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Abstract. In this article, we introduce the stthreg package of Stata commands
to fit the threshold regression model, which is based on the first hitting time of a
boundary by the sample path of a Wiener diffusion process and is well suited to
applications involving time-to-event and survival data. The threshold regression
model serves as an important alternative to the Cox proportional hazards model.
The four commands that comprise this package for the threshold regression model
are the model-fitting command stthreg, the postestimation command trhr for
hazard-ratio calculation, the postestimation command trpredict for prediction,
and the model diagnostics command sttrkm. These commands can also be used
to implement an extended threshold regression model that accommodates appli-
cations where a cure rate exists.

Keywords: st0257, stthreg, trhr, trpredict, sttrkm, bootstrap, Cox proportional
hazards regression, cure rate, first hitting time, hazard ratios, model diagnostics,
survival analysis, threshold regression, time-to-event data, Wiener diffusion process

1 Introduction to threshold regression

Threshold regression is a methodology to analyze time-to-event data. For a review
of this methodology, see Lee and Whitmore (2006) and Lee and Whitmore (2010). A
unique feature of threshold regression is that the event time is the first time an under-
lying stochastic process hits a boundary threshold. In the context of survival data, for
example, the event can be death and the time of death is the moment when his/her
latent health status first decreases to a boundary at zero.

With the stthreg command, a Wiener process Y (t) is used to model the latent
health status process. An event is observed when Y (t) reaches 0 for the first time.
Three parameters of the Wiener process are involved: μ, y0, and σ2. Parameter μ,
called the drift of the Wiener process, is the mean change per unit of time in the level
of the sample path. The sample path approaches the threshold if μ < 0. Parameter
y0 is the initial value of the process and is taken as positive. Parameter σ2 represents

c© 2012 StataCorp LP st0257



258 Threshold regression

the variance per unit of time of the process (Lee and Whitmore 2006). The first hitting
time (FHT) of a Wiener process with μ, y0, and σ2 has an inverse Gaussian distribution
with the probability density function

f
(
t|μ, σ2, y0

)
=

y0√
2πσ2t3

exp

{
− (y0 + μt)2

2σ2t

}
(1)

where −∞ < μ < ∞, σ2 > 0, and y0 > 0. The probability density function is proper if
μ ≤ 0. The cumulative distribution function of the FHT is

F
(
t|μ, σ2, y0

)
= Φ

{
− (y0 + μt)√

σ2t

}
+ exp

(
−2y0μ

σ2

)
Φ
(

μt − y0√
σ2t

)
(2)

where Φ(·) is the cumulative distribution function of the standard normal distribution.
Note that if μ > 0, the Wiener process may never hit the boundary at zero, and hence
there is a probability that the FHT is ∞; specifically, P (FHT = ∞) = 1−exp(−2y0μ/σ2)
(Cox and Miller 1965).

Because the health status process is usually latent (that is, unobserved), an arbitrary
unit can be used to measure such a process. Hence the variance parameter σ2 of the
process is set to 1 in the stthreg command to fix the measurement unit of the process.
Then we can regress the other two process parameters, y0 and μ, on the covariate data.
We assume that μ and ln(y0) are linear in regression coefficients.

Suppose that the covariate vector is Z′ = (1, Z1, . . . , Zk), where Z1, . . . , Zk are co-
variates and the leading 1 in Z′ allows for a constant term in the regression relationship.
Then ln(y0) and μ can be linked to the covariates with the following regression forms:

ln(y0) = γ0 + γ1Z1 + · · · + γkZk = Z′γ (3)

μ = β0 + β1Z1 + · · · + βkZk = Z′β (4)

Vectors γ in (3) and β in (4) represent regression coefficients for ln(y0) and μ,
respectively, with γ′ = (γ0, . . . , γk) and β′ = (β0, . . . , βk). Note that researchers can
set some elements in γ or β to zero if they feel the corresponding covariates are not
important in predicting ln(y0) or μ. For example, if covariate Z1 in the vector Z′ is
considered not important to predict ln(y0), we can remove the Z1 term in (3) by setting
γ1 to zero.

In the remaining sections of this article, we detail how to use our software package
to implement threshold regression in Stata. In section 2, we compare threshold regres-
sion with Cox proportional hazards regression by running three of the four commands
(that is, sttrkm, stthreg, and trhr), together with some existing Stata commands, on
leukemia.dta. In sections 3 through 6, we introduce the uses of these four commands,
respectively. We use melanoma.dta in these four sections to illustrate how to use these
four commands. In section 7, we introduce these four commands for an extended thresh-
old regression model that we refer to as the threshold regression cure-rate model, and
we demonstrate their application to kidney.dta.
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2 Comparison of threshold regression with Cox propor-
tional hazards regression

The Cox regression model, also called proportional hazards regression, has played a
key role in the area of time-to-event data analysis for many years (Cox 1972). The
Cox model assumes that covariates alter hazard functions in a proportional manner.
Threshold regression does not assume proportional hazards (PH) and can be used as an
alternative to the Cox model, especially when the PH assumption of the Cox model is
violated. The connections between threshold regression and Cox regression have been
studied in Lee and Whitmore (2010), where it is shown that Cox regression is, for most
purposes, a special case of threshold regression.

