prices in different cities will depend critically on inventory levels. If two cities both have 
large inventories, their spot prices will never exceed the difference between the transport cost and 
the storage cost. But if one city runs out of inventories, its spot price will spike upwards and 
exceed the spot price in the other centre by more than the difference between the transport cost 
and the storage cost. These spikes last until supplies are replenished and thus the local spot price 
will exceed the price for forward delivery as well. Moreover, exports will be managed to ensure 
that inventory levels regularly fall to zero in an importing city, so there will be occasions when 
the spatial price difference exceeds the difference between the transport cost and the storage cost.  
 
The intuition of the model is straightforward. Rational, risk neutral arbitrageurs ship goods 
between centres if the expected future price in the importing centre exceeds the price in the 
exporting centre by the cost of transport. If there are sufficient inventories in the importing centre 
when the goods are sent, arbitrageurs in the importing centre run down their inventories until the 
spot price equals the expected future price minus storage costs, and thus the spot price difference 
between centres equals the transport cost minus the storage cost. If inventories in the importing 
centre are zero, however, the spot price cannot be arbitraged down and the price difference 
between the centres exceeds the difference between the transport cost and the storage cost until 
the shipment arrives. The spatial price difference should exceed the transport cost minus the 
storage cost on occasion because exporters limit their shipments to ensure that random variation 
in local supply or demand regularly cause inventories to fall to zero in the importing centre. 
Unless they do this, the exporters make negative profits because the price in the importing centre 
does not cover the full cost of exporting if the exports arrive when supplies are plentiful.  
 
This paper finds evidence that localised price spikes were a regular feature of the New York and 
Chicago corn markets in the late nineteenth century.  I examine these markets because they have 
data including spot and future prices, storage quantities, shipping quantities and transport costs 
that are ideally suited to detect the price relationships implied by the model. Such data are not 
often available, but exist in this setting because both cities had active futures markets for corn. 
The price relationships are strikingly consistent with the model. During the period, most corn was 
shipped to New York via the Great Lakes and the Erie Canal in a trip that took three weeks. The 
paper shows the New York price for future delivery was always very close to the Chicago spot 
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price plus the cost of the lake and canal transportation, but that on numerous occasions the New 
York spot price spiked upwards and exceeded the Chicago price plus the transport cost. These 
price spikes were temporary and mostly occurred when corn inventories were extremely low in 
New York. The data therefore show that regular deviations from the law of one price occurred in 
one of the world’s most organised markets, deviations that are consistent with the theoretical 
model and not explained by models of price arbitrage that ignore inventories.  
 
A STRUCTURAL MODEL OF STORAGE AND ARBITRAGE  
 
Models of price arbitrage can be traced to Cournot (1838). The basic approach, exemplified by 
Samuelson (1952), has been to link a set of equations representing supply and demand curves in 
different locations with a set of no-arbitrage conditions that preclude excess profits from the 
instantaneous shipment of goods. A set of prices Pi

t are found that equate aggregate demand with 
aggregate supply while ensuring profitable arbitrage opportunities do not exist:  

; ( ). 0i j T i j T j
t t t t tP P K P P K T− ≤ − − =       (1) 

where i
tP is the price in centre i at time t, j

tT is the quantity of exports from j to i at time t, and KT 
is the transport cost.  
 
Models of rational storage have a similar structure (see Williams (1936), Williams and Wright 
(1991), or Deaton and Laroque (1992).)  Risk neutral arbitrageurs are assumed to predict future 
prices and purchase and hold inventories until the expected price increase just offsets the cost of 
storage; conversely, if the expected appreciation is less than the cost of storage, inventories will 
be zero. There are three possible storage costs. First, there can be an elevator charge KS per unit to 
store goods each period. Secondly, the commodity depreciates at rate δ so if St is stored in period 
t, (1-δ )St will be available in period t+1.  Thirdly, there is an interest cost r foregone when 
storage is undertaken. These relationships are represented by the following equations: 

1 1
1 1[ ] ; [ ] . 0
1 1

i i S i i S i
t t t t t t tE P P K E P P K S

r r
δ δ

+ +
− −⎡ ⎤⎛ ⎞ ⎛ ⎞− ≤ − − =⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦

   (2) 

where Et is the expectations operator conditioning on information known at t, and i
tS is the 

quantity of inventories held at time t.  
 
Williams and Wright (1991) solved a model combining both spatial arbitrage and storage. They 
investigated how prices in two locations would be determined if rational, forward looking, and 
risk neutral arbitrageurs could store goods or transport them instantaneously from one location to 
the other. They used numerical techniques to find the set of optimal storage and trade functions 
that generate a stationary rational expectations equilibrium. The model developed in this paper 
copies their approach but relaxes the assumption that trade is instantaneous. This is a crucial 
modification, for if transport is instantaneous (and there are no capacity constraints) the price in 
one centre will never exceed the price in the other by more than the cost of transportation.   
 
The model is also related to those developed in the logistics management literature. This literature 
has examined the optimal ways for a company with sales in several locations to minimise total 
procurement, transport, and storage costs (see Baumol and Vinod (1970) for an original 
statement, or Tyworth (1991), McGinnis (1989) or de Jong (2000) for a review). The literature 
shows that careful inventory management enables a firm to substitute low cost but slow transport 
systems for faster but higher priced systems. Indeed, a cost-minimising firm will use fast 
transportation only when inventories unexpectedly fall to such low levels that it cannot use slow 
transportation to replenish them before they run out. The model in this paper extends this 
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literature, as prices are determined endogenously in markets, rather than being set exogenously by 
the firm. In this model, therefore, unexpected shortages lead to price spikes rather than rationing.  
 
The model  
There are two centres, A and B, each with a separate inverse demand function for a commodity:  

1 1 1( ) : (0) , lim ( ) 0i i
t i t i iQ

P D Q D D Q− − −

→∞
= < ∞ =      (3) 

where i
tQ  is the amount purchased for final use at time t and i = A, B.  The output produced each 

period is assumed to be price inelastic but stochastic, because it has a long gestation period. There 
are two ways that output is usually modeled in the literature: either it is serially autocorrelated or 
it varies seasonally. Since the analytical structure of the model does not depend on how output is 
modeled, in this paper I follow Deaton and Laroque (1996) and assume that output in each centre 
follows an independent first order autoregressive process around a constant mean:  

1( ) ( ) ,i i i i i i
t t tX X X X e i A Bρ −− = − + =      (4) 

where i
te  is a white noise process and |ρi|<11.   

