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Abstract 
 
Economists have long approached the airport congestion problem by calling for the use of the 
price mechanism, under which landing fees are based on a flight’s contribution to congestion. 
In this paper we extend the existing work on airport congestion pricing, which does not 
consider inter-temporal pricing across different travel periods, to peak-load pricing (PLP) and 
analyze both price level and price structure (peak vs. non-peak). A major innovation of our 
analysis lies in the basic model structure used, in which an airport makes its capacity and 
price decisions prior to the airlines’ decisions. This vertical structure gives rise to sequential 
PLP: the PLP schemes implemented by the downstream airlines induce a different periodic 
demand for the upstream airport, with the shape of that demand depending on the number of 
downstream carriers and the type of competition they exert. The airport then would have an 
incentive to use PLP as well, which in turn affects the downstream firms’ PLP. We carry out 
the analysis for a public airport, for a private airport and for a private airport that has a 
strategic agreement with the airlines. The comparison between private and public airports is 
important because it has been argued that private airports would use efficient peak-load and 
congestion pricing. Our results show that private airports will not only have higher peak and 
off-peak prices (levels), but also have higher price differentials, inducing a quite different 
allocation of flights and passengers to peak and-off peak periods. Further, it may be possible 
that a public airport find it optimal to have a peak price that is lower than the off-peak price. 
Finally, we note that, while there is an extensive body of literature on PLP, the case of 
sequential peak-load pricing has yet been analyzed. Since this sequential structure is highly 
relevant to many other industries (such as telecommunications), our results not only 
contribute to the understanding of airport policy and management, but should be useful for 
other sectors as well. 
 

                                                 
* Contact information: Leonardo Basso, email: basso@sauder.ubc.ca. Phone 1-604-822 0288. Fax: 1-604-822 9574 
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INTRODUCTION 
 
In the last several years airlines and passengers have been suffering from congestion at most 
of the major airports in the world, and air traffic delays have become a major public policy 
issue. Economists have approached airport congestion by calling for the use of the price 
mechanism, under which landing fees are based on a flight’s contribution to congestion. 
Meanwhile, many airports around the world have recently been, or are in the process of being, 
privatized or corporatized. In Canada, for example, airports recently devolved from direct 
Federal control to become autonomous entities, and major airports are now managed by 
private not-for-profit (but subject to cost recovery) corporations. One of the leading 
arguments for airport privatization/corporatization is that private airports would use more 
efficient peak-load and congestion pricing schemes than public airports. This is an important 
issue because, while congestion pricing is desirable from an efficiency point of view, it has 
not really been implemented; the existing landing fees are based primarily on aircraft weight 
(Schank, 2005). 
  
In this paper we extend the existing work on airport congestion pricing, which does not 
consider inter-temporal pricing across different travel periods, to peak-load pricing (PLP) and 
analyze both the price level and price structure (peak vs. non-peak). A major innovation of 
our analysis lies in the basic model structure used, which has strong implications for PLP. 
Here, an airport makes its capacity and price decisions prior to the airlines’ output decisions. 
This vertical structure gives rise to sequential PLP: the PLP schemes implemented by the 
downstream airlines induce a different periodic demand for the upstream airport, with the 
shape of that demand depending on the number of downstream carriers and the type of 
competition they exert. The airport then would have an incentive to use PLP as well, which in 
turn affects the way the downstream firms use PLP.  

 
We carry out the analysis for a public airport that maximizes social welfare, for a private, 
unregulated profit-maximizing airport, and for a private airport that has some sort of strategic 
agreement with the airlines using it. The comparison of the three cases then allows us to shed 
some light on the claim that private airports would use more efficient congestion and peak-
load pricing than public airports, which may have important implications for policy. Our main 
results indicate that private airports will always use PLP, and that they will not only have 
higher peak and off-peak prices (levels), but also have the highest price differential, which 
would induce a quite different allocation of flights and passengers to the peak and-off peak 
periods. On the other hand, it may be possible that a public airport find it optimal to have a 
peak price that is lower than the off-peak price. Finally, an airport with a strategic agreement 
with the airlines may not use PLP; further, its pricing practices would induce in the airline 
market the same outcome as absence of downstream competition. 

 
There is an extensive body of literature on peak-load pricing. The classical papers on peak-
load pricing (Boiteaux 1949, 1960; Steiner 1957; Hirschleifer 1958; Williamson 1966) 
focused on normative rules for pricing a public utility’s non-storable service subject to 
periodic demands. The usual assumptions were: (i) demand is constant within each pricing 
period; (ii) demand in one period is independent of demand in other periods; (iii) constant 
marginal costs; (iv) the length of pricing periods is exogenous; and (v) the number of pricing 
periods is exogenous. Many authors have since contributed to the generalization of PLP 
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results by relaxing one or a group of these assumptions, including Pressman (1970), Panzar 
(1976), Dansby (1978), Craven (1971, 1985), Crew and Kleindorfer (1986, 1991), Gersten 
(1986), De Palma and Lindsey (1998), Laffont and Tirole (2000), Shy (2001) and Calzada 
(2003). However, the case of sequential peak-load pricing, be it for public or private utilities, 
has yet been analyzed. In the telecommunications research, for instance, Laffont and Tirole 
looked at PLP only at the upstream level (the network access charge) whilst Calzada 
considered PLP only at the downstream level.  

