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Abstract 
 
It has been argued in the literature that privatized airports would charge more efficient 
congestion prices and would be more responsive to market incentives for capacity expansions. 
Furthermore, the privatized airports would not need to be regulated since price elasticities are 
low, so allocative inefficiencies would be small, and collaboration between airlines and airports, 
or airlines countervailing power, would solve the problem of airports’ market power. However, 
as important as this issue may appear, not much has been done to analytically examine what the 
outcomes of privatization or divestment of regulation may be. This paper uses a model of vertical 
relations between airports and airlines to examine, both analytically and numerically, how 
ownership affects airports prices and capacities. Results show a rather unattractive picture for 
privatization. We find that: (i) private airports would be too small in terms of both, traffic and 
capacity and, despite the fact that they may be less congested, they induce important deadweight 
losses; (ii) the arguments that airlines countervailing power or increased cooperation between 
airlines and airports may make regulation unnecessary seem to be overstated; and (iii) things 
may deteriorate further if privatization is done on an airport by airport basis rather than in a 
system. We also show that two features of air travel demand that have not been incorporated 
previously in the literature –demand differentiation and schedule delay cost– play important roles 
on airports’ preferences regarding the number of airlines using the airport.  
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INTRODUCTION 
 
In the last decades, some industry watchers, commentators and economists have argued in favor 
of the privatization of airports. They have given many reasons; among others, government 
revenues, financing aspects and private enterprise creativity and drive. On efficiency grounds, 
which is the focus of the present paper, it has been argued that private airports would charge 
more efficient congestion and peak-load prices and that they will respond to market incentives 
for capacity expansions (see e.g. Craig, 1996). These last points are important because, in the 
literature, congestion is often mentioned as the most important problem major airports face.  
 
In 1987, the three airports in the London area and four other major airports in the UK were 
privatized. Following the example of the UK, many countries moved –or are moving– towards 
privatization of some of their public airports (among others, Austria, Denmark, New Zealand, 
Australia, Mexico and many Asian countries). Out of the concern that the privatized airports 
would exert market power –they would be local monopolies by having a captive market– most of 
the newly privatized airports have been subject to economic regulation, either in the form of 
price caps (as London Heathrow) or rate-of-return (as Flughafen Düsseldorf). Lately, however, 
many authors have argued that the regulation mechanisms fell short of being optimal; in 
particular, privatization has not been as successful as expected because the regulation 
mechanisms would misplace the incentives regarding capacity: price caps would lead to 
underinvestment while rate-of-return would lead to overinvestment in capacity.1 Moreover, some 
authors and government agencies have argued that ex-ante regulation could be unnecessary 
altogether so it should be either completely divested or replaced by ex-post price monitoring. 
Why? Some of the reasons that have been put forward are the following (see e.g. Beesley, 1999; 
Condie 2000; Forsyth, 1997, 2003; Starkie, 2000, 2001, 2005; Productivity Commission, 
Australia, 2002; Civil Aviation Authority UK, 2004): (i) airports have low price elasticity of 
demand so price levels will not have large implications for allocative efficiency; (ii) airlines have 
countervailing power that will put downward pressure on airport prices; (iii) alternatively, most 
of the problems would be solved if deeper collaboration between airlines and airports was 
allowed and encouraged; and (iv) demand complementarities between aviation and concession 
activities would induce the airport to charge below monopoly prices on the aeronautical side 
(particularly when concession revenues are larger than airside revenues). In fact, the move 
towards divestment of regulation or the less-stringent price monitoring has already started in 
some countries (examples are New Zealand and Australia). 
 
However, as important as this may appear, there have been, to our knowledge, only two papers 
that have analytically examined what the outcomes of privatization or divestment of regulation 
may be (Zhang and Zhang, 2003; Oum et al., 2004). And, although there are many analytical 
papers that examine optimal pricing of public airports, most of the papers that do deal with 
privatization and divestment of regulation issues are fairly descriptive. Forsyth (2003) 
acknowledges this: “The shift to price monitoring has been a response to these problems [the 
problems with regulation], though the content and likely impact of monitoring has yet to be 
determined”. What this paper does is analyze the effects of airport ownership on prices and 
capacities, using formal modeling to enable an analytical examination of some of the assertions 
that have been put forward in the literature regarding privatization and regulation of airports, and 
to gain insights about other issues that have yet been discussed.  
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What makes this paper different from the previous two though, is the way the airline market 
enters the picture. Zhang and Zhang (2003) and Oum et al. (2004) essentially abstract from it, 
assuming that an airport’s demand is directly a function of a full price, which includes airport 
charges and congestion costs. In this paper, we formally model the airline market as an 
oligopoly, which takes airport charges and capacities as given, recognizing that this is a vertical 
setting: airports provide an input –airport service–, which is necessary for the production of an 
output –movement– that is sold at a downstream market. Hence, the demand for airports services 
is a derived demand. Indeed, other authors have used a vertical setting as well (Brueckner, 2002; 
Pels and Verhoef; 2004; Raffarin, 2004), but they used it only to study optimal congestion 
pricing. Optimal capacity or the effects of privatization have not been analyzed.  
 
Our airline oligopoly model expands on previous work; here, airlines’ demands are sensitive to 
schedule (frequency) delay cost in addition to flight delay caused by congestion at the airport, 
airlines services are not necessarily perfect substitutes, and the impact of the number of firms on 
airport demand is highlighted. We show that schedule delay and substitutability play important 
roles on the incentives an airport has with respect to the dominance by a single airline. At the 
airport market level, the most obvious differences from the previous papers is that we look into 
private ownership and allow capacity to be a decision variable. We consider both system and 
individual privatization of airports, and the case of joint maximization of airports’ and airlines’ 
profits. Analytical and numerical simulations show a rather unattractive picture for privatization 
in the model considered. First, the idea that low elasticities of demand for airports would induce 
small allocative inefficiency would be true only if the elasticity was constant, something rather 
improbable and that does not consider the fact that capacity decisions will be different. What is 
obtained here is that important allocative inefficiencies may well arise. Results worsen when 
privatization is done on an airport by airport basis rather than in a system because when airports 
are both origin and destinations of trips, their demands are perfect complements and therefore 
‘competition’ between airports induces a horizontal double marginalization problem. On the 
other hand, the maximization of joint profits benchmark shows that the arguments regarding 
airlines countervailing power or an increased scope for cooperation between airlines and airports 
are probably overstated. The outcome does improve but still falls far off from the first best. 
 