 
All production, consumption, storage and trade activity takes place at the beginning of the period, 
and the length of a period is the time that it takes to ship goods from one centre to another2. It is 
assumed that unlimited quantities of the good can be stored in either centre, that goods produced 
at different times are indistinguishable and have the same price, and that the storage cost KS is 
less than the transport cost KT.  A key determinant of prices is product availability, i

tM , the total 
quantity of stored and imported goods in a centre at the beginning of the period,  

( )1 1(1 )i i j
t t tM S Tδ − −= − +         (5) 

where 1
i
tS − is the non-negative quantity stored in centre i and 1

j
tT − is the non-negative quantity 

exported from centre j. The quantities stored and exported are such that i i i i
t t t tS T X M+ ≤ + .  

 
It is assumed that risk neutral, profit maximising, and rational speculators in both cities undertake 
a mixture of trade and storage to take advantage of expected price differences. The speculators 
have rationally determined expectations about future prices that incorporate all information about 
output, storage, and trade in both centres. The behavior of risk neutral speculators can be 
represented by four inequalities. Let [ ]B

t
A

t
B
t

A
tt XXMMy ,,,=  be the vector of state variables.  

Then, at each point yt: 

1 1

1 1

1 1[ | ] ( ) ; [ | ] ( ) . ( ) 0 6
1 1

1 1[ | ] ( ) ; [ | ] ( ) . ( ) 0 6
1 1

A A S A A S A
t t t t t t t

B B S B B S B
t t t t t t t

E P y P y K E P y P y K S y a
r r

E P y P y K E P y P y K S y b
r r

δ δ

δ δ

+ +

+ +

− −⎡ ⎤⎛ ⎞ ⎛ ⎞− ≤ − − =⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦
− −⎡ ⎤⎛ ⎞ ⎛ ⎞− ≤ − − =⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦

 

1 1

1 1

1 1[ | ] ( ) ; [ | ] ( ) . ( ) 0 6
1 1

1 1[ | ] ( ) ; [ | ] ( ) . ( ) 0 6
1 1

B A T B A T A
t t t t t t t

A B T A B T B
t t t t t t t

E P y P y K E P y P y K T y c
r r

E P y P y K E P y P y K T y d
r r

δ δ

δ δ

+ +

+ +

− −⎡ ⎤⎛ ⎞ ⎛ ⎞− ≤ − − =⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦
− −⎡ ⎤⎛ ⎞ ⎛ ⎞− ≤ − − =⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦

 

where 
1( ) ( ( ) ( ))i i i i i

t i t t t tP y D X M S y T y−= + − − ,  
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( )1( ) (1 ) ( ) ( )i i j
t t t tM y S y T yδ+ = − + , and  

( )1
1 1 1 1 1 1 1 1 1| ( ( ) ( ) ( )) ,i i i i i i j i j

t t i t t t t t t t t tX
E P y D X M y S y T y f X X dX dX−

+ + + + + + + + +⎡ ⎤ = + − −⎣ ⎦ ∫∫    (7) 

 
The first two of these inequalities are the conditions for profitable storage in either centre, while 
the second two are the conditions for profitable trade between centres. Each of the four 
inequalities holds with equality if the control variables (storage or trade) are non-zero.  
 
The model solution, which is found numerically, comprises two parts. The first part is the set of 
optimal storage and trade functions [SA(.), SB(.), TA(.), TB(.)] that satisfy the four inequalities 6a - 
6d. Each function depends on the vector of four state variables. The second part of the solution is 
the distribution of the state variables that occurs in equilibrium, which depends on the assumed 
stochastic process determining output and the optimal storage and trade functions. The solution 
fulfils two conditions: first, that storage and trading decisions are profit-maximising conditional 
on expectations of future prices; and, secondly, that price expectations are consistent with the 
storage and trading decisions and expectations of future output quantities.  
 
The model solution technique 
A numerical solution to the model is calculated over a discrete four-dimensional grid 
corresponding to the four state variables. The solution technique has four steps. First, a discrete 
joint probability distribution over the grid values for the stochastic variables XA and XB is chosen, 
and the double integral formula in equation 7 is replaced by the equivalent summation formula. 
The joint probability density for X is chosen to mimic an autocorrelated process with normal 
innovations, and is represented by an m2 x m2 Markov transition matrix Π specifying the 
probability of going from one point ),( 11

B
j

A
i XX  to a second point ),( 22

B
j

A
i XX .  

 
The second step is to solve the optimal storage problem for the limiting “combined centre” case 
when transport costs are zero and trade is instantaneous, using techniques similar to those used by 
Deaton and Laroque (1995, 1996). Linear demand functions for each centre are specified:  

1

0
( ) 0

0

i i
t

i i i i i i i
i t t t

i i i
t

if Q
D Q Q if Q

if Q

α
α β α β

α β

−

⎧ =
⎪= − < ≤⎨
⎪ >⎩

      (8) 

 
The third step is an algorithm that calculates the optimal amounts of storage and trade in the two 
centres. The algorithm constructs a series of successive approximations to the optimal storage and 
trade functions, and is repeated until the difference between successive values of the control 
values is small.  
 
The fourth step, once the optimal storage and trade functions are found, is the calculation of the 
invariant probability distribution of the model solution. The invariant distribution of the model is 
the unconditional probability of being at a particular grid point, which is used to calculate various 
statistics about the price distributions in each centre.  
 
PROPERTIES OF THE MODEL  
 
The model solution depends on the extent to which output is regionally specialised. When the 
centres are identical, they both tend to have large inventories, and goods are exported as 
frequently one direction as the other; but when one centre produces a disproportionate fraction of 
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output, it tends to hold most of the inventories and export most of the time. The solutions are 
sufficiently distinctive that results corresponding to the two cases are presented.  
 
Analytical Results 
The key results of the paper are derived analytically by considering various combinations of the 
complementary conditions associated with equations 6a - 6d. The possible combinations are 
summarised in Table 13. The probability of each combination occurring is a function of the 
underlying parameters of the model, and probability distributions corresponding to centre A 
producing either 50 per cent of total output or 35 per cent of total output are shown4. When centre 
A produces 50 per cent of total output, the most common combinations are:   

positive inventories in both centres and zero trade (68 per cent);  
positive inventories in the exporting centre, and positive inventories in the importing 
centre (13 percent each); and  
positive inventories in the exporting centre and zero inventories in the importing centre 
(1.4 percent each).  

The other combinations appear to occur rarely5. The set of conditions 6a - 6d indicates how prices 
adjust in each of these cases.  
 
