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Speaking Stata: Transforming the time axis
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Abstract. The time variable is most commonly plotted precisely as recorded in
graphs showing change over time. However, if the most interesting part of the
graph is very crowded, then transforming the time axis to give that part more
space is worth consideration. In this column, I discuss logarithmic scales, square
root scales, and scale breaks as possible solutions.

Keywords: gr0052, axis scale, graphics, logarithm, scale break, square root, time,
transformation

1 Introduction

Using transformed scales on graphs is a technique familiar to data analysts. Most
commonly in Stata, axis scales on a twoway graph may be logarithmic. The options
yscale(log) and xscale(log) provide wired-in support. In principle, other trans-
formed scales are hardly more difficult: just calculate the transformation before graph-
ing and, ideally, ensure that the axis labels remain easy to interpret. For example, a
logit scale can be useful for proportions within (0, 1) or percentages within (0, 100). For
that example and more general comments, see Cox (2008).

In the case of graphs plotting change over time, the time axis usually shows the time
variable unchanged. In most sciences, time is plotted on the horizontal or x axis. In the
earth sciences, time is sometimes plotted on the vertical or y axis, essentially because
older materials are often found at greater depths.

In either case, however, it is common to use a transformed scale for whatever response
is plotted versus time. For example, with a logarithmic response scale, periods of
exponential growth or decline would be shown by straight line segments.

In this column, I focus on something more unusual: transforming the time axis. The
argument is in the first instance pragmatic. Sometimes data span an extended time
range, and the amount of information or the pace of change is far greater at one end of
the time range. If so, expanding the crowded part of the graph and shrinking the other
part of the graph may help readers visualize the detail of change.

If data come from cosmology or particle physics, blowing up the early part of a time
range might be a good idea. If data come from the social sciences, especially economic or
demographic history, blowing up the later part might be called for. In many examples,
very recent growth has been explosive, but the precise details remain of interest. The

c© 2012 StataCorp LP gr0052
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same recommendation applies, but for different reasons, to many datasets from the earth
sciences. Here information from earlier periods tends to be much sparser and indeed in
most instances has long since been buried, blasted, or eroded away.

2 Logarithmic scale?

A logarithmic scale for time would show earlier times—all later than some origin, itself
conventionally zero—more expansively. xscale(log) should suffice, assuming again
that time is shown on the x axis. Conversely, a logarithmic scale for times, all those
shown being before some origin, would do the same for later times. In the second case,
you would need to calculate the logarithm of (origin − time) and devise intelligible
labels.

However, a major limitation in both cases is that the origin is not plottable because
the logarithm of zero is indeterminate. A fix for this is to ensure that the origin is not
a data point but is beyond the range of the data. Otherwise put, if time 0 is a data
point, the origin must be offset. Karsten (1923, chap. 41) called plotting in terms of
logarithm of (offset + latest − time) “retrospective logarithmic projection” and gave
economic examples. This common need for an offset is at best awkward and at worst
leads to arbitrary choices that are difficult to justify or explain.

It remains true that thinking logarithmically is highly desirable for thinking broadly
about the ranges of time scales (and sizes, speeds, and numerosity) to be found in
science. See, for example, the engaging essay “Life on log time” in Glashow (1991) or
the more extended discussions in Schneider (2009).

Although using a logarithmic scale for either variable or both variables is likely to
strike readers as an elementary and obvious technique, its history is in several ways
surprisingly short (Funkhouser 1937, 359–361). Lalanne (1846) introduced double log-
arithmic scales for calculation problems: Hankins (1999, 71) reproduces his graph. In
economics, Jevons (1863, 1884) plotted data for responses on a logarithmic scale versus
time; for discussion, see Morgan (1990), Klein (1997), and Stigler (1999). Nevertheless,
adoption of the idea was slow, and it was even resisted as obscuring the data. Expos-
itory articles urging the merits of the technique, often called semilogarithmic or ratio
charts, were still appearing many years after its introduction (Fisher 1917; Field 1917;
Griffin and Bowden 1963; Burke 1964).

3 Square root scale?

In practice in data analysis, however, logarithmic transformations are likely to be too
strong unless change on very different time scales is being considered. A weaker trans-
formation that can work well is the square root, as recently suggested by Wills (2012,
171–172). The square root also has the simple advantage that the root of 0 is also 0
and is thus quite plottable.
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The earliest example of a square root scale known to me is by Moseley (1914) in a
classic physics problem that led to predictions of as yet undiscovered elements. Heilbron
(1974, 100) reproduces his graph. Karsten (1923, 485) plotted the square root of re-
sponse versus time in an example in which a logarithmic scale was clearly too severe.
Fisher and Mather (1943) plotted frequency counts on a square root scale. Their idea
was taken up in much more detail by Mosteller and Tukey (1949), and Fisher (1944,
1950) added corresponding material to the ninth and eleventh editions of his text Sta-
tistical Methods for Research Workers.