 
In the airport research, three empirical models of congestion pricing have been developed, 
namely the standard PLP model (Morrison 1983; Morrison and Winston 1989), the 
deterministic bottleneck model (Vickrey 1969; Arnott et al. 1993), and the stochastic 
bottleneck model (Daniel 1995, 2001). These studies considered PLP only at the airport level. 
Brueckner (2002) and Barbot (2004), on the other hand, investigated PLP only at the airline 
level. Further, most of these studies considered a public airport that maximizes social welfare, 
and none made an assessment of the effects of privatization on price structures. 
 
The paper is organized as follows. In the next Section we set out the basic model. We then 
analyze and characterize the output market equilibrium paying particular attention to the peak 
and off-peak derived demands for airport services. We finally examine the airport’s decisions 
and describe how the airport ownership and airline-airport relationship influence the peak and 
off-peak prices and welfare. The last Section contains concluding remarks.  
 
THE MODEL 
 
Our basic framework follows Brueckner (2002) by employing a two-stage model of airline 
and airport behavior. There are N homogeneous air carriers servicing a congestible airport. In 
the first stage the airport decides on the airport charge P and capacity K, where K is 
continuously adjustable. In the second stage, each carrier chooses its output in terms of the 
number of flights. The situation is depicted in Figure 1. 
 

 
Figure 1: Timing of the game analyzed 

 
There is a continuum of consumers (passengers) labelled by θ and distributed uniformly on 

[ ]θθ ;=Θ . We normalize the number of total consumers to θθ −  so the number of 
passengers with type belonging to ],[ 21 θθ  is directly given by 12 θθ − . Consumers’ utility 
function may be written as )),(,( hh DBxW −θ , where x is a vector of products, )(θhB  denotes 

Passengers 

Airline 1 
Airline 2 
Airline 3 

….. 
Airline N

Airport 

Airport 
capacity 

Charges 
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–for consumer θ– (gross) benefits if he travels in period h (h=p, peak period; h=o, off-peak 
period; h=n, not traveling), and Dh denotes the flight delay associated with travel in period h. 
Note that we have the three cases, namely, peak, off-peak and non-travelling, in the sense that 

0)()()( =>> θθθ nop BBB . This means that, on one hand, if travel was free and without 
congestion, the consumer would always prefer traveling to non-traveling. On the other hand, 
with identical airfares and delays, consumers would always prefer traveling in the peak period 
to traveling in the off-peak period. Thus, peak and off-peak periods are vertically 
differentiated.  

 
As is usual in discrete choice models, we solve consumers’ optimization problem in two 
steps: 

( ){ }
)(..

),(,maxmax
,,

θ

θ

ItxPts

DBxW

hx

hhnophx

≤+⋅

−
∈

     
                                                (1) 

 
where I(θ) is income for consumer θ and th is the airfare in period h. The first maximization 
leads to the conditional Marshallian demands, )),(,)(,(*

hhhx DBtIPx −− θθ . Replacing these 
in W we obtain, )),(,)(,()),(,( *

hhhxhhh DBtIPVDBxW −−≡− θθθ . This is the conditional 
indirect utility function. For simplicity, we assume that Vh is linear and )(θhB  takes the 
simple form hBθ , with Bh being constant. This then leads to: 
 

hhhxh DBtIPV αθθλψ −+−+⋅= ))((                                       (2) 
 
For the second maximization –comparisons of Vh for different h– we focus on the elements 
that determine the discrete choice, obtaining a truncated conditional indirect utility function 
(note that )(θλψ IPx +⋅  plays no role). Dividing by the marginal utility of income, λ, and 
redefining θ and α (which becomes the subjective value of time savings) we then obtain: 
 

hhhh tDBV −−= αθθ )(                                                    (3) 
 

The demand problem we have set is identical to the one that will result if we fix θ but allow 
the value of time α to have a distribution among consumers. One could also argue that θ and 
α are related (Yuen and Zhang, 2005), but we do not do this here. In (3), the flight delay at 
period h is given by: 

)/(
/

),(
hh

hh
hh LQKK

LQ
KQDD

−
==                                                (4) 

 
where Qh is the total number of flights in the period, Lh is the length of the pricing period, and 
K is the airport’s capacity (measured in flights per hour). The functional form (4) was 
previously estimated from steady-state queuing theory (see Lave and DeSalvo 1968; U.S. 
Federal Aviation Administration 1969; Horonjeff and McKelvey, 1983; and Morrison 1987). 
Alternatively, a linear delay function, KQKQD hh /),( δ= , could be used (see e.g. Pels and 
Verhoef, 2004).  
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We first note the following characteristics about the allocations of consumers to periods: (i) if 
consumer θ1 flies, then consumers θ ≥ θ1 fly; (ii) if consumer θ1 does not fly, then consumers 
θ < θ1 do not fly; and (iii) if θ* is indifferent between peak and off-peak traveling, then 
consumers θ ≥ θ* choose the peak and consumers θ < θ* choose the off-peak.1 Hence, if we 
denote θ f the consumer who is indifferent between flying and not flying and θ * the consumer 
who is indifferent between peak and off-peak, (i), (ii) and (iii) above show that, in the case of 
an interior solution, we get θθθθ <<< *f . We assume interior allocations for now but later 
shall find conditions on the parameters for this to be the case. Notice further that, if the value 
of time was the one with a distribution, the results would be reversed in that low-values α 
would travel in the peak, intermediate-values α would travel in the off-peak and high-values 
α would not travel. This is so because people with high value of time, ceteris paribus, are the 
first ones to move towards the less congested period and, if congestion is still too high there, 
to decide not to fly. 