First, consider a point yt when inventories are positive in each centre. Because inventories are 
positive, the price in each centre is expected to increase; more precisely, by equations 6a and 6b  

( )1
1[ | ] ( ) ,
1

i i S
t t t

rE P y P y K i A B
δ+

+⎛ ⎞= + =⎜ ⎟−⎝ ⎠
     (9) 

and consequently  

( )1 1
1[ | ] ( ) ( )
1

A B A B
t t t t t

rE P P y P y P y
δ+ +

+⎛ ⎞− = −⎜ ⎟−⎝ ⎠
      (10) 

In addition, equations 6c and 6d imply the spatial price difference lies within the range 
)(|| STB

t
A

t KKPP −≤− . (Otherwise, profits could be made by reducing inventories in the low 
priced centre and exporting to the high priced centre.) Therefore, when inventories are positive in 
both centres, prices lie in the range )(|| STB

t
A

t KKPP −≤− and are expected to diverge.  
 
Secondly, consider a point yt at which arbitrageurs in centre B export to centre A. If both centre A 
and centre B have positive inventories, equations 6a, 6b, and 6d hold with equality and imply  

( ) ( )A B T S
t tP y P y K K= + −         (11a) 

1 1
1[ | ] ( )
1

A B T S
t t t

rE P P y K K
δ+ +

+
− = −

−
       (11b) 

In this case, the spatial price differential is exactly ST KK − , and prices are expected to diverge. 
Alternatively, if centre B but not A has positive inventories, equations 6b and 6d hold and imply  

( ) ( )A B T S
t tP y P y K K> + −         (12a) 

1 1
1[ | ] ( )
1

A B T S
t t t

rE P P y K K
δ+ +

+
− = −

−
       (12b) 

In this case, the spatial price difference exceeds the difference between the transport cost and the 
inventory holding cost, as prices are unusually high in the importing centre. However, the centre 
A price is expected to fall when the goods arrive and thus prices are expected to converge.  
 
When centre A produces 50 per cent of output, either equations 10, 11, or 12 apply most of the 
time. Furthermore, when output is highly autocorrelated, shipments are bunched sequentially. 
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Equations 11 and 12 determine how goods price arbitrage occurs when the exporting centre has 
large inventories and shipping occurs in sequential periods. Equations 11b and 12b imply that the 
price difference at time t+1 must exceed ST KK − under some circumstances, if goods are to be 
exported at time t. Since the price difference at  t+1 cannot exceed ST KK − when the imports 
arriving in centre A are so plentiful that some are held over to the following period, on some 
occasions the imports must be sufficiently small relative to demand that inventories fall to zero 
and prices temporarily spike upwards (equation 12a, applied at t+1). For the zero profit condition 
to hold, exporters must export a sufficiently small quantity that on regular occasions the 
importing centre inventories are zero. Here the non-negativity constraint on inventories causes an 
important asymmetry. If output is higher than expected in the destination centre when the goods 
arrive, the surplus can be stored and prices fall but little; but if output is very low, there will be a 
shortage and prices will increase sharply. For the zero profit condition to hold, enough is shipped 
that a small number of sharp price increases offsets a large number of small price decreases. 
Consequently, if the output shocks are symmetric the median trade will be unprofitable, but the 
arbitrageur will obtain large profits from the few occasions that the exports arrive when supplies 
are unusually low. Furthermore, the importing centre will normally have positive inventories, 
because most of the imported shipments are larger than needed for immediate consumption.  
 
When centre B produces most of the output, the most common combinations are that both centres 
have positive inventories and there is no trade, that B has positive inventories and exports, while 
A has positive inventories, and that B has zero inventories and exports, while A has positive 
inventories (see Table 1.) The last combination occurs when output in centre B is temporarily 
low: centre B still exports because it produces more than the other centre, but it does not hold 
inventories because output is expected to increase. The adjustment mechanism is slightly 
different in this case, but the logic is analogous to that described by equations 11 and 12, with 
exporters choosing to limit their exports to ensure that the importing centre occasionally has a 
localized price spike.  
 
Models with capacity constraints or variable transport costs.  
Since most logistics systems have capacity constraints, the set of equations 6a-6d may not always 
hold. Rather, the spot price may spike downwards when a capacity constraint binds, because the 
good must be consumed immediately or thrown away. Coleman (1998) examines a model with a 
storage capacity constraint: in the model, the good perishes after one period, so inventories are 
always lower than the previous period’s output. There is an occasional downward price spike 
when a large quantity of the good must be used up immediately, but otherwise the solution is 
similar to the above model without storage capacity constraints.  
 
The model is more difficult to solve if transport costs are time varying and predictable, because 
the solution depends on whether there are transport or storage capacity constraints. Suppose there 
are no capacity constraints and one centre primarily exports to the other. If transport costs are 
expected to increase substantially, arbitrageurs will ship all their goods at the low cost time and 
store them in the importing centre until they are needed. If capacity constraints limit the amount 
that can be shipped, however, the solution depends on whether transport capacity is allocated on a 
“first-come, first-served” basis or whether transport prices adjust to ensure that demand for 
transport just equals the available capacity. If transport prices respond to demand, they will adjust 
to ensure the set of inequalities 6a-6d still hold. If transport prices are not responsive and capacity 
is rationed, the inequalities will not hold. Rather, the expected future price in one centre will 
exceed the spot price in the other plus the transport cost, and the agents who obtain the transport 
capacity make windfall profits. Transport costs in the late nineteenth century grain markets 
appear to have adjusted to fluctuating demand, so the set of equations 6a-6d should have held.  
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Numerical Results 
In the rest of this section, numerical simulations are presented to illustrate several features of the 
model, notably how trade flows, storage quantities, and prices depend on transport costs, the 
speed of transport, and the extent to which output is regionally specialised. The parameters are 
chosen so that the centres have identical demand functions, the price elasticity in each centre (at 
average consumption) is one, the storage cost KS is zero, the period is one week, and the annual 
interest and depreciation rates are five per cent6.  
 
The Two Centre Model with Equal Centres 
Table 2 shows how trade flows, storage quantities, and prices depend on transport costs when the 
centres are identical. Two features of the results stand out. First, prices are smoothed primarily 
through the adjustment of storage quantities, not the transport of goods. For each level of 
transport costs, mean exports were less than 4 per cent of mean weekly output and goods were 
exported less than 20 per cent of the time. In contrast, mean inventories in each centre were two 
to three times weekly output and inventories were positive in each centre over 96 per cent of the 
time. Secondly, the possibility of trade had a major effect on prices because storage behaviour 
was altered so that the spatial price difference between the centres was nearly always less than the 
cost of transporting goods. For each of the transport costs the spatial price difference exceeded 
KT-KS less than 4 per cent of the time.  
 