There are contexts ranging from physics to finance in which the square root of time
appears naturally, or at least mathematically, in discussions, but we leave that to one
side. In the example to follow, the justification for using square roots is, once more,
just pragmatic.

Consider some data from Haywood (2011) on world population over the last 8,000
years, available with the media for this journal issue. As is customary, the cautions and
caveats associated with such estimates should be flagged. Comprehensive censuses are
relatively recent historically, and even long national experience in census-taking is no
guarantee of population counts that all experts regard as accurate. Over most of human
history, we have only a variety of wild guesses, and competent workers in the field often
only agree if they are using each other’s estimates. Let us look first at some standard
plots.
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. use haywood

. twoway connected pop year, msymbol(Oh)

. twoway connected pop year, msymbol(Oh) yscale(log)
> ylabel(20 50 200 500 2000 5000)
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Figure 1. World population over the last 8,000 years (data from Haywood [2011])
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Figure 2. World population over the last 8,000 years; the vertical scale is logarithmic, so
periods showing exponential change (constant growth rate) would plot as linear segments
(data from Haywood [2011])
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Figure 1 draws attention to the explosive nature of population growth over the last
few centuries. It has a simple and powerful message, but detail is hard to discern.
Figure 2 adds a logarithmic scale and shows a main pattern of accelerating growth
rates with strong hints of other fluctuations, reflecting extended periods of higher death
rates. For both graphs, using twoway connected, a hybrid of scatter and line, has
a natural purpose of emphasizing the precise dates of data points. With more data or
data regularly spaced in time, using line is likely to be a better choice. That detail
aside, figure 1 and figure 2 are standard graphs that are both useful, but neither deals
with the problem of crowding of data for later times.

Using a square root scale for time before the present requires two steps before we
can create a graph. First, calculate the new time scale.

. generate time = sqrt(2010 - year)

The latest year for data is 2010. Clearly, other datasets would lead to different constants.

Second, produce better axis labels. The key here is that any text you like can be
shown as text in axis labels. In practice, we need to work out what labels we want to
see and then where they would be put in terms of the new variable, here time. This
can take some experimentation, but it is best done by looping over the labels we want
and working out the option call that is needed.

. foreach y of num -6000(2000)2000 500 1000 1500 {

. local call `call´ `=sqrt(2010 - `y´)´ "`y´"

. }

Here the result is put into a local macro. Every time around the loop, we calculate
the square root of 2010 minus some year and add that value and the text to be shown
on the time axis—namely, the year itself—as extra content in the local macro. So the
first time around, the year is −6000. We use Stata to calculate sqrt(2000 - (-6000))
on the fly and insert the result in the macro. The special syntax ‘=expression’ instructs
Stata to calculate the result of the expression and use that result immediately.

If you do the calculation for −6000 yourself with display, you will find that the result
is given as 89.442719. On-the-fly calculation gives more decimal places, far more than
are really needed for graphical purposes, but no harm is done thereby. The calculation

89.44271909999159 "-6000"

is added to the macro, which is created empty. The next time around, the macro will
contain

89.44271909999159 "-6000" 77.45966692414834 "-4000"

and so on.
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If you do this yourself, make sure to blank out the local macro by typing

. local call

before revising any earlier guess. Otherwise, earlier insertions in the macro will just be
carried forward.

Now the graph shown as figure 3 is possible. Reversing the scale is needed because
the time variable increases going backward, at least if you want to show the direction
of time in the usual manner.

. twoway connected pop time, msymbol(Oh) xscale(reverse) xlabel(`call´)
> xtitle(year)
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Figure 3. World population over the last 8,000 years; the horizontal axis represents time
before 2010 on a square root scale (data from Haywood [2011])

You can see the advantage of automating the production of the option call: you
would not prefer to do all the little calculations one by one with a flurry of copy-and-
paste to transfer results to the graph command.

Nothing stops the use of yscale(log) too, although the standard result that expo-
nential change shows as linear segments no longer holds. My own preference is to stop
at transforming the time scale.

As usual, smaller graphical details remain open to choice. The axis title of “year”
might seem redundant. A method other than negative dates might be preferred for
showing years BCE. The y-axis labels could be rotated to horizontal.
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4 Scale break?