The plan of the paper is as follows: first, we formally –yet briefly– model the downstream airline 
market to derived and characterize the demand for airports. We then use these results to analyze 
airport pricing, capacity and incentives under private and public ownership. Since these analyses 
rely on comparative statics, we provide numerical simulations to better assess the differences.2 
 
THE AIRLINE MARKET 
 
The oligopoly model 
 
We present here the airline oligopoly model, which is used to obtain the derived demand for 
airports and to characterize it. We consider two national airports and demand for round trips.3 
We analyze a three stage game: first, airports choose their capacities, Kh; second, they choose the 
charge per flight, Ph; finally, airlines choose their quantities. We look for sub-game perfect 
equilibria, so we focus first, in this section, on the Nash equilibria of the airlines’ sub-game. We 
consider N airlines with identical cost functions, facing horizontally differentiated demands (non-
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address setting). N is exogenous and represents the main airline industry structure indicator in the 
model. Each firm’s demand is dependent on the vector of full prices, θ: 
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                            (1) 

 
where qi is the demand of airline i, θi is its full price, Q is the total number of flights of all 
airlines, ti is the round trip ticket price, G(τi) is schedule delay cost,4 iτ  is the expected gap 
between passengers’ actual and desired departure time, D(Q,Kh) is flight delay caused by 
congestion at airport h, and α is passengers’ value of time. Since iτ  depends on the frequency 
chosen by airline i (the higher the frequency, the smaller the gap), schedule delay cost can be 
written as ))(()( iii QGQg τ≡ , with Qi the number of flights of airline i, 0)(' <iQg  while 

)('' iQg  has no evident sign a priori. The delay function considered is5 
[ ])(/),( QKKQKQD hhh

h −=                                                (2) 
 

where Dh is the total delay of both take-off and landing at airport h. We assume that demands are 
linear, symmetric and airlines’ outputs are substitutes. Inverting the system of demands we get 

∑
≠
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ij
jii qEqBAθ                                                      (3) 

 
A, B and E are positive, and B ≥ E, that is, outputs are imperfect substitutes. We assume that 
airlines behave as Cournot oligopolists in that they choose quantities, an assumption that is 
backed by some empirical evidence (Brander and Zhang, 1990; Oum et al., 1993). Note that 
homogeneity in the Cournot competition, the usual case in airline oligopoly models6, is a special 
case of our model (just replace E by B in the results).  
 
Using (3) and (1), the following system of inverse demands faced by the airlines can be obtained: 

( )),(),()( 21 KQDKQDQgqEqBAt i
N

ij ji
i +−−⋅−⋅−= ∑ ≠

α . This can be simplified though, 

by recognizing that qi = Qi × Aircraft Size × Load Factor. Here, we assume that the product 
between aircraft size and load factor, denoted by S, is constant and the same across carriers, 
making the vertical relation between airports and airlines of the fixed proportions type.7 Thus 

( )),(),()(),( 21 KQDKQDQgSEQSBQAQt i
N

ij jiii
i +−−−−= ∑ ≠− αQ            (4) 

 
Note that linear demands in full prices do not lead to inverse demands that are linear in output, as 
D is not linear and there is no reason to think that g is. In fact, we make now the following useful 
assumptions regarding schedule delay costs: (a) The monetary cost of the gap between the actual 
and desired departure times,τ, is proportional to its length; (b) τ is inversely proportional to the 
frequency of flights. Assumption (a) is similar to what has been already assumed regarding 
congestion delay costs; (b) is equivalent to say that τ is directly proportional to the interval 
between flights (inverse of the frequency). Hence, under (a) and (b) we get 

1)())(()( −⋅⋅=⋅== iiiiii QQQGQg ηγτγτ , where γ is the constant monetary value of a minute of 
schedule delay and η is a constant. Thus, residual inverse demand is negative and upward-
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sloping first; it then becomes positive, and then downward sloping, when the linear part of the 
function dominates schedule delay cost. Finally, for larger values of Qi, congestion kicks in and ti 
decrease faster than linearly. This feature of this demand system is not troublesome though: the 
insight is that schedule delay cost put by itself, and regardless of other technological 
considerations such as a fixed cost, a limit to the number of firms that can be active in the 
industry; perfect competition is not consistent with this model. 
 
The final ingredient necessary before analyzing equilibria is costs. Airline costs are 

[ ]∑ =− ++=
2,1
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The term in square brackets is the cost per flight, which includes pure operating costs c, airports 
charges P1 and P2, and congestion delay costs. Airline i's profits are then obtained from (4), (5) 
and the fact that revenues are SQtqt i
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The derived demand for airports is obtained from the equilibrium of the airline market. Using 
(6), it can be shown that under assumptions (a) and (b) there exists a unique, interior and 
symmetric Cournot-Nash equilibrium of the sub-game, as long as N is smaller than the free-entry 
number of firms (which always hold). Thus, 0/ =∂∂ i

i Qφ  gives us the Nash equilibrium of the 
game. Calculating this and imposing symmetry, we obtain the following important equation 
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Equation (7) implicitly defines a function );,( NKPQ hh , which is airports’ demand as a function 
of airport charges, capacities and airline market structure, N (the implicit function theorem 
holds). Also, one can define, without loss of generality, P=P1+P2; if airports were to be priced 
jointly then an explicit expression of the airports’ inverse demand );,( NKQP h  is obtainable.  
 