The Two Centre Model with a Dominant Exporter 
There are two cases to note when one centre is a dominant exporter: first, when the production 
asymmetry between the centres is small, so that both centres regularly export; and secondly, when 
production is sufficiently specialised that trade almost always flows from one centre to other. 
These cases are modeled by altering the fraction of total output produced in centre A from 50 per 
cent to 35 per cent, and the results are presented in Table 3.   
 
When the production asymmetry is small, the solution is similar to the symmetric case and goods 
are regularly transported in both directions.  The mean spatial price difference is less than the  
transport cost because cheap storage technology is used much more frequently than expensive 
transport technology to arbitrage prices. Average inventory levels are large in both centres.  
  
The asymmetry in the solution becomes more pronounced as output becomes more regionally 
specialised. When centre A only produces 35 per cent of total output, it imports more than 80 per 
cent of the time, and exports less than 0.1 per cent of the time. Mean trade volumes from the 
exporting centre are close to the level that would prevail if there were no uncertainty. Although 
total storage declines as output is increasingly specialised, it is increasingly held in the exporting 
centre, and inventories in the importing centre are primarily held as part of the logistics process 
by which goods are exported from the other centre.  
 
THE LATE NINETEENTH CENTURY U.S. CORN TRADE  
 
During the late nineteenth century, corn was shipped from all over the Great Plains to Europe. 
Chicago was the preeminent inland shipping port, receiving and shipping 67 million bushels per 
year (on average) between 1878 and 1890. Most of this grain was sent to east coast ports prior to 
export. New York was the most important port, receiving 34 million bushels per year (on 
average) and exporting as much as Boston, Baltimore, and Philadelphia combined7.  
 
Corn was forwarded to New York one of three ways. The slowest method was to ship corn to 
Buffalo via the Great Lakes, and then to send it to New York via the Erie Canal. This method 
took three weeks, but was unavailable between November and late April when the lakes were 
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frozen. A faster method, taking 10 days, was to ship corn to Buffalo via the Great Lakes and then 
to send it to New York by rail. The fastest and most expensive method was to send corn to New 
York by rail, a trip that took 3 or 4 days. Between 1881 and 1891, when average annual costs 
were reasonably stable, the average cost of shipping a bushel of corn from Chicago to New York 
was 7.7 cents by lake and canal, 10.3 cents by lake and rail, and 14.6 cents by rail8. The average 
price of a bushel of corn in Chicago during this time was 45 cents.  
 
Between 1878 and 1890, 45 million bushels of corn per year (on average) were shipped from 
Chicago by lake, and 22 million were transported by rail. Of the latter, however, 15 million 
bushels were “through-shipments” ⎯ shipments that started west of Chicago, that were routed 
through Chicago, but that were never sold or handled in Chicago9. These through-shipments were 
included in the annual and weekly shipping statistics, creating a misleading picture of the true 
extent to which corn sold in Chicago was transported by rail. When the through-shipments are 
excluded, the fraction of corn sold in Chicago that that was shipped by lake increases from 67 per 
cent to 86 per cent. Lake transport was even more dominant during the open water season. Of the 
7 million bushels of corn sold in Chicago and sent by rail, 4.3 million bushels were sent between 
December and March. Consequently, 95 per cent of corn that was transported in the open water 
season was shipped by lake10. 
  
There are no statistics directly showing that corn shipped from Chicago went to New York. Most 
Chicago corn was shipped through Buffalo, however, and since most New York corn came from 
Buffalo, it is possible to establish the link indirectly. In the longer version of the paper, it is 
demonstrated that the lake and canal route accounted for 87 per cent of the grain arriving in New 
York during the period that the lake and canal route was open11. High frequency shipping data 
suggests that corn was sent to New York on almost all of the weeks that the lake was open.  
 
New York and Chicago Inventories  
Grain arriving in New York was transferred to an elevator or a lighter and either sold or delivered 
in fulfillment of a futures contract. Grain was often stored temporarily, but the storage capacity 
was rarely fully utilised, even in winter12. Inventory levels never fell to zero, because the 
elevators always contained some grain in transit as they were used to transfer grain from arriving 
canal boats and rail cars to departing ocean vessels. Corn inventories typically fell to their low 
points each year in the middle of May, prior to the opening of the waterways, and in August.  
 
Corn inventories in Chicago had a marked seasonal pattern.  Receipts in Chicago occurred 
throughout the year, but were higher than shipments between December and March, when the 
lakes were closed, and in August and September. Inventories peaked in March, and averaged 4  
million bushels on shore, with a further 2.2 million bushels on ships. Inventories reached seasonal 
lows in late July and November, when they averaged 1.4 million bushels.  
 
Storage charges varied little during the period (Goldstein (1928); Ulen (1982)). In 1888, it cost ⅝ 
cents per bushel to deposit grain in an elevator, including the cost of 10 days storage; thereafter, 
storage cost ¼ cents per bushel per ten days. There were additional charges for trimming from 
canal boats and to ocean ships. Charges in Chicago were similar. Other costs of holding 
inventories included insurance and the opportunity cost of buying grain. Working (1929) 
estimated that in 1913 these costs were approximately 1.4 cents a bushel per month. 
 
Transport prices between Chicago and New York.  
There was a marked seasonal pattern in shipping costs (see Figure 1). Lake and canal and lake 
and rail prices were typically high at the opening of the season, but they declined during early 
summer before rising steadily between July and the end of the shipping season. Rail rates varied 
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seasonally between winter and summer, particularly before 1886 when railroads competed 
aggressively with each other and with shipping lines for the grain business. The competition was 
sufficiently fierce that substantial quantities of grain were shipped by rail as through-shipments 
from locations west of Chicago, although not from Chicago itself.  (Tunell (1897), United States 
Treasury (1898)). This price competition is understated in the rail price data collected by the 
Chicago Board of Trade and used in this paper, as much of the business was transacted at lower, 
unrecorded prices13.  
 
Market Prices  
The standard spot and futures contracts in both New York and Chicago were settled by the 
delivery of grain to a warehouse or elevator. The main contracts were for immediate delivery (the 
spot contract) or for delivery at any time within the current month, the next month, two months’ 
time, or in May of a particular year (the futures contracts). The seller had the option as to the date 
in a particular month the grain was delivered, so spot prices normally exceeded or were equal to 
the zero-month future price. This paper uses the Wednesday closing price for all of the analysis. 
(See Appendix 2 for the precise definition and source of the data.)  
 
