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Abstract. In this article, we introduce a new Stata command, smultiv, that
implements the S-estimator of multivariate location and scatter. Using simulated
data, we show that smultiv outperforms mcd, an alternative robust estimator.
Finally, we use smultiv to perform robust principal component analysis and least-
squares regression on a real dataset.

Keywords: st0259, smultiv, S-estimator, robustness, outlier, robust principal com-
ponent analysis, robust regression

1 Introduction

Robust methods for parameter estimation are rapidly becoming essential elements of
the statistician’s toolbox. A key parameter in most data analyses techniques is the
parameter of dispersion, for which Stata currently offers methods of robust estimation.
In Verardi and Dehon (2010), the authors propose such a method: the minimum covari-
ance determinant (MCD) estimator. This estimator is based on the notion of generalized
variance (Wilks 1932), a one-dimensional assessment of the multivariate spread, mea-
sured by the determinant of the sample covariance matrix. The MCD estimator looks for
the 50% subsample with the smallest generalized variance. This subsample is assumed
free of outliers and thus can be used to compute robust estimates of location and scatter.

Although the MCD estimator is appealing from a theoretical point of view, its prac-
tical implementation is problematic. Its estimation requires us to compute the determi-
nant of the sample covariance matrix for all subsamples that contain 50% of the initial

c© 2012 StataCorp LP st0259



300 The S-estimator of multivariate location and scatter in Stata

data. Given that this is unfeasible, the code for the MCD estimator uses the p-subset
algorithm (Rousseeuw and Leroy 1987) that allows for only a reduced number of subsets
to be considered. Unfortunately, this algorithm leads to relatively unstable estimation
results, especially for small datasets. Another weakness of the MCD estimator is its
low Gaussian efficiency. In light of these shortcomings, we present in this article a
Stata command that implements an alternative estimator of location and scatter in a
multivariate setting, the S-estimator. The S-estimator is based on the minimization of
the sum of a function of the deviations, where the choice of function determines the
robustness properties of the estimator.

This article is structured as follows. First, we present the S-estimator in both a
univariate and a multivariate setting. We then show that this estimator outperforms
MCD in terms of both the stability of the results and its Gaussian efficiency. Finally, we
use S-estimates of location and scatter to perform robust principal component analysis
(PCA) and robust linear regression.

2 S-estimator of location and scatter

In this section, we introduce the S-estimator of location and scatter. Let us begin by
recalling that a location parameter is a measure of the centrality of a distribution. To
determine this parameter, one must look for the point in the distribution around which
the dispersion of observations is the smallest. In the univariate case, if we choose the
variance as a measure of this dispersion, the problem can be formalized as

θ̂ = arg min
bθ

σ2, where σ2 =
1
n

n∑
i=1

(xi − θ)2 ,

which can be rewritten as 1 =
1
n

n∑
i=1

(
xi − θ

σ

)2

This optimization problem consists of the minimization of the sum of the squared dis-
tances between each point and the center of the distribution, subject to an equality
constraint.

In a multivariate setting, the distance measure to the center of the data cloud is called

the Mahalanobis distance and is defined as MDi =
√

(Xi − θ)Σ−1(Xi − θ)′ , where X is
a matrix of covariates, Σ is the scatter matrix, and θ is the location vector. To obtain a
multivariate estimator of location, we minimize a univariate measure of the dispersion
of the data cloud—the determinant of the scatter matrix, det(Σ). This is subject to
a constraint similar to the one in the univariate case, that equalizes the sum of the
squared (Mahalanobis) distances to the number of degrees of freedom, p (recall that the
squared Mahalanobis distances follow a χ2

p). The problem can be formally stated as

(θ̂, Σ̂) = arg min
θ, Σ

det(Σ), such that p =
1
n

n∑
i=1

{√
(Xi − θ)Σ−1(Xi − θ)′

}2
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Because the distances enter the above equation squared, it is obvious that observations
lying far away from the center of the distribution will have a large influence on its value.
Thus in the presence of outlying values, the estimated θ̂ may not reflect the actual
centrality of a large part of the dataset.