 
To obtain the consumer demands for peak and off-peak in terms of flights, we need 
assumptions about the length of the pricing periods, aircraft size and load factors. We assume: 
(i) Fixed proportions: S = Aircraft Size × Load Factor, is constant and the same across 
carriers; (ii) Lh, the length of the pricing periods, is fixed and exogenously given, and is the 
same for airlines; (iii) Passengers are uniformly allocated within each pricing period, i.e. there 
is no intra-period demand fluctuation; and (iv) Lo is long enough so that 0),( =KQD o  
throughout. Given these assumptions, the demands for the peak and off-peak periods are, 
respectively, *θθ −== SQq pp  and f

oo SQq θθ −== * , where qh is the total number of 
passengers in period h. Thus 

SQ

SQ

o
f

p

−=

−=
*

*

θθ

θθ
                                                      (5) 

 
The final flyer is determined by 0=− oo

f tBθ , whereas the indifferent flyer is determined by 
0)()(* =−−−− oppop ttDBB αθ . From these and (5) we get: 

 
poooopoo SQBSQBBQQt −−= θ),(                                        (6) 

),(),( KQDSQBSQBBQQt pppooppop αθ −−−=                             (7) 
 
Equation (6) is the inverse demand function faced by the airlines for the off-peak period, 
whereas (7) is the inverse demand function for the peak period. Note that the demand 
functions are not linear if D is not. Further, analytical expressions of the cross elasticity of 
demand between peak and off-peak periods can be obtained. 
 
We now turn to the airlines. They have identical cost functions, given by:  
 

[ ]∑
∈

− ++=
oph

hh
i
hh

i
h

i
h

i
A KQDPcQKPQC

,
),(),,,( βQ                             (8) 
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where i
hQ  is the number of airline i’s flights in period h, Ph is the airport charge in period h 

and β is the airline’s extra costs due to congestion. Airlines’ profit functions are: 
 

),,,(),(),,,(
,

KPQCSQQQtKPQ h
i

h
i
h

i
A

oph

i
hpohh

i
h

i
h

i −

∈

− −= ∑ QQφ              (9) 

 
With these functions at hand we have a well-defined airline sub-game, which we analyze and 
characterize in the next Section. 
 
ANALYSIS OF THE OUTPUT-MARKET EQUILIBRIUM 
  
To solve for the sub-game perfect Nash equilibrium, we start with the analysis in stage 2. 
Given the airport’s decisions on capacity and prices, airlines’ first-order conditions are given 
by 0/ =∂∂ i

h
i Qφ . Calculating this, imposing symmetry, i.e. NQQ h

i
h /= , and re-arranging, 

we get: 

0
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          (11) 

 
where QDDQ ∂∂≡ / . A useful equation that is easily obtained from (10) and (11) is: 
 

0)()(
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         (12) 

 
Since (12) depends only on Qp, it implicitly defines ),,,( NKPPQ pop  which is the airport’s 
demand for the peak period. Then, ),,,( NKPPQ poo , the airport’s demand for the off-peak 
period, is obtained from (10). Given the airport demand functions, an analytical expression of 
the cross elasticity of demand between peak and off-peak periods can be obtained. 
 
To characterize the output-market equilibrium, three questions naturally arise: (A) What are 
the conditions on the parameters that guarantee interior solutions, that is θθθθ <<< *f ? 
(B) How do the allocations change with N? In other words, what are the signs of dNd /*θ  
and dNd f /θ ?; and (C) what conditions are needed to have oopp LQLQ // >  and hence 
avoid a “peak reversal”?  A firm peak case is needed given our assumption that 

0),( =KQD o . 
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We answer question (A) through the following proposition (proofs of the propositions are in 
the appendix): 
 
Proposition 1:  
(i) If )(/)( opop BBSPP −<− θ , then the peak period is used, that is θθ <* . 

(ii) If SPcB oo /)( +<θ , then some consumers will not fly, that is θθ >f . 
(iii) If θ  is large enough, then the off-peak period is used, that is fθθ >* . 
 
Part (i) says that the peak period is used if the airport price differential between peak and off-
peak is not too large. Specifically, the per-passenger airport price differential has to be smaller 
than the incremental benefit, for the highest consumer type, of changing from the off-peak to 
the peak. Clearly, when the airport does not practice PLP, the peak is always used. Part (ii) 
says that if θ  is low enough, then some consumers will not fly. In particular, the lowest 
consumer type must have a willingness to pay for off-peak travel that is smaller than the 
airlines’ per-passenger marginal cost for an off-peak flight. Finally, part (iii) implies that 
Brueckner (2002, 2005)’s single crossing property, which imposes that )()( θθ op BB <  for 
small θ values, is not needed to have a non-empty off-peak. This is desirable because that 
property appears contradictory with the idea that the peak and the off-peak are vertically 
differentiated. The proof of part (iii) also reveals that a smaller airport price differential 
between peak and off-peak increases the likelihood of the off-peak been used.2 
 
We now answer question (B) regarding the changes of sub-game equilibrium traffic volumes 
with respect to N: 
 
Proposition 2:  
(i) In the sub-game equilibrium, the number of passengers in the peak period increases with 

N, that is 0/* <dNdθ . 
(ii)  In the sub-game equilibrium, ( ))1(// +< NNQdNdQ pp . 
(iii)In the sub-game equilibrium, the total number of passengers traveling increases with N, 

that is 0/ <dNd fθ . 
(iv) In the sub-game equilibrium, if the off-peak period is used for all N (proposition 1.3), then 

the number of passengers using the off-peak period increase with N. 
 