SPATIAL CORN PRICE ARBITRAGE, 1878-1891  
 
Two features of the relationships between New York and Chicago prices implied by the model 
are examined. First, the link between the Chicago spot price, the transport cost, and the New York 
future price is analysed. Since exports left Chicago practically every week, the price expected to 
prevail in New York three weeks after the exports were sent — here proxied by the price for 
future delivery in New York — should equal the Chicago spot price plus the transport cost, 
irrespective of inventory levels in New York. Secondly, the difference between the Chicago and 
New York spot prices and the transport cost is examined. According to the model, the New York 
price should have equaled the Chicago spot price plus the transport cost minus the storage cost on 
any day corn was shipped if there were positive inventories in New York, but it should have 
exceeded this level if inventories in New York were zero.   
 
Transport costs, the Chicago Spot Price, and the New York Future Price 
According to equation 6c, when corn was shipped from Chicago at time t the spot price in New 
York three weeks later was expected to equal to the spot price in Chicago at time t plus the cost of 
transport. Although the expected spot price in New York at time t+3 is not known, the price for 
future delivery in New York can be used as a proxy. Since the seller had the option of delivering 
any time during the month, and the trip took three weeks, the price for delivery “this month” was 
used if the date of the month was before the eleventh, and the price for delivery in the subsequent 
month was used if the date occurred on or after the eleventh14. Consequently, in the regression  

, 3( )NY CH
t t t t tF P Transport Cost uα β+ − = + +  

the coefficient β should equal 1 and the error should be uncorrelated with inventory levels. The 
data is plotted in Figure 2 for each week that lake and canal transport cost data are available, 1878 
– 1891. Port handling charges in New York are not included in the transport cost15. The graph 
highlights the observations when New York inventories were less than 300 000 bushels.  The 
observation for 23 September 1884 is omitted as there was a corner in the Chicago market and the 
Chicago price was 16 cents higher than the New York price.  
 
The best fitting regression line including an indicator variable for weeks with low storage is:  
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, 3

2
1

( ) 1.11 0.95 0.22 1( 300,000)
(0.23) (0.044) (0.22)

0.41 0.74 358

NY CH
t t t t t t

t t t

F P Transport Cost Storage u

u u e R N

+

−

− = + + < +

= + = =

 

where 1(Storage <300,000) has a value of one if inventories were less than 300,000 and zero 
otherwise. The regression was estimated using feasible generalised least squares to take into 
account first order autocorrelation amongst the error process16. The slope of the coefficient on the 
transport cost variable is very close to, and insignificantly different from 1. In addition, the 
coefficient on the low inventory variable is both tiny and insignificantly different from zero, 
indicating that there was no systematic tendency for the future-spot price gap to be high when  
inventories were low. These estimates therefore provide clear evidence that the law of one price 
as described by equation 6c held in these markets.  
 
Transport costs, the Chicago Spot Price, and the New York Spot Price 
If the model is accurate, NY CH

t tP P− should have equaled T SK K−  when New York inventories 

were positive, but exceeded T SK K− when New York inventories were zero.  To examine this 
implication of the model, the spot price difference CH

t
NY

t PP − is plotted against the cost of lake 
and canal transport in Figure 3. Again, observations when New York inventories were less than 
300,000 bushels are distinguished from those when inventories exceeded 300,000 bushels.  
 
Two features of the graph stand out. First, as with figure 2, most of the observations lie above the 
45-degree line, indicating that the spot price difference normally exceeded the transport cost. 
Secondly, there were a large number of occasions when the spot price difference exceeded the 
transport cost by more than 5 cents, and these were much more likely to occur when inventories 
were less than 300 000 bushels than when they exceeded 300 000 bushels. This is documented in 
Table 4, which analyses the distribution of the variable NY CH T

t tP P K− −  for six different 
inventory levels. On 62 per cent of the 21 occasions when inventories were less than 150 000 
bushels, and 31 per cent of the 45 occasions when inventories were between 150 000 and 300000 
bushels, the New York price exceeded the Chicago price plus transport cost by 5 cents or more. 
In contrast, the New York price exceeded the Chicago price plus transport costs by more than 5 
cents on only 4 per cent of the 224 occasions when inventories exceeded 600 000 bushels.  
 
Wilcoxon-Mann-Whitney statistics were calculated to test the hypotheses that the cumulative 
distribution functions of NY CH T

t tP P K− −  were the same for each of the six inventory groups, 
against the alternative that one distribution lay above the other. For each inventory group, the 
hypothesis that the distribution of NY CH T

t tP P K− − was the same as that of the lowest inventory 
group is rejected. In addition, the hypotheses that the cumulative distribution functions of the first 
four inventory groups were the same were rejected, although the distributions were similar for all 
groups with more than a million bushels. Consequently, it is possible to conclude that the large 
spatial price differences that occurred when inventories in New York were low were not due to 
simple random variation.  
 
In Table 5, the distribution of , 3

NY CH T
t t tF P K+ − − for the six different inventory categories is 

calculated. In contrast to the results for the New York spot price, the distributions show that the 
New York future price did not spike upwards when inventories were low; indeed, it is not 
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possible to reject the hypothesis that the cumulative distributions of , 3
NY CH T

t t tF P K+ − − were the 
same for any of the six inventory categories.  
 
The different behaviour of the New York spot and future prices can be further demonstrated by 
estimating the best fitting regression line corresponding to figure 3. The line, estimated using 
feasible generalised least squares to take into account first order autocorrelation, is17:  
 

2
1

( ) 1.75 0.85 2.05 1( 300,000)
(0.29) (0.06) (0.29)

0.45 0.69 368

NY CH
t t t t t

t t t

P P Transport Cost Storage u

u u e R N−

− = + + < +

= + = =

 

The positive, statistically significant, and economically large coefficient on the low-inventory 
dummy variable is in sharp contrast to the small and statistically insignificant coefficient 
estimated when the future price was used. The difference between the two coefficients further 
confirms that the New York spot price, but not the future price, spiked upwards relative to the 
Chicago price and the transport cost when inventories were low.  
 