We now characterize airports’ demand. Consider first changes of Q with N. Under (a) and (b), 
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It can be checked that 0>dNdQ , 022 <dNQd  and 0<dNdQi  ∀E∈(0,B]. All other 
derivatives are obtained in a similar fashion as above. In summary  
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Finally, we look at how much information about the downstream market is captured by the 
derived demand for airports. This is important because in the maximization of social welfare 
case, what we need is a measure of consumer surplus. Since consumers of airports are both final 
consumers (passengers) and airlines, what we need is a measure of the sum of passenger surplus 
and airlines profits. What has been (implicitly) assumed in literature about privatization is that 
the integration of the airport demand function captures this consumer surplus. Adding airports 
profits to the integral would give a social welfare function. Under which conditions is this true? 
Recall that P=P1+P2; we are thus interested in how the following equivalent expressions 
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are related to airlines profits and passenger surplus.8 First, the variation of Marshallian passenger 

surplus is given by ∫ ∑=
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Next, in the sub-game equilibrium, the profit of each airline is obtained by replacing equilibrium 

),( iiQ −Q  in equation (6). Since the equilibrium in the downstream game is symmetric, sub-game 
total profits for the airline industry as a whole, Φ, are easily calculated as 1φ⋅=Φ N , that is 
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Taking the total derivative of Φ with respect to P, using (7) and (11) and some algebra, we get 
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Hence, if N is 1, integration of the airports’ demand captures only the monopoly airline profits, 
completely leaving out passengers (the second and third terms on the right hand side cancel out). 
Only if there is no congestion and N goes to infinity (which requires assuming away schedule 
delay cost), integration of the airports’ demand is equal to airlines profits and passenger surplus. 
In any other case, the integral fails to adequately capture the surpluses of the agents in the 
downstream market. Thus, the integral of Q does not capture airlines profits plus consumer 
surplus because of both, market power and uninternalized externalities (third and fourth terms in 
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equation 15 respectively). Hence, to correctly analyze the social welfare maximization problem 
in airport markets, formal modeling of the airline market is required. One can either directly 
consider the three actors involved, or add the missing terms to the integral of airport’s demand. 
At the practice level, the conclusion is bad news for managers of public airports or airport 
regulation authorities: even in a setting of complete information, optimal pricing and capacity 
require detailed knowledge about the market structure and demand of the airline market; 
information on costs and demand for airports alone is not enough. This unquestionably 
complicates the problem.  
 
THE AIRPORTS MARKET 
 
System of private airports 
 
We are first interested in the decisions of a System of Private Airports (SPA). By this, I mean 
that pricing and capacity decisions at both airports are made by a single entity which maximizes 
profits; this is truly a monopoly situation. Decision variables are Q, P (which is the sum of P1 
and P2), K1 and K2. Q and P however are related through the demand function. We will use Q 
and Kh as decision variables –that is, we will use the inverse demand function );,( NKQP h – but 
obviously results do not vary if we choose them otherwise. It is assumed, as is usually done in 
the literature, that airports’ costs are given by C(Q) + rK, where C represents operating costs and 
rK capital costs. The problem the SPA faces is given by 

rKKQCQNKQPNKQ hhKKQ
)()(2);,();,(max 21,, 21

+−−=π                   (14) 

 
First order conditions lead to the following pricing and capacity rules: 

PPCP ε/'2 +=                                                                 (15) 
rKPQ h =∂∂ )/(            ,  h = 1,2                                     (16) 

 
where Pε  is the (positive) price elasticity of airports’ demand. It can be proved that, at the 
optimum, KKK == 21  but it cannot be proved that second order conditions hold globally. 
Simulation shows that they do hold for a large range of parameter values, though. (15) is the 
familiar market failure in which monopolies set price above marginal cost. (16) shows that 
private airports increase capacity until the marginal revenue of doing so equals the marginal cost 
of providing the extra capacity. The monopoly system of airports only cares about the last 
consumer: increasing capacities by ΔK allow the airport to charge an extra ΔP, without loosing 
the marginal consumer (recall that a consumer lost for the airport is equivalent to a change in the 
equilibrium quantity in the downstream market). The extra charge however can be passed to all 
inframarginal consumers. What is important is that the marginal revenue perceived by the airport 
is not necessarily a measure of the social benefit of an increase in capacity (Spence, 1975). 
 
Interesting as well, is to see how optimal Q, P and Kh change with N. Unfortunately, comparative 
statics are not definitive: derivatives cannot be signed a priori so we will need to wait until the 
numerical simulation to have a better idea (the same goes for final outcomes in the airline market 
of course). What it is easy to show, however, is that as N increases, profits increases. To see this, 
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simply differentiate profits evaluated at optimal Q and K with respect to N and apply the 
envelope theorem: 0>==++= ∑ N

SPA
NN
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h
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System of public airports 
  
We now consider a system of public airports that maximizes social welfare. We will denote this 
case by W. As it is clear now, the social welfare (SW) function is not simply the integral of 
airports’ demand plus airports’ profits –see (13). The correct SW function can be obtained in two 
ways. First, directly from the expressions for consumers’ surplus (11), total airlines’ profits in 
the sub-game equilibrium (12), and airports profits.9 A second way to obtain SW is to use 
expression (13) for the integral of airports’ demand in order to find Φ+CS, then use 
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Note that as discussed, no value of N reduces (17) to airports profits plus the integral of airports’ 
demand. First-order conditions lead to 
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rKDSQ h =∂∂+− )/)(( βα ,             h = 1,2                       (19) 
 
Again, second-order conditions do not hold globally but do in the numerical simulation, at the 
optimum K1= K2=K, and results do not change if P and Kh were taken as the decision variables. 
The reader may have noted that we did not impose a budget constraint so budget adequacy is not 
ensured; this discussion is delayed. The public airports’ total charge has three components: 
marginal cost, a charge that increases price and is equal to the uninternalized congestion of each 
carrier, and a term that decreases price, which countervails airlines’ market power. In fact, this 
system of public airports’ manages to induce the outcome of social welfare maximization in the 
airline market. As can be seen, the final charge will be above or below marginal cost depending 
on whether the congestion effect or the market power effect dominates. For the monopoly airline 
case, congestion is perfectly internalized and airports charges will be below marginal cost (and 
probably below zero). The third term in fact amounts to subsidize firms with market power in 
order to increase social welfare by diminishing allocative inefficiency. The implicit assumption 
is, evidently, that there is no other mechanism in place to control this market power. Note that if 
K is fixed, as N grows the market power effect decreases while the congestion effect increases. 
When K is not fixed, this is expectable but not clear cut, because K will change with N as well. In 
fact, the signs of dNdQW / , dNdK W /  and dNdPW /  cannot be determined a priori. 
 