Note that (ii) shows that the (positive) elasticity of total peak demand with respect to the 
number of airlines, )/)(/( ppp QNdNdQ−≡ε  is such that )1/(1 +< Npε , and becomes 
smaller and smaller as N gets larger. 
 
As for the possibility of a peak-reversal, i.e. oopp LQLQ // < , it is pretty obvious that this 
may occur only if two things happen simultaneously; first, a large airport price differential 
between peak and off-peak; second, Lp and Lo being similar. The maintained assumption is 
that Lo>>Lp, which is enough to avoid a peak reversal case and therefore to make the 
assumption 0),( =KQD o  reasonable. See the appendix for more details. 
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FARE AND WELFARE COMPARISONS IN THE OUTPUT MARKET  
 
Peak and Off-peak Fares 
 
The final ingredient to characterize the sub-game equilibrium in the output market has to do 
with the important issue of peak and off-peak equilibrium air fares: how do they compare? 
We now show that, if the airport charges uniform prices or if the airport peak price is higher 
( op PP ≥ ), airfares are, as expected, higher during the peak. From (6) and (7) we get that 

 
 ),()()( KQDBBSQBBttt poppopopop αθ −−−−=Δ=− −                       (13) 

 
From the equilibrium condition (12), we obtain an expression for  )( op BB −θ  that we 
replace in (13). Hence, in the sub-game oligopoly equilibrium, the difference between peak 
and off-peak fares is given by 

 

 

N
SBB

QQD
N

Q
QD

N
Q

S

QD
SS

PP
t

op
ppQ

p
pQ

p

p
op

op

)(
)()(

)(
)(

−
+++

+
−

=Δ −

αβ

β

                          

eq game-sub
oligopoly

                 (14) 

 
From here it is clear that if op PP ≥ , then 0>Δ −opt . To further interpret (14), first note that 

dNtd op /−Δ  is negative; just differentiate (13) and recall that equilibrium Qp and Qo increase 
with N. This implies that a monopoly airline would have the largest air fare differential. Since 

dNdto /  is also negative (see equation 6), the lower the N, the larger the off-peak air fare. 
These two observations are consistent with what we have already showed in proposition 2. 
Next, it can be seen that for N very large, the air fare differential approaches the difference 
between an airline’s peak and off-peak per-passenger average cost (first and second term on 
the RHS). When there is an oligopoly, however, three extra terms are added. The third term in 
the RHS is the cost of extra congestion on an airline’s own flights and caused by an extra 
passenger flying in the peak. Thus, the first three terms represent the difference between an 
airline’s peak and off-peak marginal costs. The fourth term represents the money value of 
extra congestion to an airline’s passengers when a new passenger chooses the peak. And the 
fifth term is a mark-up that arises from exploitation of market power. Hence, as it is now 
known, airlines in oligopoly only internalize (charge for) the congestion they impose on their 
own flights, and which has two components: extra costs for the airline, and extra delays for its 
passengers (Brueckner, 2002). When there is a monopoly airline, congestion is perfectly 
internalized but market power is at its ceiling. When N is large, congestion is imperfectly 
internalized but the market power mark-up is small.  
 
Social Welfare Comparison 
 
We now look at the case when a social planner maximizes total surplus in the sub-game. This 
will be useful to better understand airport’s pricing later. We first need a measure of consumer 
surplus (CS). Given the linearity of the conditional indirect utility function, CS is given by: 
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[ ] [ ]∫∫ −+−−=
*

*

)(),()(),(),(
θ

θ

θ

θ

θθθθθαθ
f

dfQQtBdfQQtKQDBCS opooopppp         (15) 

 
Using (6) and (7) for to and tp, solving the integrals, replacing *θ  and fθ  with (5) and re-
arranging, we finally get: 

( )22
2

2
2 pppoooo QBQQBQBSCS ++=                                        (16) 

 
We are then interested in maximizing ∑ =

+
N

i
iCS

1
φ . First-order conditions and imposition of 

symmetry lead to two equations, analogous to (10) and (11), which characterize the optimum. 
Subtracting them we get 
 

( ) 0)()()()()()( 2 =−−−++++− opoppQppopp BBSPPQDQQDSSBBQ θβα   (17) 
 
With this condition, we can find what the efficient difference between peak and off-peak air 
fares is. Using (17) to obtain a new expression for )( op BB −θ  to replace in (13), we get: 
 

)()()(
)(

pQpp
op

op QDQ
S

SQD
SS

PP
t βαβ +

++
−

=Δ −
eq game-sub

optimal                  (18) 

 
It is easy to see here that the optimal air fare differential is equal to the difference between an 
airlines peak and off-peak average costs (first and second term on the RHS), plus all the 
external costs associated to a new flyer in the peak, i.e. the extra congestion cost of all airlines 
and passengers, not only that of the airline that is carrying the new peak passenger.   
 
We can then calculate the difference between oligopoly and optimal air fare differentials: 
 

)()()1()(
pQp

op
popop QDQ

S
S

N
N

N
SBB

Qtt βα +−
−

−
=Δ−Δ −−

eq game-sub
optimal

eq game-sub
oligopoly      (19) 

 
This is obviously not signed a priori. It will be positive for small values of N but negative for 
larger values of N. (19) implies that a monopoly airline has an air fare differential that is too 
large, while a more competitive market has a price differential that is too small. Note that, 
although there may exist an N that exactly induces the right air fare differential, it would not 
reproduce the first best because market power distorts the value of t0 away from the optimum.  
 