Another popular solution to the problem of crowding for early or later times is to use
a scale break so that the time series is divided into two or more panels with different
scales. Scale breaks themselves divide statistically minded people. Some argue for them
as a simple practical solution, so long as it is made explicit, and some argue against them
as awkward, artificial, and usually unnecessary, because transformation is typically a
better solution. Good discussions are given by Cleveland (1994) and Wilkinson (2005).
For more discussion of scale breaks in Stata graphics, see Cox and Merryman (2006).

Stata does not support scale breaks directly, perhaps mostly because a graph with a
scale break is not easily made consistent with the general philosophy of allowing graphs
to be superimposed or combined with a common axis. But you can devise your own
scale breaks by producing separate graphs before combining them again.

. twoway connected pop y if year < 0, msymbol(Oh) yscale(r(10 7000) log)
> ylabel(10 20 50 100 200 500 1000 2000 5000, angle(h))
> saving(part1, replace) xlabel(-6000(1000)0) xtitle("")

. twoway connected pop y if year > 0, ms(Oh) ysc(r(10 7000) log off)
> yla(10 20 50 100 200 500 1000 2000 5000, ang(h))
> saving(part2, replace) xla(250(250)2000) xtitle("")

. graph combine "part1" "part2", imargin(small) b1title(year, size(small))

The result is shown in figure 4. It is likely to qualify as many users’ best bet for this
kind of problem, if only because it is easier to explain than other solutions.
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Figure 4. World population over the last 8,000 years; scale break at change from BCE

to AD (data from Haywood [2011])
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Let us focus on some of the small details in these commands that might otherwise
seem puzzling.

1. I tend to include the replace suboption of saving() even the first time around,
because in practice I need several iterations before all my choices seem right.
Nevertheless, do check that you are not losing a valuable graph from some previous
project.

2. graph combine has a ycommon option. But with yscale(log) too, I get better
results by being explicit in yscale() in both graph commands that the y axes
have the same limits.

3. Why spell out the ylabel() call for the second graph if the labels are omitted
by yscale(off)? The reason is that the label locations determine horizontal grid
lines. (Naturally, if you did not want those grid lines, you should omit them.)

4. The title “year” should certainly not be given twice, so we blank it out in the indi-
vidual graph commands and put it back (once) in the graph combine command.

5. The first panel ends up a bit smaller in this example as a side-effect of omitting
the y axis and its labels from the second panel. That seems about right, but the
relative sizes of the panels could be further controlled by using the fxsize() option
with the initial graph commands. Cox and Merryman (2006) give an example.

In principle, two or more scale breaks are possible, giving three or more panels. You
just need to produce the individual graph panels as separate graphs and then combine
them. But the trade-offs are clear. Each panel must be big enough to make clear what
the different scales are, but without overloading the time axis with many different labels
or ticks. For that and other reasons, even a graph with two scale breaks and three panels
is likely to be too complicated for most purposes.

5 Conclusions

For showing change over time graphically, transformation almost always means trans-
forming the response. Logarithmic scales are by far the most widely used example and
need little publicity. In this column, I focused on a less common but intriguing possi-
bility: transforming time. Although logarithmic scales have been used on occasion for
time, they can be awkward at best. In contrast, a square root scale for time is easy
to implement and can work well. Using a scale break to divide a graph into separate
panels is also a possibility.

As always, when users have choices, they also have to make decisions on what to
do. The question is likely to depend on specific circumstances of dataset, analysis, and
audience, as well as researchers’ general attitudes. In choosing any of the graphs here
for a presentation, what the audience would find easiest to understand—or in some
cases, what they would find most stimulating to consider—would be the first question
to consider.
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Ponts et Chaussées 11: 1–69.

Morgan, M. S. 1990. The History of Econometric Ideas. Cambridge: Cambridge Uni-
versity Press.

Moseley, H. G. J. 1914. The high-frequency spectra of the elements. Part II. Philosoph-
ical Magazine, 6th ser., 27: 703–713.

Mosteller, F., and J. W. Tukey. 1949. The uses and usefulness of binomial probability
paper. Journal of the American Statistical Association 44: 174–212.

Schneider, D. C. 2009. Quantitative Ecology. 2nd ed. London: Academic Press.

Stigler, S. M. 1999. Statistics on the Table: The History of Statistical Concepts and
Methods. Cambridge, MA: Harvard University Press.

Wilkinson, L. 2005. The Grammar of Graphics. 2nd ed. New York: Springer.

Wills, G. 2012. Visualizing Time: Designing Graphical Representations for Statistical
Data. New York: Springer.

About the author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 15 com-
mands in official Stata. He wrote several inserts in the Stata Technical Bulletin and is an editor
of the Stata Journal.