The first step toward robustifying this estimator is to consider replacing the square
function with an alternative function we call ρ. This function ρ should be nondecreasing
in positive values of the argument but less increasing in these values than the square
function we wish to replace. Given such a function ρ, the problem becomes

(θ̂, Σ̂) = arg min
θ, Σ

det(Σ), such that b =
1
n

n∑
i=1

ρ

{√
(Xi − θ)Σ−1(Xi − θ)′

}

where b = E{ρ (u)}1 to guarantee Gaussian consistency of the estimator. The parameter
θ̂ for which we can find the smallest det(Σ̂) satisfying this equality is called an M-
estimator of location, where Σ̂ is a multivariate M-estimator of dispersion. If these
parameters are estimated simultaneously, they are called S-estimators. From this point
on, we will consider only S-estimators because they are highly resistant to outliers for
an appropriately chosen function ρ.

The quality of the S-estimator depends on the function ρ. This function should be
chosen such that it maximizes both the robustness of the estimator and its Gaussian
efficiency. Although there exist a variety of candidate functions for ρ, here we will
consider only the Tukey biweight function, which is known to possess good robustness
properties. This function is defined as

ρ(MDi) =

⎧⎨⎩ 1 −
{

1 −
(

MDi

k

)2
}3

if |MDi| ≤ k

1 if |MDi| > k

The breakdown point of the estimator (that is, the maximum contamination the es-
timator can withstand) is determined by the tuning constant k. One first selects a cutoff
value for a constant c on the univariate scale as the number of standard deviations from
the mean beyond which ρ′(MDi) becomes zero (Campbell, Lopuhaä, and Rousseeuw
1998). This constant c can then be converted to a value of k on a chi-squared scale
of MD2 using the Wilson–Hilferty (1931) transformation (Campbell 1984):

k =

√√√√
p

[√(
1
9

)(
2
p

)
c +

{
1 −

(
1
9

)(
2
p

)}]3

The S-estimator has a breakdown point of 50% when c = 1.548, which for p = 3 implies
k = 2.707. Figure 1 depicts the Tukey biweight function ρ and its derivative ρ′.

1. Under the assumption that u is a standard normal distribution.
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Figure 1. Tukey biweight

The Gaussian consistency parameter (E{ρ (u)} if we assume a p-variate standard
normal distribution) is

b =
p

2
χ2

p+2(k
2) − p(p + 2)

2k2
χ2

p+4(k
2) +

p(p + 2)(p + 4)
6k4

χ2
p+6(k

2) +
k2

6
{
1 − χ2

p(k
2)
}

3 Relative stability of MCD and S-estimation

Both MCD and S-estimators give robust estimates of multivariate location and scatter.
However, implementation of MCD is more problematic because the fast MCD algorithm2

that performs the estimation yields results that are both unstable over multiple repli-
cations and sensitive to the chosen starting value. This is not a weakness of the S-
estimator, whose estimation procedure is based on an iterative reweighting algorithm;
see Campbell, Lopuhaä, and Rousseeuw (1998).

To illustrate the comparative performances of both estimators, we create a dataset
of 1,000 observations with values drawn from three independent N(0, 1) random vari-
ables and replace 10% of the x1 values by an arbitrarily large number (100 in this
example). We then compute the MCD and S-estimator of scatter of the data and repeat
the procedure 1,000 times. We report in table 1 the estimates obtained for the ele-
ments of the main diagonal of the scatter matrix. The stability of the estimates refers
to the proportion of appearances made by the most frequently observed value for each
estimate.