The congestion term was first found by Brueckner (2002). Pels and Verhoef (2004) later pointed 
out that the market power term was also needed. The differences between Pels and Verhoef’s 
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result and the result here are: (i) in their model (and in Brueckner’s), a regulator would charge a 
toll equal to the second and third terms in (18). Here, is the public airports that distort marginal 
cost pricing by an amount equal to that toll; (ii) they considered a duopoly in a homogenous 
Cournot setting , here there are N firms in a differentiated Cournot setting; (iii) they assumed a 
delay function that was linear in traffic while here it is not; (iv) they assumed a fixed capacity 
while here capacity is a decision variable.  
 
As for capacity, public airports will add capacity until the extra costs equate the benefits in saved 
delays to passengers and airlines. Clearly, this capacity decision is different from the decision (a 
system of) private airports make, as they care about extra revenues and not extra social benefits 
(Spence, 1975, provided this insight).  This result differs from what was obtained by Oum et al. 
(2004) as they found that private and public airports followed the same capacity rule, and hence 
it was concluded that private airports set capacity levels efficiently for the traffic they induced 
through pricing. The divergence is undoubtedly caused by the fact that there, the social welfare 
function was not completely capturing the surpluses of all agents in the market. 
 
How does social welfare change with N? Differentiating SW evaluated at optimal Q and K with 
respect to N, and applying the envelope theorem we get: 
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The first term on the right hand side is non-negative while the second is negative. It can be seen 
that when differentiation is weak, (20) may be negative implying that it would be better for the 
society to have one airline. The explanation is simple: here both market power and the 
congestion externality are controlled, and a monopoly airline provides a higher frequency than 
each airline in oligopoly, thus diminishing schedule delay cost and increasing demand. When 
differentiation is strong, (20) would probably become positive. In that case, the expansion of 
demand generated by a new firm will overweight the increased schedule delay cost due to 
reduced frequencies. What is notable is that, with ‘enough homogeneity’, a monopoly airline is 
optimal but there is no need to regulate it: the public airports system would subsidize the airline 
to induce the optimal quantity (but there is still the issue of budget adequacy). These results were 
not obtainable by Pels and Verhoef because they only considered a homogenous duopoly. 
Brueckner did considered N firms, but (20) would have always been zero in his case because he 
considered homogeneous firms and no schedule delay cost.  
 
We compare now the system of private airports and the system of public airports. We know the 
SPA price will be above marginal cost; the W price may be above or below marginal cost 
depending on whether the congestion effect or the market power effect dominates. May it happen 
that private airports charge less than public airports, actually inducing more traffic? The problem 
is that comparisons are complex because quantity (prices) and capacities are chosen 
simultaneously. A way to make comparisons feasible is to assume first fixed capacity.2 

 
Proposition 1: For a given K, the system of private airports will induce fewer flights than the 
system of public airports or, equivalently, it will charge a higher price.  
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Proposition 1 indicates that allocative inefficiency will always be in the form of restricted output. 
As explained before, it has been argued that this inefficiency would not be too important because 
the price elasticity of airports’ demand is low. So, even if the price increases importantly, the 
actual quantity would not decrease as much. This assertion cannot be confirmed or negated with 
proposition 1, but something can be said even at this point: observed price elasticities are not 
necessarily good forecasts of the value the price elasticity will attain under other circumstances. 
The contention would be true only if the price elasticity of demand is constant, something rather 
unlikely. For example, the efficient pricing rule in (18) has probably not been implemented in 
any airport, so we can hardly know what price elasticity value it would induce. More 
importantly, monopolies price in the elastic range of the demand. Thus, while it may be true that 
the price elasticity is low under the current pricing system (say, pure marginal cost, which as 
seen is not the efficient price), the system of private airports would price so to get into the elastic 
range of the elasticity, something that may indeed induce important allocative inefficiency. This 
issue will be further discussed under the light of the numerical simulation. 
 
The reasoning regarding the price elasticity and the allocative inefficiency, also fails to take into 
account that a private airport would choose a different capacity than a public airport would. How 
can capacity decisions be compared? Various cases can be distinguished. First, quantity and 
capacity are defined simultaneously in a system of equations. We could therefore compare actual 
capacities and quantities. A second more interesting question is, what distortions, if any, arise on 
the capacity side when the (well known) monopoly pricing distortion is taken into account. How 
would the SPA capacity compare to constrained social welfare maximization where monopoly 
pricing is taken as given (2nd best case)? Is the distortion in capacity a mere byproduct of 
monopoly pricing? To analyze these two cases, we first examine the transposed of proposition 1, 
i.e. what happens with K when Q is given (e.g. the airline market is frequency regulated). In 
these analyzes, the reader will find strong similarities with Spence (1975) examination of the 
provision of quality by a monopolist. Indeed, under the current modeling, K can be seen as a 
measure of quality. However, Spence’s insights, although pervasive, do not apply here directly 
due to the congestion externality and the vertical characteristic of the airport-airline markets, as it 
is shown in the proof of proposition 2. 
 
Proposition 2: For a given Q, the system of private (SPA) airports will oversupply capacity with 
respect to the system of public airports (W). 
 
As for actual capacities and quantities, from proposition 2 it is clear that, if for a given capacity 
the output restriction of the system of private airports is not too important, i.e. 

)()( KQKQ WSPA ≈  (these denote quantity rules for given K), then private airports’ capacities 
will be higher than the W ones. If the output restriction is severe, )()( KQKQ WSPA << , then the 
result is reversed. The low price elasticity reasoning then is still important here because it has a 
counterpart in terms of capacity.  
 