Sub-game Cartel: Colluding Airlines 
 
This case will also be useful to better understand the airport pricing later. Here, we are 
interested in maximizing ∑ =

N

i
i

1
φ . The first-order conditions and imposition of symmetry lead 

to two equations, analogous to (10) and (11), which characterize the optimum. Subtracting 
them we obtain 
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( ) 0)()()()()()(2 2 =−−−++++− opoppQppopp BBSPPQDQQDSSBBQ θβα   (20) 
 
With this condition, we can find the difference between peak and off-peak airfares in this 
cartel case. Using (20) to obtain a new expression for )( op BB −θ  to replace in (13), we get: 
 

SBBQQDQ
S

SQD
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PP
t opppQpp

op
op )()()()(

)(
−+

+
++

−
=Δ −

βαβ
eq game-sub

cartel          (21) 

 
Here, the airfare differential is equal to the difference between an airline’s peak and off-peak 
average costs (the first and second terms on the RHS), plus all the external costs associated to 
a new flyer in the peak. The cartel, then, as in the social welfare case, internalizes the 
congestion costs of all carriers and passengers.  Here however, there is a fourth term which 
increases the difference. This term has to do with the “business stealing” effect: since 
oligopoly airlines behave in non-cooperative fashion, they produce too much with respect to 
the optimum for the airlines as a whole. This is so because they fail to consider the profits lost 
by the other airlines when they increase output, depressing prices. In the cartel case then, the 
air differential has to be larger; the cartel, as a monopoly, is interested in having a less used 
peak. In fact, it is clear that the cartel airfare differential is identical to the monopoly’s; see 
(14) and impose N=1. Cartel and monopoly’s traffic volumes will differ though since cost 
functions are convex and not flat. 
 
We can then calculate the difference between oligopoly and cartel airfare differentials: 
 

N
NBBS

QQDQ
S

S
N

Ntt op
ppQpopop

)1)((
)()()1( −−

−
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−=Δ−Δ −−
βα

carteloligopoly
      (22) 

 
This is always negative –except when N=1– and its derivative with respect to N is negative as 
well, implying that the difference increases with N. This makes sense: the price differential of 
the oligopoly is insufficiently large from the cartel’s point of view, and this problem worsens 
the looser the oligopoly is (i.e. the larger the N). 
 
 
AIRPORT CHARGE COMPARISONS 
 
To be able to perform these comparisons, we need a good idea about the shapes of the 
airport’s demands. Comparative statics on (10) and (12) help us with this. For example, we 
can obtain: 
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Similarly, we can obtain 
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    (24) 

 
We can see that, ceteris paribus, the airport peak price does not influence total traffic but only 
the allocation to peak and off-peak periods. The off-peak price then determines the total 
amount of traffic, while the difference between Pp and Po determines the partition of that 
traffic into the two periods. Capacity does not influence total traffic either, but only the 
allocation to peak and off-peak periods. It does this just in the opposite way as the peak-price, 
that is, larger capacity increases peak traffic.  
 
We have shown that the airport decisions, namely, P and K, can influence subsequent output 
competition. When making its decisions, therefore, the airport will take the second-stage 
equilibrium outputs into account. These decisions may in reality be set by a private, profit-
maximizing airport operator or a welfare-maximizing regulatory authority. Consequently, the 
objective of an airport may be to maximize profit, or to maximize social welfare. In what 
follows, we compare airport pricing and capacity investment for these two airport types. In 
addition, we consider an airport that has some sort of strategic agreement with the airlines 
using it. For the sake of simplicity of exposition, we consider here that capacity is fixed. 
Results with variable capacity are available for a congestion pricing model (see Basso, 2005).  
 
Private Airport 
 
Recall that from 0=Ωo  in (10) and 0=Ω+Ω− op  in (12), we implicitly obtained airport’s 
demands for the peak and off-peak periods, ),,,( NKPPQ poo  and ),,,( NKPPQ pop . A private 
airport will then maximize profits, rKQQCQPQPNKPP poppoopo −+−+= )(),,,(π , by 
choosing Pp, Po and K. Note that we assumed, as it is usual in the literature, that operational 
and capital costs are separable. Also, we assumed constant operational marginal cost for the 
airport, as evidence show that economies of scale are exhausted at fairly low levels of traffic 
(Doganis, 1992).  First-order conditions lead to: 
 

ooo

popp

oo

o
o Q

QCPP
CP

ε
ε

ε

ππ
π )( −

+=−                                         (25) 

ppp
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pp

p
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+=−                                         (26) 
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where 
o

o

o

o
oo Q

P
P
Q

∂
∂

−=ε  is the own price elasticity, 
p

o

o

p
po Q

P
P
Q

∂

∂
=ε  is a cross-price elasticity, 

and ppε  and opε  are defined analogously. Since 0/ >∂∂ op PQ  and 0/ >∂∂ po PQ  –see (24)– 
both opε  and poε  are positive, implying that prices are higher than if peak and off-peak 
charges were chosen independently. If that was the case, mark-ups over marginal costs would 
be the usual, i.e. proportional to the inverse of own price elasticity. This is a well-known 
result for the case of multiproduct monopolies that produce substitutes. 
 