The relationships evident in figure 3 and Table 4 can be summarised by constructing a “spatial 
arbitrage-storage” curve that plots the difference between the New York spot price and the 
Chicago spot price plus transport costs against inventory levels (see Figure 4)18. The graph 
resembles a traditional supply of storage curve, a graph of the difference between the spot price 
and the future price of a commodity versus the quantity of storage. In a supply of storage curve 
the spot price is typically higher than the future price when storage volumes are low, but when 
storage quantities are high the future price exceeds the spot price (Working (1949), Brennan 
(1958)).  The theoretical model suggests that the spatial arbitrage-storage curve and the supply of 
storage curve should be closely related because when a centre has zero storage the spot price 
should exceed the local future price and the other spot price plus the transport cost. In a related 
paper, Coleman (2004) shows that the supply of storage curve for New York corn and the spatial 
arbitrage storage curves are indeed related in the suggested manner, and that the closeness of 
these curves may explain why commodity prices are frequently in backwardation.  
 
CONCLUSIONS 
 
This paper has attempted to enhance economists’ understanding of how spatial arbitrage occurs 
by examining how the interaction of storage and trade affects prices in different locations. Its 
theoretical contribution has been to link the economics literature analysing spatial price arbitrage 
with the logistics management literature analysing how the speed of transport determines 
inventory holdings. It has made the link by relaxing the standard assumption in models of spatial 
arbitrage that transport is instantaneous; in doing so, it has emphasised the manner in which 
inventories are used to smooth price fluctuations. This role had long been recognised in the 
logistics management literature, but only at the level of the firm, rather than across competitive 
markets. Its empirical contribution has been to assemble a set of price, transport cost, and storage 
data that is detailed enough to detect how logistics issues have affected commodity prices in one 
specific market. It has shown that the spatial price difference frequently exceeded the cost of 
shipping goods, in a heavily traded commodity market in which there were large investments in 
logistics infrastructure and thick financial markets. In doing so, it has established that prices 
exceeded the transport cost when there were low supplies in the importing city, causing a 
temporary price spike followed by a price decrease when new supplies arrived from the exporting 
centre. The result can perhaps be best summarised by plotting a spatial arbitrage-storage curve 
that shows how the spatial price difference depends on inventory levels in the importing centre.  
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The theoretical model suggests that the process of physical arbitrage is significantly more 
complex than has previously been recognised.  The central feature of the model is that the 
quantity of goods arbitrageurs ship each period will not be the amount necessary to ensure that 
the spatial price difference is always equal to the cost of transport. Rather, in order to make 
normal profits on average, arbitrageurs will ship an amount such that that there will be 
insufficient supplies and high prices in the destination centre on a regular but infrequent basis. 
The profits they make on these occasions offset the small losses they make on the more frequent 
occasions that the exports arrive when local supplies are adequate. Put more starkly, traders make 
normal profits on average only by obtaining high prices and extraordinary profits on occasions 
that supplies in the importing market are low. If this phenomenon is generally true in practice, it 
provides an argument against governments attempting to stabilise prices in times of shortage. 
Indeed, post-disaster anti-price gouging laws might raise the incidence of local shortages.  
 
The paper has other implications for time series analyses of regional price dynamics. First, the 
data requirements to analyse episodes of physical arbitrage are large. In addition to the price data 
usually used in studies of arbitrage, it is necessary to know whether trade actually occurs between 
a pair of cities, the extent to which transport prices vary, and the level of inventories in each 
market. More generally, if cheap transport is slow, studies of market integration need to focus 
more on logistics issues ⎯ the way arbitrageurs use transport systems and storage to integrate 
markets ⎯ rather than just transport issues.  Secondly, studies of market integration that assume 
that the spatial price difference is always equal to the transport cost need modification. For 
example, Spiller and Wood (1988) developed a popular methodology to estimate spatial 
transactions costs from price data that is explicitly predicated on the assumption that the price 
difference is always equal to the cost of transport, but that the cost of transport is variable. If that 
methodology were used on this data set, it would overestimate the mean and variability of 
transport costs because it wrongly assumes that the large price differences that occurred when one 
centre had low storage were due to temporarily high transport costs.  
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ENDNOTES 
1 The assumption that mean output is predetermined and price inelastic can be relaxed; see Williams and 
Wright (1991). Bailey and Chambers (1996) and Deaton and Laroque (1996) argue that if demand is linear 
any effect on prices stemming from a changes in the mean or variance of output can be replicated by a 
change in the demand function, so the shocks can be considered either demand shocks or supply shocks. 
2 This assumption is made for analytic convenience, as storage and trade decisions could be made at higher 
frequencies than the time it takes to ship goods. This would substantially complicate the model as all 
decisions would then depend on extra state variables representing quantities at different stages of transit. 
3 There are only 12 combinations because the centres will not export simultaneously since KS < KT. 
4 The probabilities are calculated using the parameters described in footnote 8, with (XA, XB) = (100,100) if 
the centres are the same or (70, 130) if centre B mainly produces. The probabilities are representative of 
those pertaining to a wide variety of parameters, for a given level of regional specialization. 
5 As the stochastic process determining output is changed, the optimal storage and trade functions change 
but the solution still fulfills the set of conditions 6a-6d. Consequently, analytic statements about the 
solution will hold irrespective of the assumed stochastic process, but the distribution of the state variables 
in equilibrium will differ. As the modeling assumptions are changed, other combinations of the state 
variables might become more important.  
6 In the baseline case, the following model parameters are used: the demand function Di

-1(Q) = α-βQ = 200 
– Q; the production conditional variance σ2= 100; the production autocorrelation  ρ = 0.9 ; the weekly 
interest rate r = 0.001; the weekly depreciation rate δ = 0.001; KS = 0; and KT = 5. The mean price is 100. 
7Most corn was consumed where it was grown, and only a small fraction was shipped any distance. Illinois 
produced some 225 million bushels of corn annually, over 10 per cent of the U.S. crop. In contrast, total 
production in New York, New Jersey, and Pennsylvania was 75 million bushels per year.  
8 Chicago Board of Trade, 1892, p122.  
9 The through-shipments are calculated as the total of the monthly through-shipments on the Chicago and 
Northwestern, Illinois Central, Chicago, Burlington, &Quincy, Chicago, Rock Island, & Pacific and 
Chicago and Alton railroads that are reported in the Chicago Board of Trade Annual Reports each year.  
10Unless most rail shipments were through-shipments there are two puzzles. First, rail and lake shipments 
took place simultaneously even though rail rates were considerably higher than lake rates. There are some 
reasons why rail shipment was preferred ⎯ it was faster, and had less risk of additional heat damage if the 
grain were already damaged ⎯ but ordinarily these did not justify the extra cost. Secondly, rail shipments 
during winter occurred when the price gap between New York and Chicago was lower than the rail cost. 
11 i.e. 21 million out of the 24 million bushels that arrived in New York during the lake and canal season. 
12 In 1888 there were 24 million bushels storage capacity in New York and Brooklyn, and a further 3 
million in New Jersey. However, peak grain storage in New York and Brooklyn between 1887 and 1889 
was just over 16 million bushels, of which 11 million bushels were wheat and 4 million bushels were corn. 
13See the discussion by Nimmo in his reports on the internal commerce of the United States. (United States 
Bureau of Statistics, 1877, 1881, 1884). Porter (1983, 1985) discusses the pre-1886 price wars.  
14 Ten of the futures prices were not available, and these observations were omitted. 
15 It cost 0.15 cents per bushel for canal boat trimming, 0.625 cents for receiving, and discharging, and 0.25 
cents for screening and blowing. (New York Produce Exchange Annual Report (1892).  Official grain 
inspection, if required, cost $3 per canal boat. It cost 0.25 cents per bushel to store grain for 10 days.   
16 The errors are possibly autocorrelated because the data are sampled weekly, while shipping took 3weeks.  
17 The observation for 23 September 1884 was omitted. 
18 The scatter-plot of points is accompanied by a non-parametric kernel regression showing the average 
relationship between the future premium and the storage quantity The kernel regression is estimated with 
an Epanechnikov kernel with bandwith 300 000 bushels. 
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APPENDIX: DATA SOURCES 
 