To analyze the 2nd best social welfare capacity, we consider the following second best SW 
function: ))(()(~ KQSWKWS SPA≡  –which is social welfare subject to SPA (monopoly) pricing–, 
and maximize it with respect to K (recall K1=K2=K). How does the second best social welfare 
capacity, WK~ , compare to SPAK ? Unfortunately, we cannot say much analytically here; if 
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)()( KQKQ WSPA ≈ , then WSPA KK ~> . If )()( KQKQ WSPA <<  then WK~ may be above SPAK . 
Numerical simulations showed that, in fact, the latter is the relevant case; if the system of private 
airports restrict output severely, and therefore has smaller capacities, the public airports, if forced 
to price as the private system, would increase its capacity departing from SPAK , as this directly 
benefits airlines and passengers..  
 
Maximization of joint profits: airlines and airports  
 
There are at least two reasons why this case is interesting. First, it has been argued that 
regulation may be unnecessary –in that airport charges may be kept down and capacity 
investments may be more efficient– if, on one hand, airlines were allowed to have a stake at the 
airport or if deeper collaboration between airlines and airports was allowed and encouraged, or, 
on the other hand, if airlines had enough countervailing power. The maximization of joint profits 
emerge then as an obvious way to analyze these assertions. It would be the best that can be 
achieved if collaboration was allowed, while countervailing power would have an effect only on 
the division of profits. There might be a myriad of implementation problems though, as 
recognized in the literature (e.g. Condie, 2000; Starkie, 2005). We do not intend to model these 
problems here but, instead, to use the maximization of joint profits as a benchmark. A second 
reason why it is interesting to look at the maximization of joint profits is because through a 
simple pricing scheme –two part tariffs–, that outcome is obtained in a non-cooperative fashion: 
the system of private airports tries to maximize profits of the chain and then captures airlines’ 
profits through the fixed fee. This is well-known in the vertical control literature and is 
somewhat surprising that almost no author has mentioned it (the only exception we are aware of 
is Borenstein, 1992). The difference with the usual setting is that here the upstream company has 
a quality (capacity) that matters.  

 
This case is denoted JP, for joint profits. As in the W case, there are two ways to write the joint 
profits function. Directly using (12) and airport profits, or using the integral of airports’ demand 
as before. Some manipulations lead to: 
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Inspection of (21) gives a third reason to analyze this case: when the airline market is 
monopolized (N=1), the last two terms vanish, leading exactly to what would have been called 
social welfare has the airline market not been incorporated. We now know that in that case, 
passenger surplus is in fact out of the picture. Thus, previous results are nested within this case. 
First-order conditions yield 
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Again, second-order conditions do not hold globally and K1=K2=K at the optimum. The price 
charged by the system of private airports –the variable part in the case of two-part tariffs–, has 
three components, each one related to a different externality. First, it has marginal cost to avoid 
the vertical double marginalization problem –a vertical externality to the vertical structure–, 
which arises in the SPA case. Second, it adds a charge equal to the uninternalized congestion 
cost of each carrier, a horizontal externality. Third, it adds a term to fight the business-stealing 
effect, a horizontal externality typical of oligopoly: firms do not take into account profits lost by 
competitors when expanding their output. The first two components are on line with 
maximization of social welfare while the third moves in the opposite direction; it destroys 
competition downstream instead of attacking airlines’ market power. The final outcome is indeed 
that of cooperation between competitors in the airline market.  
 
This result, which has not been obtained in the airport pricing literature before, has different 
intuitions depending on why the maximization of joint profits was the relevant case. With two-
part tariffs, the private airports use the variable price to destroy competition downstream in order 
to maximize the profits of airlines, which are later captured through the fixed fee. The process is 
known: the fixed fee allows the marginal price to act only as an aligner of incentives, relieving it 
from the duty of transferring surplus as well. When the max joint profits case arises because of 
collaboration between airlines and airports, what happens is that airlines would like to collude in 
order to increase profits, but fail to do so because of the incentives to defect on any possible 
agreement. What they manage to de here, however, is to ‘capture’ an input provider to run the 
cartel for them. By increasing the price of the input, the input provider induces the collusion 
level of output. Here, the price increase takes into account both, the congestion externality and 
the business-stealing effect. Note that with N=1, there is no business-stealing effect and 
congestion is perfectly internalized by the monopolist; consequently, the last two terms vanish. 
Also, if airlines were completely differentiated, i.e. E=0, there would not exist the business-
stealing effect but congestion would still need to be internalized. The upstream firm is rewarded 
with part of the profits, which is where bargaining power enters the picture. Now, despite the fact 
that the result is as if airlines collude, this is not necessarily worse for social welfare than a 
system of private airports charging linear prices as in SPA because, here, two other harmful 
externalities are dealt with, the vertical double marginalization and the congestion externality. 
The final outcome is indeed closer to the public case as shown below. As for capacity decisions, 
it can be seen that the rule is the same as in the public case. This happens because this is the 
capacity that maximizes downstream profits as well (for a given Q). 
 
The signs of dNdQ JP  and dNdK JP  cannot be determined a priori but we can know how, in 
equilibrium, joint profits change with N. For this, differentiate π+Φ, evaluated at optimal Q and 
K, with respect to N and apply the envelope theorem: 
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The analysis is similar to the social welfare case. When differentiation is weak, joint profits may 
be maximized with a monopoly airline: airports would have an incentive to let a single airline 
dominate. This may be facilitated if airlines and airports are encouraged to collaborate, as the 
airports may try to deal with only one airline and, together, foreclose entry to other airlines. In 
the two-part tariff case, the airport would extract all the profits of the monopoly airline through 
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the fixed fee. What is remarkable is that for the SPA case, the larger the N the better, irrespective 
of the degree of substitutability. This was Borenstein’s (1992, p.68) insight: he was critic about 
privatization of airports because, “without competition from other airports, an operator’s profits 
would probably be maximized by permitting dominance of the airport by a single carrier and 
then extracting the carrier’s rents with high facility fees”. In this model, however, airport 
domination by a single airline is not necessarily harmful. Social welfare may actually increase 
because, for N>1, it is still true that the congestion externality is internalized and that there is no 
competition, as with monopoly, but a monopoly offers a frequency even higher than the 
frequency offered by each airline in the coordinated case, reducing schedule delay cost.  
 