We can simplify the pricing equations and show that ππ

op PP > . To do this, replace the 
elasticities’ definitions and simplify, use the fact that pppo PQPQ ∂−∂=∂∂ //  and then use 
equation (23). We get 

N
NBSQ

N
NBSQ

CP opoo
o

)1()1( 22 +
+

+
+=π                                     (27) 

[ ]
N

NSBBQ
KQDQKQDNQ

N
SPP opp

pQQppQpop

)1()(
),(),()1()( 2 +−

+++
+

=−
βαππ   (28) 

 
Hence, in effect, the private airport charges more during the peak period, and this is true for 
any N : as we argued in the introduction, the private airport has an incentive to use peak-load 
pricing. Note also that the off-peak price, which determines total traffic, is above marginal 
cost as a result of monopoly power from the part of the airport. There is a double 
marginalization problem then, which is typical of uncoordinated vertical structures.  
 
Lastly, 0/ >∂∂⋅==++= ∑∑ NQPKPdNd hhNNNKhh

πππ πππππ , i.e., the private airport 
prefers a large N. 
 
Public Airport 
 
The public airport chooses Pp, Po and K to maximize a social welfare function, which is given 
by Φ++−+−+= CSrKQQCQPQPNKPPSW poppoopo )(),,,( , where CS is consumer 
surplus (see equations 16 and 17), and Φ represents sub-game equilibrium total profits for the 
airline industry as a whole in oligopoly. Since the downstream equilibrium is symmetric, 

( )KPNKPQNKPQKPQ hhphoh
i

h
i
h

i ,),,,(),,,(),,,( 1φφ =−Q  are airlines’ equilibrium profits. 

We can then easily calculate Φ as ),,(),,( 1 NKPNNKP hh φ⋅=Φ , that is 
 

( )
)()(

)()(2)(),,( 222

ppoo

pppppoooooopph

PcQPcQ

QDQSQBQQBQBSQBQBSNKP

+−+−

+−++−+=Φ

                       

βαθ
   (29) 

 
We do not include a budget constraint in the public airport problem, noting that fixed fees 
would solve the problem of budget adequacy. If lump sum transfers are not feasible, then 
Ramsey-Boiteaux prices should be considered (see Basso, 2005 for more discussion on this).  
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Replacing CS from (17) and Φ from (28) in the social welfare function, we obtain 
 

)()(2/)2(

)()()(
222

pppppoooo

opopoopp

QDQSQBQQBQBS

KrQQCQQcQBQBSSW

βα

θ

+−++−

−+−+−+=

                 
            (30) 

 
Derivation of pricing formulas follows from first-order conditions. Using equations (10), (12) 
and (24) we get: 

N
BSQ

N
BSQ

CP opooW
o

22

−−=                                                  (31) 

N
BBSQ

KQDQS
N

NPP opp
pQp

W
o

W
p

)(
),()()1( 2 −

−+
−

=− βα                          (32) 

 
The interpretation of the public airport’s pricing rules is as follows: 
- The public airport pricing can be seen as decided in two phases; first, it induces the right 

amount of total traffic by choosing a W
oP  below the airport’s marginal cost. This is needed 

because, in the airline market, market power induces allocative inefficiencies. The public 
airport fixes this inefficiency by subsidizing the airlines and hence lowering their marginal 
costs in the off-peak. The exact amount of the subsidy depends on the extent of the market 
power, which is why it depends on N.  

- In the second phase, and once the total traffic is set to its optimal level, the public airport 
chooses exactly the price differential that will induce the optimal air fare differential 
downstream; this is apparent from equations (19) and (32). In this way, the airport induces 
the optimal allocation to peak and off peak periods. In sum, the airport manages to obtain 
a first-best outcome.  

- As explained for equation (19), the price differential is not signed a priori; hence, it may 
happen that the airport charge is smaller in the peak! The price differential will be 
negative for small N. This is so because a tight airline oligopoly has an air fare differential 
that is too large due to extreme market power, while congestion is reasonably internalized; 
the airport price differential then is driven by the market power effect (second term). 
When N is large, the airport price differential will be positive. This is so because a loose 
oligopoly would have an air fare differential that is too small due to uninternalized 
congestion, while market power is weak; the airport price differential then is driven by the 
congestion effect (first term).   

- Note that, even if the airport peak price is below the off-peak price, the air fare differential 
downstream will always be positive because the airport price differential is calculated to 
exactly generate the socially optimal air fare differential, which as discussed in (18), will 
be given by 0/)()(/)( >++ SQDQSSQD pQpp βαβ . 

- Brueckner (2002) identified the first term in (36) as the toll per flight that should be 
charged by the airport authorities to address the problem of uninternalized congestion. 
Pels and Verhoef (2004) and Basso (2005) pointed out that the optimal toll should also 
include the second term, the market power effect3; they did this however, using models of 
congestion pricing (one period) and not peak load-pricing, as here and in Brueckner 
(2002). This is important because a toll equal to the two terms, congestion and market 
power effects, will not be optimal unless charged on top of the optimal charge in the off-
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peak, which is not marginal cost. In other words, only analyzing the toll that should be 
charged during peak hours is only a partial view of the problem 

- Note that if lump sum transfers (two-part tariffs) are unfeasible, the pricing rules 
previously discussed may lead to airport’s budget inadequacy. If budget adequacy has to 
be ensured but lump sums are not feasible, then the first best may not be attainable: 
marginal prices would have to do both, align incentives and transfer surplus, making the 
airport fall short of “control instruments” (Mathewson and Winter, 1984). 

 
In this model, the public airport is indifferent between values of N since 

0// =∂∂= NSWdNdSW . Basso (2005) showed that if airlines are not homogenous or if 
passengers were affected by schedule delay cost, this would not be the case. Also, if budget 
adequacy is a problem, a larger N may be preferred as W

oP  gets closer to marginal cost, and 
the peak price exceeds the off-peak price. 
 