Six kinds of data have been assembled for this project: the spot price of corn in New York and 
Chicago; the future price of corn in New York and Chicago; transport costs between Chicago and 
New York; transport volumes between Chicago and New York; storage prices in Chicago and 
New York; and storage volumes in Chicago and New York.  
 
Spot Price of Corn. 
Prices were collected for Number 2 Yellow corn. Number 2 corn was the primary future grade 
and comprised a large fraction of the spot market. Grades were defined as follows. 
 
New York: “YELLOW CORN shall be sound, dry, plump and well cleaned; an occasional white 
or red grain shall not deprive it of this grade. No.1 CORN  shall be mixed corn of choice quality, 
sound, dry and reasonably clean. No.2 CORN  shall be mixed corn, sound, dry and reasonably 
clean. ” New York Produce Exchange (1882) p207 
 
Chicago: “No. 1 YELLOW CORN shall be yellow, sound, dry, plump and well cleaned. 
No. 2 CORN shall be dry, reasonably clean, but not plump enough for No. 1” Chicago Board of 
Trade (1882) p 79-80  
 
Spot prices for both cities were collected in the Thursday edition of the New York Times, 1878- 
1891. The prices were for the preceding Wednesday. If the Wednesday were a public holiday, the 
Tuesday price was collected. If the markets were closed on both Wednesday and Tuesday, the 
data was skipped for that week.  
 
Daily spot prices for New York are also available in some years in the Annual Report of the New 
York Produce Exchange. However, since The New York Times had to be used to collect the 
Chicago spot price and the New York future price, as well as the New York spot price in years 
where it was not reported in the Annual Report, the weekly New York Times data was used.  
 
Future Price of Corn.  
Prices were collected for Number 2 Yellow corn. The Chicago future price was collected from the 
Annual Report of the Chicago Board of Trade. The quotes is for seller delivery: the seller could 
choose any day to deliver within the said month.  Wednesday quotes were collected. 
 
The New York Wednesday future prices were collected from the Thursday edition of the New 
York Times. The seller also had the option as to the delivery date. 
 
Corn Trade and Storage Data.  
Storage and trade data for Chicago was sourced from the Chicago Board of Trade Annual 
Reports. The New York data came from a variety of sources. Where possible, it came from the 
New York Produce Exchange Annual Reports, but these documents had little data between 1882 
and 1887. Storage data for these years came from the weekly Commercial and Financial 
Chronicle. Export data for several years came from the Chicago Board of Trade Annual Reports. 
Storage cost data come from the Chicago Board of Trade and New York Produce Exchange 
Annual Reports, and from Goldstein (1928).  
 
Transport Data 
The transport cost data were published by the Chicago Board of Trade and New York Produce 
Exchange Annual Reports.  
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Table 1: Analytical results corresponding to equations 6a-6d. 
 

A
tS  B

tS  A
tT  B

tT  Prob(.) 
XA=50% 

Prob(.) 
XA=35% 

| |A B
t tP P−  1 1[| || ]A B

t t tE P P y+ +−  

 
>0 >0 =0 =0 68.1% 17.5% ( )T SK K< −  1

1 ( )A Br
t tP Pδ

+
− −  

>0 >0 =0 >0 13.4% 72.9% ( )T SK K= −  1
1 ( )T Sr K Kδ
+
− −  

>0 >0 >0 =0 13.4% 0% ( )T SK K= −  1
1 ( )T Sr K Kδ
+
− −  

 
>0 =0 =0 =0 0.05% 0.5% Uncertain Uncertain 
>0 =0 =0 >0 0.5% 6.9% ( )T SK K= −  1

1 ( )T Sr K Kδ
+
−> −  

>0 =0 >0 =0 1.4% 0.1% ( )T SK K> −  1
1 ( )T Sr K Kδ
+
− −  

 
=0 >0 =0 =0 0.05% 0% Uncertain Uncertain 
=0 >0 =0 >0 1.4% 0.2% ( )T SK K> −  1

1 ( )T Sr K Kδ
+
− −  

=0 >0 >0 =0 0.5% 0% ( )T SK K= −  1
1 ( )T Sr K Kδ
+
−> −  

 
=0 =0 =0 =0 0.1% 0% Uncertain Uncertain 
=0 =0 =0 >0 0.5% 1.9% ( )T SK K> −  1

1 ( )T Sr K Kδ
+
−> −  

=0 =0 >0 =0 0.5% 0% ( )T SK K> −  1
1 ( )T Sr K Kδ
+
−> −  

The table gives the absolute value of the price differential A B
t tP P− and the expected future price 

differential 1 1[| || ]A B
t t tE P P y+ +−  where they can be determined exactly by equations 6a - 6d, the arbitrage 

conditions describing storage and trade. The probabilities of each set of conditions occurring pertain to the 

case when both centres are the same and A produces 50 per cent of output or when A produces only 35 per 

cent of output. 
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Table 2: Price, storage, and trade statistics corresponding to the model. 

(Identical centres, changing transport costs.) 
 