When airports are relatively indifferent between N=1 or higher, the implementation problems 
mentioned before may play a role. In the case of collaboration between airport and airlines, it 
may be easier for the airports to coordinate actions with only one airline, but it may be also true 
that this could increase the airline’s countervailing power. With two-parts tariff, however, 
airports may still prefer to let a single airline dominate even if (24) is slightly positive because 
the pricing rule becomes simpler: (i) airports do not need to estimate the second and third terms 
of the pricing rule (something indeed difficult); (ii) they would need to worry about assessing the 
right fixed fee for only one firm. This shows that recognizing the scope for vertical control in 
airport pricing is important. Two-part tariff is the simplest form of vertical control and even this 
pricing mechanism has important and rather unexplored consequences for the airline market. 
 
We can now turn to comparisons. They are summarized through the following propositions: 
 
Proposition 3: For a given K the JP airports will: (i) induce fewer flights than the W ones (ii) 
Induce more flights than the SPA ones 
 
Thus, for a given capacity, JP airports induce a smaller allocative inefficiency than SPA airports, 
showing that the proposal of increased collaboration does improve things. How strong this 
allocative inefficiency is cannot be unveiled until a parameterization is chosen; however, it can 
be easily pictured that it may not be small since in this case competition downstream is absent 
while in the public case, market power downstream is controlled.  
  
Proposition 4: For a given Q, the JP airports will: (i) have the same capacity as W airports (ii) 
Have less capacity than SPA airports. 
 
Proposition 5: As for actual capacities and quantities, JP airports will induce fewer flights and 
will have smaller capacities than W airports.  
 
Hence, if prices and capacities are decided using the incomplete social welfare function (N=1 in 
equation 21), the result will be airports that are too small in terms of both, capacity and traffic. 
As before, whether actual JP capacities are below or above SPA capacities will depend on 
whether the output restriction of SPA airports, with respect to JP, is severe or not. 
 
Next, it has been argued before that a capacity rule such as the one JP airports follow would be 
efficient because it is identical to the public one so, for a given Q, capacity will be set efficiently 
(Oum et al. 2004). The question we ask now is different: do JP airports induce distortions in 
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capacity that go beyond what is induced only by pricing? To analyze this we look for 2nd best 
capacity, maximizing social welfare subject to the restriction of JP pricing. It can be shown that  
 
Proposition 6: The JPT airports undersupply capacity with respect to second best social welfare 
capacities (despite having the same capacity rule). 
 
Before leaving this section, there is a lesson that can be extracted regarding the budget adequacy 
of the public airports, which is that it may be achievable through a fixed fee. Lump-sum transfers 
will not affect marginal decisions of airlines and therefore public airports may use the efficient 
pricing and capacity rules, which may include actually paying airlines to land, and then collect 
the money necessary to cover their expenses through a monthly facility fee. This would be a sort 
of Loeb-Magat mechanism. A less efficient alternative is Ramsey-Boiteaux prices: the Lagrange 
multiplier, which captures the severity of the budget constraint, will balance the charge between 
the efficient price (18) and the profit maximizing price (15), enabling cost recovery. 
 
Independent private airports 
 
In many cases, the idea is to privatize airports independently and not in a system; what would be 
the outcome? We assume first that airports choose linear prices and capacities simultaneously 
(the open-loop case) in a non-cooperative game. We denote this case IPA, for independent 
private airports. Each airport’s program is  
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A necessary condition for existence of equilibria is that C is not too concave, something that has 
been assumed throughout. If this is the case, it can be shown that prices are strategic substitutes. 
We look for symmetric equilibrium. Interest lies on the sum of airport charges, P, rather than 
individual charges. First-order conditions and imposition of symmetry leads to 
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(30) is to be compared with the SPA case in (17); clearly PIPA > PSPA. This was expected: it is the 
result of the horizontal double marginalization problem that arises in oligopoly when outputs are 
complements. In these cases, competition is harmful for social welfare. Capacity rules are the 
same but obviously actual capacities will be different. Hence, independent private airports induce 
fewer flights and have smaller capacities than a system of private airports. From propositions 1 
to 4, we have that:  
- For given K, )()()()( KQKQKQKQ IPASPAJPW >>> .  
- For given Q, we will have that, )()()()( QKQKQKQK IPASPAWJP =<= .  
- For actual capacities and prices, TPTW QQ > , IPASPA QQ > , WJP KK <  and SPAIPA KK < . 
 
In the closed-loop game, where airports first choose capacities (simultaneously) and then prices, 
airports over-invest in capacity par rapport to the open loop. Qualitatively (a full derivation is in 
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the appendix), what happens is that, in the three stage game, investment in capacity makes an 
airport tough: it leads to an own price increase, which hurts the other airport. Since in addition 
prices are strategic substitutes, increasing capacity increases own profits. Using the terminology 
of Fudenberg and Tirole (1984), airports over-invest in capacity following top-dog strategies. 
This leads to higher prices than in the open loop, but the overall effect on traffic is unclear. 
 
What if the independent private airports collaborate with the airlines? In this case, the relevant 
problem is each airport maximizing its profit plus the profits of airlines, given that the other 
airport is doing the same. The outcome of this is the same as if airports, individually, charge two 
part tariffs (in an open-loop setting). We denote this case IJP. Solving the game, we get the 
following pricing and capacity rules  
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Jointly, individual airports using two part tariffs or collaborating with airlines charge more than a 
system of private airports using two-part tariffs or collaborating with airlines (except when N=1). 
The horizontal double marginalization also arises here: each airport tries to correct externalities 
on their own and, as a result, they jointly overcharge for congestion and the business stealing 
effect. Capacity rules on the other hand are as in JP, therefore comparisons between this case and 
the JP case is analogous to the comparison between JP and W. Finally, whether there is over or 
under-investment in the close-loop cases cannot be determined analytically.  
 
NUMERICAL SIMULATIONS 
 
The need for numerical simulations arises from two facts; first, that in some cases comparative 
statics and analytical comparisons were not conclusive, second, that even when analytical results 
were obtainable, they were necessarily qualitative. For example, JP capacities and prices are 
below W ones, but by how much? We resorted to simulation to shed light on these types of 
questions. We used the parameter values in table 1. 
 