2. Developed by Rousseeuw and van Driessen (1999) and implemented in Stata by Verardi and Croux
(2009, 2010).
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Table 1. MCD and S-estimator of scale

S-estimator MCD-estimator
σ̂2

1 σ̂2
2 σ̂2

3 σ̂2
1 σ̂2

2 σ̂2
3

minimum 1.049 1.171 1.118 0.761 0.874 0.815
maximum 1.051 1.171 1.120 0.972 1.016 1.050

stability 99.6% 99.6% 99.6% 0% 0% 0%

We see here that the range of values observed is much smaller with the S-estimator
than with MCD. In fact, the difference between the minimum and maximum S-estimates
is virtually zero (between 0 and 0.002), whereas with MCD this difference is small but
not negligible (between 0.142 and 0.235). Perhaps the most striking result is that the
most frequently observed S-estimate occurred in 99.6% of the trials. This is in sharp
contrast with the MCD estimates, none of which reappeared more than once.

4 The multivariate S-estimator of location and scatter in
other statistical applications

Many statistical applications require the prior estimation of a scatter matrix. In this
section, we demonstrate how to use the S-estimator of location and scatter to 1) identify
outliers in a dataset, 2) obtain robust estimates of linear regression parameters, and 3)
perform robust PCA. Again we create a dataset of 1,000 observations, generated here
from the following data-generating process: y = x1 +x2 +x3 + ε. We then contaminate
the data by replacing 10% of the observations in x1 by draws from a N(100, 1). In Stata
language, this is done as follows:

set seed 123
set obs 1000
matrix C0=(1,0.3,0.2 \ 0.3,1,0.4 \ 0.2,0.4,1)
drawnorm x1-x3, corr(C0)
gen e=invnormal(runiform())
gen y=x1+x2+x3+e
gen bx1=x1
replace x1=invnormal(runiform())+100 in 1/100

To identify the outliers present in our dataset, we need to estimate the robust Maha-
lanobis distance for each observation in the sample. Computing these distances requires
robust estimates of both the location and the scale parameters of our sample. We thus
run the smultiv command to obtain S-estimators of these parameters and request that
the outliers be flagged and the robust Mahalanobis distances be reported. This is done
in Stata by typing

smultiv x*, generate(robust outlier robust distance)
summarize robust distance in 101/l
summarize robust distance in 1/100
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Observations are identified as outliers if their robust Mahalanobis distance is greater
than the critical value at 95% of a

√
χ2

p. (We know that if our data are Gaussian, the

Mahalanobis distances will follow a
√

χ2
p distribution, where p is equal to the number of

variables in our dataset.) Our results show that the robust distances of the outliers range
from 96.82 to 102.85 with an average of 99.58. These values are consistent with our
contamination scheme. The average distance for observations in the noncontaminated

dataset is 1.493, which is significantly smaller than the critical value of
√

χ2
3,0.95 = 2.80.

Next we look at PCA. There are two different methods for performing robust PCA.
One can run the pca command on a cleaned-up version of the initial sample after
removing the outlying values identified. Alternatively, one can use the pcamat com-
mand in Stata to extract the eigenvalues and eigenvectors of the robust correlation
matrix estimated. In our study, we perform four PCA. The first pca command is run
on the noncontaminated sample and serves as our benchmark (PCA clean). We then
perform the pca command on the contaminated sample (PCA). Next we run the pca
command on the cleaned-up sample obtained by removing the outliers identified previ-
ously (PCA cleaned). Finally, we run the pcamat command on the robust correlation
matrix (PCA mat). These commands are typed in Stata as follows:

pca bx1 x2 x3
pca x*
pca x* if robust outlier==0
matrix C=e(C)
pcamat C, n(1000)

For each PCA performed, we report in table 2 the first principal component obtained,
its corresponding eigenvalue, and the proportion of variance it explains. We see clearly
that both robust PCA methods yield results similar to those obtained from the standard
PCA performed on the uncontaminated sample, whereas the classical PCA run on the
contaminated dataset leads to uninformative results. A similar robustification of the
factor model can be performed either by downweighting the outliers or by calling on the
factor command.