Airport-Airline Joint Profit Maximization 
 
The reasons why it is interesting to look at this case are two-fold: on one hand, a simple 
pricing mechanism, two-part tariff, is enough for the joint maximization of profits outcome to 
arise. On the other hand, it has been often argued that more strategic collaboration between 
airlines and airports may make price regulation unnecessary. The analysis of joint 
maximization of profits then works as a benchmark case. See Basso (2005) for a more 
detailed discussions on this issue. 
 
The problem faced by this airport is: Φ+π

KPP po ,,
max . Using Φ in (28), this can be re-written as: 
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Derivation of pricing formulas follows from first-order conditions. Using equations (10), (12) 
and (24) we get: 
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The interpretation of the joint profits airport’s pricing rules is as follows: 
- As before, this airport can be seen as deciding its prices in two phases; first, it induces a 

contraction of total traffic by choosing a JP
oP  above marginal cost. It does this because in 

the airline market, failure of coordination among the airlines induces them too produce too 
much with respect to what is best for them as a whole. The amount of excess production 
depends on how tight the oligopoly is, which is why the off-peak mark-up decreases with 
N. In particular, when the airline market is monopolized, the airport does not need the 
mark-up at all.  
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- In the second phase, the airport chooses exactly the (non negative) price differential that 
will induce the cartel air fare differential downstream; this is apparent from equations (21) 
and (34). In this way, the airport induces the allocation to peak and off- peak periods that 
maximizes airlines profits.  

- In sum, the airport manages to obtain the cartel outcome, destroying airline competition. 
This result, which was obtained by Basso (2005) in a congestion pricing setting (without 
peak-load pricing), has different intuitions depending on why the maximization of joint 
profits was the relevant case. With two-part tariffs, the private airports use the variable 
prices, peak and off-peak, to destroy competition downstream in order to maximize the 
profits of airlines, which are later captured through the fixed fee. When the max joint 
profits case arises because of collaboration between airlines and airports, what happens is 
that airlines would like to collude in order to increase profits, but fail to do so because of 
the incentives to defect on any possible agreement. What they manage to de here, 
however, is to ‘capture’ an input provider to run the cartel for them. By altering the price 
of the input, and therefore the downstream marginal costs, in both the peak and the off-
peak periods, the input provider induces both the collusion level of total output and the 
right allocation of consumers to the peak and the off-peak. The upstream firm is rewarded 
with part of the profits, which is where bargaining power enters the picture. 

- The airport pricing rules take into account both, the congestion externality and the 
business-stealing effect at both periods: the airport’s price differential has two parts, as in 
equation (21).4 Note that when N=1, there is no business-stealing effect and congestion is 
perfectly internalized by the monopolist; consequently, the two terms vanish: the airport 
will not use peak-load pricing!  

- Despite the fact that the result is as if airlines collude, this is not necessarily worse for 
social welfare than a private airport charging linear prices as before because, here, two 
other harmful externalities are dealt with, the vertical double marginalization and the 
congestion externality.  

 
Comparisons of Prices for Given Capacity 
 
In this subsection, we compare the prices that each type of airport would set. By looking at 
equations (27) and (28) and (31) to (34), and defining opop PPP −≡Δ −  we can enounce the 
following proposition (the proof is direct from the pricing rules). 
 
Proposition 3: For a fixed capacity, the airport prices fulfill  
(i) π

o
JP

o
W

o PPP <<  
(ii) π

op
JP

op
W

op PPP −−− Δ<Δ<Δ . 
 
What part (i) shows is that the public airport will induce the largest amount of total traffic, 
whilst the private airport will induce the smallest. That is, a private airport induces allocative 
inefficiencies. Strategic collaboration between airlines and the airport smoothes the problem, 
but recall that downstream airfares will be as if airlines collude. Additionally, part (ii) shows 
that the relative allocation of passengers to peak and off-peak periods are different. Since the 
public airport has the smallest price differential, it will have the largest ratio of peak to off-
peak traffic. Conversely, a private airport will have the smallest ratio. With a private airport, 
the peak would be underused not only because the airport contracts total traffic but also 
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because its price differential is too large. Again, airports with strategic agreements with 
airlines represent a middle-of-the-road case.  
 
CONCLUDING REMARKS 
 
In this paper, we have analyzed the sequential peak-load pricing problem that arises because 
airports are input providers for a final market that faces a periodic demand. We have analyzed 
this PLP problem for a private unregulated airport, for a public airport maximizing social 
welfare, and for an airport that strategically collaborates with the airlines and hence 
maximizes joint profits. We found that, for a fixed capacity, privatization would not induce 
efficient peak-load pricing structures as it has been argued in the literature. While a private 
airport always has an incentive to use PLP –higher airport charge in the peak–, even when the 
airlines use PLP and irrespective of the number of airlines servicing the airport, the pricing 
structure the private airport chooses would induce insufficient total traffic and a ratio of peak 
to off-peak traffic that is too small. Somewhat surprisingly, depending on the degree of 
market power –that is, the number of firms at the airport–, a public airport may find it optimal 
to have a peak price that is lower than the off-peak price. An airport that strategically 
collaborates with airlines would induce greater total traffic and have a larger peak to off-peak 
traffic ratio than a pure private airport, but both numbers will still be smaller than those for a 
public airport. If the airport collaborates with a dominant airline, it would not use peak-load 
pricing.  
 