Table 1: Parameter values for the numerical simulation 
 

Demand  Airlines  Airports 
α 40  A 2000  S 100  r 10000 

β 3000  B 0.15  N 1 to 10  C’ 2000 

γ 4  E 0.13  c 36000    

 
For the schedule delay cost, it was assumed that assumptions (a) and (b) in the airline market 
Section hold, so that the schedule delay cost function was defined by γ and η ; we imposed η =1. 
We considered a constant airport operational marginal cost and looked into both, variable-
capacity and fixed-capacity cases; the latter, in order to better see whether the argument that says 
that allocative inefficiency would be small with privatization holds or not. The fixed capacity 
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was set at the socially optimal level but choosing it otherwise did not change the qualitative 
conclusions. For independent airports (IPA and IJP cases), we looked into open-loop games. It 
was not our intention to portray real aviation cases with these parameters but, rather, to obtain 
insights about what are the consequences of different ownership and pricing schemes. We did 
try, however, to be as reasonable as possible with the parameterization, by drawing data and 
values from other studies.10 Previous results in the literature (discussed below) confirmed the 
plausibility of the parameterization. 
 
We now summarize the main insights gained from the numerical simulation.  
1. We confirmed that second order conditions hold in all cases. 
2. In the system of private airports case (SPA), Q, K and the delays increased with N. Airports 

profits increased with N as analytically showed, but social welfare also did. P was fairly large 
in all cases and way above marginal cost, but this is on line with a previous empirical result 
by Morrison and Winston (1989).11 

2. For public airports (W), Q and K increased with N but delays decreased. P increased with N: 
as N grows, the congestion effect started dominating the market power effect. The subsidies 
required when N is small are large but are consistent with (smaller than) Pels and Verhoef 
(2004) results. We also found that SW increased with N: differentiation dominated the 
schedule delay cost effect in equation (20). When homogeneity was increased, the result 
reversed as explained.  

3. Regarding the JP case, Q and K increased with N while delays decreased. P increased with N: 
as N grows, both the uninternalized congestion and the business stealing effects are more 
important, and they were not countervailed by changes in capacity. When N=1, the monopoly 
airline perfectly internalizes congestion and it obviously produces at the profit maximizing 
level so there was no need for corrections from the part of the airports: P was thus equal to 
marginal cost. Joint profits increased with N: differentiation dominated the schedule delay 
cost effect in equation (24). More homogeneity though, reversed the result, making it better 
for the airports to let a single airline dominate. This was not harmful for society however. 

4. Actual SPA capacities and quantity were way below social welfare ones. For example, for 
N=3, we found Q SPA = 36, K SPA = 45,  while Q W = 101 and K W = 110. Social welfare 
decreased by 44%. This was confirmed by the fixed-capacity simulations. The main insight 
here is that the allocative inefficiency of private airports, if capacity is exogenously decided, 
is by no mean small. The argument was that price elasticities of demand are low, but the 
problem with that assertion is that it assumed the elasticity is constant. Observed elasticities 
however, are not the elasticities that would arise under private (unregulated) ownership, or 
with the efficient prices derived in (21) because efficient prices have not been the rule. In 
fact, it is true that the price elasticity of demand when P is equal only to marginal cost is 
fairly low (below 0.1 in absolute value) but, still, the allocative inefficiency is very strong.  

5. Comparisons between the SPA and the JP cases were not analytically simple. We found that, 
in general, JP airports are less harmful for social welfare than SPA airports. For example for 
N=3, we found Q JP = 50, K JP = 56, and a decrease in social welfare of 27% (compare to 
point 4). JP got closer to SPA the larger the N though, because in the JP case, competition 
downstream is destroyed for every N while in SPA it is not. Now, although these findings 
support the idea that collaboration between airlines and a system of private airports leads to a 
better outcome, it would be adventurous, to say the least, to conclude that with privatization 
and collaboration –or strategic agreements– between airlines and airports, regulation 
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becomes unnecessary. If anything, the outcome is closer to private unregulated airports rather 
than optimal ones.  

4. When comparing delays of SPA and W airports, we found that delays were smaller in the 
private case. This issues a warning: congestion has been one of the main drivers of research 
in this area and proponents of privatization have argued that private airports would charge 
efficient congestion and peak load prices and would respond to market incentives for 
expansion. If one measures the result of privatization only by its effects on congestion, 
privatization may appear as a better idea than it actually is. Despite the smaller delays, we 
have seen that the private airports themselves would be substantially smaller both in terms of 
traffic and capacity. More importantly, social welfare would be substantially smaller. JP 
airports on the other hand, would have larger delays than the public airports. 

7. When airports are privatized individually (IPA and IJP cases), the horizontal double 
marginalization problems visibly arose. For N=3, we found Q IPA = 19, K IPA = 26, and a 
decrease in social welfare of 67%. 

8. Regarding social welfare second best capacities, when N=3, if public airports were forced to 
price as SPA, they would increase capacity from 45 to 59, which would lead to a traffic of 41 
instead of 36. Second best capacity would still be far away from the first best capacity 
though, which was 109.6. Hence, SPA does induce an extra distortion: given that their 
restriction of output is severe, they undersupply capacity with respect to the second best.  

9. What about budget adequacy of public airports? This has been an important issue in the 
literature. We argued before that Ramsey-Boiteaux prices may not be necessary because 
fixed fees may be used. What the simulation showed, in all cases, is that although airports 
had large deficits, airlines had large profits such that joints profits were actually positive. 
Thus, achieving budget adequacy through fixed fees may be possible, and would depend on 
the value of airports’ fixed costs. 

10. Finally, the insights did not qualitatively change with changes in the value of the parameters.   
 
FINAL COMMENTS 
 
Privatization of airports has been argued for on the grounds that private airports would 
implement more efficient congestion and peak-load prices, and would have better incentives to 
invest in capacity. Privatized airports have been subject to economic regulation though, out of 
the concern that they would exert market power. But this has been changing. It has been argued 
that regulation may be unnecessary because a private unregulated airport would not induce large 
allocative inefficiencies since price elasticities are low, because potential collaboration between 
airlines and airports –or, alternatively, airlines countervailing power– would put downward 
pressure on market power, and because concession revenues would induce the airports to charge 
less on the aeronautical side. The aim of this paper was to build an analytical model where these 
ideas could be tested and other insights gained, since most of the literature on airport 
privatization has been essentially descriptive.  
 