Table 2. Principal component analysis

PCA clean PCA PCA cleaned PCA mat

x1 0.5339 −0.0225 0.5243 0.5243
x2 0.6313 0.7078 0.6331 0.6331
x3 0.5626 0.7060 0.5695 0.5695

eigenvalue 1.63 1.38 1.62 1.62
(54%) (46%) (54%) (54%)

S-estimation can also be used to perform robust linear regression analysis. Consider
the following regression model: y = α + Xβ + ε, where y is the dependent variable,
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α is a constant, X is the matrix of covariates, and ε is the error term vector. Least-

squares estimation gives us parameter estimates β̂ =
(
Σ̂xx

)−1

Σ̂xy = (X ′X)−1
X ′Y and

α̂ = μ̂y − μ̂xβ̂ (where μ̂x is a vector and μ̂y is a scalar). To obtain robust estimators
for β and α, one can replace μ and Σ in the previous expressions by their robust S-
estimation counterparts μ̂S and Σ̂S . Robust estimates of the regression parameters are

thus β̂ =
(
Σ̂S

xx

)−1

Σ̂S
xy and α̂ = μ̂S

y − μ̂S
x β̂.

We conclude this section by performing regression analysis on a real dataset that
contains information about 120 U.S. universities.3 The dependent variable is score, a
weighted average of five of the six factors used by Shanghai University to compute their
Academic Ranking of World Universities. We consider five explanatory variables: cost
(logarithm of the out-of-state cost per year), enrol (proportion of admitted students
that choose to enroll), math (SAT math score first quartile), undergrad (logarithm of
the total undergraduate population), and private (a dummy variable that indicates
whether a university is private).

We begin by running a basic ordinary least-squares (OLS) regression on the com-
plete sample. We then perform S-estimation using the command smultiv and flag the
outliers. We run an OLS regression on the subsample obtained by removing the outliers
identified by smultiv. Finally, we repeat this two-step procedure with the mcd com-
mand (Verardi and Croux 2010) to identify the outliers in our sample. This is done in
Stata by typing

use http://homepages.ulb.ac.be/~vverardi/unidata, clear

/* Classic OLS */
regress score cost enrol math undergrad private

/* Removal of outliers identified through S-estimation */
smultiv score cost enrol math undergrad, ///

generate(robust outlier robust distance) dummies(private)
regress score cost enrol math undergrad private if robust outlier==0

/* Removal of outliers identified through MCD estimation */
mcd score cost enrol math undergrad, generate(mcd outlier mcd distance)
regress score cost enrol math undergrad private if mcd outlier==0

The results in table 3 show that although the OLS regression performed on the whole
sample identifies all five explanatory variables as statistically significant, both robust
regressions reveal that this is in fact not the case for the variable enrol.

3. Data for 2007, available at http://www.usuniversities.ca/.
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Table 3. Linear regression analysis

cost enrol math undergrad private cons

regress 27.690* 4.484* 84.321* 3.731* −15.469* −845.546*
(5.96) (0.57) (12.55) (1.87) (3.61) (78.85)

smultiv 25.080* −0.506 65.753* 9.659* −8.802* −747.318*
(6.38) (1.08) (12.11) (1.93) (3.95) (68.41)

mcd 20.246* −0.620 72.041* 7.446* −11.986* −714.984*
(6.26) (1.02) (11.77) (1.64) (3.16) (69.97)

5 The smultiv command

5.1 Syntax

The general syntax for the command is

smultiv varlist
[
if
] [

in
] [

, generate(varname1 varname2) dummies(varlist)

nreps(#)
]

5.2 Options

generate(varname1 varname2) creates two new variables: varname1 , a dummy vari-
able that flags the outliers, and varname2 , a continuous variable that reports the
robust Mahalanobis distances. The user must specify the name for each of the
variables generated. These variables cannot be generated separately.

dummies(varlist) specifies the dummy variables in the dataset.

nreps(#) specifies the number of replications.

5.3 Saved results

smultiv saves the following in e():

Matrices
e(mu) location vector
e(S) scatter matrix
e(C) correlation matrix
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6 Conclusion

In this article, we proposed a new Stata command to implement the S-estimator of
location and scatter in a multivariate setting. Our simulated data examples show that
this estimator yields more stable results than its closest competitor, the MCD estima-
tor. Furthermore, the estimates obtained can be used to perform other statistical data
analysis techniques, such as PCA and linear regression, and obtain robust results.
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