Statistic Combined 

Centre 
KT = 2.5 KT = 5 KT = 10 KT = 20 No 

Trade 
Prices  
Mean(PA) 100.2 100.2 100.3 100.3 100.4 100.4 
S. Dev.(PA) 8.5 8.6 8.5 8.6 9.4 10.4 
Mean(PA-PB) ─ 0 0 0 0 0 
S. Dev.(PA-PB) ─ 3.1 4.6 7.3 11.2 11.5 
S.Dev(∆PA -∆ PB)  2.35 2.84 3.58 4.59 5.51 
% (| PA-PB| >KT-KS) ─ 2.9% 3.1% 3.1% 3.2% ─ 
Storage  
Mean(SA) 186 227 261 315 386 422 
S. Dev.(SA) 157 232 251 285 326 351 
% (SA = 0) ─ 3.5% 3.1% 2.6% 2.0% 1.0% 
% (SA, SB = 0) 3.1% 1.7% 1.1% 0.6% 0.2% 0.0% 
Trade  
Mean(TA) ─ 3.9 3.2 2.3 1.2 ─ 
S. Dev.(TA) ─ 10.6 10.5 10.2 8.9 ─ 
% (TA = 0) ─ 80% 84% 90% 95.5% ─ 
% (TA, TB = 0) ─ 61% 68% 81% 91.4% ─ 
The “combined centre” column refers to the case that trade is instantaneous and costless, and the “no trade” 
column refers to the case when trade is not possible. 
PA: the price in centre A. SA: storage in centre A. TA: trade from centre A to centre B. 
% (| PA-PB| >KT-KS): the fraction of time the price difference exceeds the difference between the trade cost 
and the storage cost. Note KS=0 in these simulations. 
% (SA[TA] = 0): the fraction of time storage [exports] = 0. 
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Table 3: Price, storage, and trade statistics corresponding to the model. 
(Different centres, mean output changes across columns.) 

 
Statistic AX =  
               BX =  

100 
100 

95 
105 

90 
110 

80 
120 

70 
130 

Prices  
Mean(PA) 100.3 101.2 101.9 102.5 102.8 
S. Dev.(PA) 8.5 8.4 8.5 9.0 9.3 
Mean(PB) 100.3 99.3 98.6 97.9 97.7 
S. Dev.(PB) 8.5 8.7 8.8 8.8 8.7 
Mean(PA-PB) ─ 1.9 3.3 4.7 5.1 
S. Dev.(PA-PB) 4.6 4.4 3.8 2.7 2.0 
S.Dev(∆PA -∆ PB) 2.84 2.77 2.70 2.16 1.72 
% (| PA-PB| >KT-KS) 3.7% 3.8% 3.2% 3.0% 2.1% 
Storage  
Mean(SA) 261 215 166 110 91 
S. Dev.(SA) 251 216 171 107 78 
% (SA = 0) 2.8% 3.1% 2.5% 2.4% 2.1% 
Mean(SB) 261 286 296 288 285 
S. Dev.(SB) 251 273 284 286 294 
% (SB = 0) 2.8% 3.8% 4.2% 7.7% 9.4% 
% (SA, SB = 0) 0.9% 1.3% 1.3% 1.8% 1.9% 
Trade  
Mean(TA) 3.2 1.7 0.8 0.1 0.0 
S. Dev.(TA) 10.5 8.0 5.4 2.2 0.5 
% (TA = 0) 86% 92% 96% 99% 99.9% 
Mean(TB) 3.2 5.7 9.1 17.7 27.4 
S. Dev.(TB) 10.5 13.0 15.1 18.8 23.1 
% (TB = 0) 86% 73% 61% 32% 19% 
% (TA, TB = 0) 72% 65% 56% 31% 18% 
 
PA: the price in centre A. SA: storage in centre A. TA: trade from centre A to centre B. 
% (| PA-PB| >KT-KS): the fraction of time the price difference exceeds the difference between the trade cost 
and the storage cost. Note KT= 5 and KS=0 in these simulations. 
% (SA[TA] = 0): the fraction of time storage [exports] = 0. 
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Table 4: Distribution of spot price difference adjusted for transport costs 
( )NY CH T

t tP P K− − by storage level 
Storage 
level  bu 

<150000 <300000 <600000 <1000000 <2000000 2000000 + 

N 
 

21 45 79 62 87 75 

% obs 
< 0 

0% 2% 2.5% 3% 10% 15% 

% obs 
0≤ x<5 

38% 67% 85% 90% 87% 83% 

% obs  
≥ 5 

62% 31% 12.5% 6.5% 2% 3% 

Mean 
 

6.01 3.84 2.70 1.73 1.45 1.10 

Std 
 

2.93 2.57 1.89 2.82 1.61 1.81 

WMW 
test 1 

 -2.77* -4.44* -5.23* -5.95* -5.96* 

WMW 
test 2 

 -2.77* -2.43* -2.52* -1.94 -1.03 

The table shows the fraction of observations in each group which are less than zero,  
between 0 and 5 cents, and more than 5 cents.  
The first Wilcoxon-Mann-Whitney test, WMW test 1, tests whether the distribution is  
the same as the distribution of the group for which storage is less than 150000 bushels. 
The second Wilcoxon-Mann-Whitney test, WMW test 2, tests whether the distribution  
is the same as the distribution of the group immediately to the left.  
The WMW test is asymptotically distributed as N(0,1) and a * indicates significance at the  
5% critical level i.e. that the two cumulative distributions lie above each other.  
 
 
Table 5:  Distribution of spot-future price difference adjusted for transport costs 

, 3( )NY CH T
t t tF P K+ − − by storage level 

Storage 
level  bu 

<150000 <300000 <600000 <1000000 <2000000 2000000 + 

N 
 

19 44 77 60 84 74 

% obs 
< 0 

21% 7% 10% 8% 7% 11% 

% obs 
0≤ x<5 

74% 91% 86% 92% 92% 85% 

% obs  
≥ 5 

5% 2% 4% 0% 1% 4% 

Mean 
 

1.04 1.60 1.60 1.29 1.45 1.55 

Std 
 

2.12 1.33 1.76 3.03 1.12 2.09 

WMW 
test 1 

 1.00 1.07 0.92 0.73 0.90 

WMW 
test 2 

 1.00 0.07 -0.31 -0.49 0.56 

See Table 4.  The table shows the fraction of observations in each group which are less than zero,  
between 0 and 5 cents, and more than 5 cents.  
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Figure 1 

Average transport costs, 1880 - 1891, by week
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Figure 2 

NY future minus Chicago spot price versus transport cost 1878-1891
New York future is "delivery this month" if date is before the 10th; otherwise "delivery next month" 
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Figure 3 
NY spot and Chicago spot price difference versus transport cost
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Figure 4 
 

Spatial arbitrage - storage Curve
(PCH+KT-PNY ) versus storage 
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