A vertical setting was used to analyze airport privatization, both analytically and numerically. In 
the model, airports are input providers for the downstream airline market, in which airlines take 
airport prices and capacities as given. Our airline oligopoly model expanded on previous models 
on three aspects: it featured demand differentiation, schedule delay cost was included in the full 
price perceived by passengers, and had a particular emphasis on the importance of the number of 
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airlines in the market. It was shown that these aspects have an important role on the incentives an 
airport has with respect to the dominance by a single airline. At the airport level, the results 
showed a rather unattractive picture for privatization. First, the idea that low price elasticities of 
demand for airports would induce small allocative inefficiency failed to take into account the fact 
that observed elasticities may be poor forecasters of elasticities in other settings, and that 
capacity would be chosen by a private airport in a different way than a public airport. Our results 
showed that private airports would be much smaller than efficient public airports in terms of both 
traffic and capacities, which was reflected in important deadweight losses. Second, the 
arguments that airlines countervailing power or increased cooperation between airlines and 
airports may make regulation unnecessary are, most likely, overstated. The benchmark of 
maximization of joint profits showed, on one hand, that airports exerting vertical control on 
airlines (two-part tariffs in this model is enough) leads to the same outcome. More importantly, 
while the vertical double-marginalization problem is solved and the incentives for investment in 
capacities are better aligned, competition at the airline level is destroyed. So, while the outcome 
is indeed better in terms of traffic, capacities and social welfare, it is still closer to the pure 
private case than to the public one. It seems bold to conclude from here then, that regulation is 
unnecessary, especially because any implementation problem, which would only worsen the 
outcome, was assumed away. Also, it was shown that things deteriorate further when 
privatization is done on an airport by airport basis rather than in a system, because airports’ 
demand complementarities induce horizontal double marginalization problems. These arise with 
simple linear prices, two-part tariffs, and when airports strategically collaborate with airlines.  
Finally, we note that our model and its results are applicable to many other cases such as other 
transportation terminal (seaports; container terminals), railroad tracks or any vertical setting 
where upstream quality (here measured by capacity) matters. 
 
We realize that the model presented can be seen as the worst case scenario, social welfare wise, 
for private airports: the two airports have demands that are perfect complements. Real 
competition between airports can emerge in two ways though. First, there may be Geographic 
Competition; airports in the same city area –such as the three San Francisco Bay area airports–
compete for consumers in the same origin. Second, there may be competition for connecting 
passengers. When there is a network of airports (three or more distinct origin-destinations pairs), 
airlines can partly offset airports’ market power through routing, something that would be taken 
into account by private airports when making decisions. Modeling these two types of 
competition seems to us the most important directions for future research, albeit they are 
complex ones 
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ENDNOTES 
 

1 For a list of papers that discuss country-specific experiences with regulation see Oum et al. (2004). 
2 For space reasons, propositions will be presented without proofs. Also some derivations and results have been 

omitted. Details are from the author. 
3 These assumptions are consistent with Pels and Verhoef (2004) and are, in fact, a generalization of Brueckner 

(2002) and Raffarin (2004), who consider a single airport. Zhang and Zhang (2003) and Oum et al. (2004), also 
consider an airport in isolation. 

4 Schedule delay cost represents the monetary value of the time between the passenger’s desired departure time 
and the actual departure time and it was first introduced by Douglas and Miller (1974). Morrison and Winston 
(1989) empirically measured it.  

5 This function is discussed in Horonjeff and McKelvey (1983) and was used by Morrison (1987), Zhang and 
Zhang (1997) and Oum et al. (2004). Pels and Verhoef (2004) and Raffarin (2004) used functions linear in traffic. 

6 See e.g. Oum et al. (1995), Brueckner (2002), and Pels and Verhoef (2004).  
7 This assumption was also made by Brueckner (2002) and Pels and Verhoef (2004). A variable proportions case 

arise if, before a change in airport charges, airlines decide to change S (aircraft size, load factor or both). 
8 We restrict attention to P without loss of generality. Any later division of P into its components does not 

change the value of the expressions in (11).   
9 In the airport pricing literature that considers the vertical relation between airports and airlines, airports profits 

are usually not considered in the social welfare function (see e.g. Brueckner, 2002; Pels and Verhoef, 2004). 
10 The values of some of the parameter may be justified as follows: For α, Morrison and Winston (1989, p. 90) 

empirically found a value of $45.55 an hour in 1988 dollars; for γ, they found a value of $2.98 an hour in 1983 
dollars (p. 66). For β, Morrison (1987, p. 51 footnote 20), finds that the hourly extra cost for an aircraft due to delays 
is approximately $1,700 (resulting from 3,484 – 18*100) in 1980 dollars. For S, recall that it reflects the product 
between aircraft size and load factor. In North America, the average plane size in 2000 was 159 (see Swan 2002, 
table 2); considering in addition an average load factor of 65% (see Oum and Yu, 1997, p.33) we obtain a value for 
S of  103.35. Regarding airlines’ operational per flight cost c, Brander and Zhang (1990) proposed the following 
formula for the marginal cost per passenger in a direct connection: DAFLDcpm θ−)( ; where cpm is the cost per 
passenger-mile, D is the origin-destination distance, AFL is the average flight length of the airline and θ is the cost 
sensitivity to distance. The following were the average values for American and United Airlines in the period 1981-
1988 (see Oum et al., 1993): cpm=$0.12/pax/mile, AFL=775 miles and θ=-0.43. If we use AFL=800, cpm=$0.20 and 
D=1000 (e.g. Chicago-Austin), and multiply the result by 2S to reflect the operational cost of a return flight, we 
obtain a value for c of $36,340. 

11 This, despite the fact that they used a different delay function (theirs was estimated and homogenous of degree 
one on Q and K), and that their airport’s demand was actually estimated. 