Finally, we note that although the airline industry is chosen for analysis, our basic model 
structure, in which airports make their pricing and capacity decisions prior to airlines’ 
strategic interactions in the final product market, is highly relevant to many other industries, 
such as electricity, telecommunications, and transport terminals (e.g., sea ports-carriers-
shippers). In telecommunications, for example, at the upstream level there are the network 
owners and downstream there are carriers who must use the network to produce the final good 
which is telephone calls. Furthermore, like airports, these industries (electricity, ports and 
telecommunications) are undergoing privatization and corporatization in a number of 
countries. Our results would therefore contribute not only to a better understanding of airport 
policy and management, but also to the advancement of the theory and methodology for 
analyzing peak-load pricing in a general setting. 
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APPENDIX 
 
• Proof of proposition 1 
 
First, equivalent conditions for interior allocations, but in terms of Qp and Qo are:  
The peak is used: 00/)( ** >⇔>−⇔< oQSθθθθ  
Some consumers do not fly: SQQSS po

ff /)(/)(/)( θθθθθθθθ −<+⇔−<−⇔>  

The off-peak is used: 00/)( ** >⇔>−⇔> o
ff QSθθθθ  

With this, the proofs of each part are: 
(i) Note that )( op Ω+Ω−  in (12) is strictly increasing in Qp , and 0>Ω+Ω−

∞→pQ

op . Also,  
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θ . Hence, if )( opop BBSPP −<− θ , then 
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p
and 0>pQ .                            ■ 

(ii) From Ωo=0 in (10) we get that ooopo PcSBNNSBQQ −−=++ θ/)1()( 2 , This imply that 

)/()( 2SBPcSBQQ ooopo −−<+ θ . Hence, a sufficient condition for 
S

QQ po
θθ −
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(iii) From Ωo=0 we know that  
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op  (see proof of part i). Straightforward algebra gives us 
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fulfilled for θ  large enough.                                                                                                ■ 
For a linear delay function KQKQD pp /),( δ= , the lower bound on θ  can be found 

explicitly; it is given by ( ) oopooop
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• Proof of proposition 2 
 

(i) Differentiating )( op Ω+Ω−  with respect to N we get: 
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(ii) From the proof of part (i), we get 
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)1(

)()(
22 >

+
−−

=
+

NSB
PcSB

dN
QQd

o

oopo θ
 and therefore 0/ <dNd fθ  from equation (5).           ■ 
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(iv)  From the proof of part (iii) we get 
dN
dQ

NSB
PcSB

dN
dQ p

o

ooo −
+
−−

= 22 )1(
)( θ

. From proposition 2.2, 

we further obtain 
)1()1(

)(
22 +

−
+
−−

>
NN
Q

NSB
PcSB

dN
dQ p

o

ooo θ
. If the off-peak is used for all N, 

then p
o

oo
p Q

NSB
NPcSB

Q ~
)1(
)(

2 ≡
+

−−
<

θ
 (see the proof of proposition 1.3). Hence 

)1(
1

)1(
)(

)1(
)(

222 ++
−−

−
+
−−

>
NNNSB

NPcSB
NSB

PcSB
dN
dQ

o

oo

o

ooo θθ
 and, therefore 0/ >dNdQo .         ■ 

 
• po LL >>  precludes a peak-reversal 
 
The no peak reversal condition can be written as opop QLLQ >/ . Since we know from Ωo=0 

that ( ))1(/)( 2 +−−=+ NSBNPcSBQQ ooopo θ , the no peak-reversal condition becomes 

op

p

o

oo
p LL

L
NSB

NPcSB
Q

++
−−

>
)1(
)(

2

θ
, and hence a sufficient condition is 

 
op

p

o

oo
p LL

L
SB

PcSB
Q

+
−−

> 2

)( θ
, which always hold if po LL >> . 

 
                                                 
ENDNOTES 

 
1 Proof: (i) if θ1 flies, 01 ≥−− hhh tDB αθ  for h=p,o. If θ ≥ θ1,  01 ≥−−≥−− hhhhhh tDBtDB αθαθ  

and θ  flies. (ii) is analogous. (iii) consider )()()()( opopop ttDDBBh −−−−−= αθθ  and suppose θ flies. 

Then if 0)( ≥θh , θ chooses to fly in the peak. If 0)( <θh , θ chooses to fly in the off-peak. Now, suppose ∃ θ* 

such that 0)( * =θh  (interior solution). Then, since 0)(' >θh , if θ ≥ θ*, θ chooses the peak and if θ < θ*, θ 
chooses the off-peak ■ 

2 The lower bound for θ  cannot be made explicit because of the non-linearity of the delay function but can 
be expressed in closed form if a linear delay function is used. See the appendix. 

3 To be fair, although Brueckner did not formally consider the second term in the toll to be charged, he did 
point out that, depending on the size of the market power term, a pure congestion toll could be detrimental for 
social welfare.    

4 This idea of an upstream firm running the cartel for the downstream firms has been discussed in the vertical 
control literature and, particularly, in the input joint-venture case. For example, Chen and Ross (2003) 
formalized the conjecture that input joint-ventures can facilitate collusion and push a market toward the 
monopoly outcome. If airport provision was seen as an input joint-venture by the airlines, our results show three 
things in addition to what Chen and Ross found. First, that the results hold even in a peak-load pricing setting, 
i.e. when demand is periodic. Second, that if there are externalities, the input prices are, additionally, used to 
force their internalization by downstream competitors. And third, that when marginal costs downstream are not 
constant, the outcome is not as in monopoly or a downstream merger, but as in a cartel. 