In this section, we use a leukemia remission study dataset (Garrett 1997) from the
Stata website to compare these two models when the PH assumption of the Cox model
is violated. Below we obtain this leukemia remission dataset from the Stata website and
declare it to be survival-time data.

. webuse leukemia
(Leukemia Remission Study)

. describe

Contains data from http://www.stata-press.com/data/r12/leukemia.dta
obs: 42 Leukemia Remission

Study
vars: 8 23 Mar 2011 10:39
size: 336

storage display value
variable name type format label variable label

weeks byte %8.0g Weeks in Remission
relapse byte %8.0g yesno Relapse
treatment1 byte %8.0g trt1lbl Treatment I
treatment2 byte %8.0g trt2lbl Treatment II
wbc3cat byte %9.0g wbclbl White Blood Cell Count
wbc1 byte %8.0g wbc3cat==Normal
wbc2 byte %8.0g wbc3cat==Moderate
wbc3 byte %8.0g wbc3cat==High

Sorted by: weeks

. stset weeks, failure(relapse)

failure event: relapse != 0 & relapse < .
obs. time interval: (0, weeks]
exit on or before: failure

42 total obs.
0 exclusions

42 obs. remaining, representing
30 failures in single record/single failure data

541 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 35
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The dataset consists of 42 patients who were monitored to see if they relapsed
(relapse: 1 = yes, 0 = no) and how long (in weeks) they remained in remission
(weeks). These 42 patients received two different treatments. For the first treatment,
21 patients received a new experimental drug (drug A), and the other 21 received a
standard drug (treatment1: 1 = drug A, 0 = standard). For the second treatment, 20
patients received a different drug (drug B), and the other 22 received a standard drug
(treatment2: 1 = drug B, 0 = standard). White blood cell count, a strong indicator
of the presence of leukemia, was recorded in three categories (wbc3cat: 1 = normal,
2 = moderate, 3 = high).

As demonstrated in [ST] stcox PH-assumption tests, the variable treatment2
violates the PH assumption. We focus on this variable below to demonstrate the advan-
tages of the threshold regression model over the Cox model when the PH assumption is
violated.

First, we use our new model diagnostic command sttrkm to demonstrate the better
fit of the threshold regression model over the Cox model for the leukemia remission data.
To address this comparison, we also use three existing diagnostic commands provided by
Stata: stphplot, sts, and stcoxkm. Figures 1 through 4 are generated by the following
four commands sequentially:

. stphplot, by(treatment2) noshow title("Log-Log Plot") plot2opts(lpattern(-))

. sts, by(treatment2) noshow

. stcoxkm, by(treatment2) noshow title("Cox Predicted vs. Observed")
> pred1opts(lpattern(dash)) pred2opts(lpattern(longdash))

. sttrkm, lny0(treatment2) mu(treatment2) noshow
> title("TR Predicted vs. Observed")

In figure 1, the curves of −ln{−ln(survival)} versus ln(analysis time) for both the
drug B group and the standard group are plotted in a log-log plot. If the plotted lines
are reasonably parallel, the PH assumption has not been violated. Because the two
curves corresponding to the two groups cross each other in figure 1, the PH assumption
is clearly violated for treatment2. The PH violation is also suggested by figure 2 where
the Kaplan–Meier survival curves for the two groups also cross each other. In figure 3,
we use the diagnostic command stcoxkm for the Cox model to overlay the Kaplan–
Meier survival curves and the Cox predicted curves for treatment2. The Kaplan–Meier
curves and Cox predicted curves are not close to each other, suggesting a poor fit of the
Cox model. Obviously, this poor fit results from a violation of the PH assumption for
treatment2. The threshold regression model based on a Wiener process, however, does
not assume proportional hazards. In figure 4, we use our diagnostic command sttrkm
for the threshold regression model to overlay the Kaplan–Meier survival curves and the
threshold regression predicted curves for treatment2. The Kaplan–Meier curves and
the threshold regression predicted curves match very well.
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Figure 1. Log-log plot by the
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Figure 2. Kaplan–Meier plot by the
treatment2 variable for the leukemia
data

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0 10 20 30 40
analysis time

Observed: treatment2 = Standard Observed: treatment2 = Drug B
Predicted: treatment2 = Standard Predicted: treatment2 = Drug B

Cox Predicted vs. Observed

Figure 3. Cox predicted plot versus
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Figure 4. Threshold regression pre-
dicted plot versus Kaplan–Meier plot
by the treatment2 variable for the
leukemia data

Further, let us use another two new commands, stthreg and trhr, to fit the thresh-
old regression model to the leukemia remission data and calculate the hazard ratios
at week 4, week 9, and week 14. In addition, the trhr command calculates pointwise
bootstrap confidence intervals for the hazard ratios with its ci option (before the trhr
command, we set the random seed to 1 for the bootstrap procedure). It also plots the
estimated hazard function of the drug B group against that of the standard drug group
by its graph(hz) option. This plot is shown in figure 5.
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. xi: stthreg, lny0(i.treatment2) mu(i.treatment2)
i.treatment2 _Itreatment_0-1 (naturally coded; _Itreatment_0 omitted)

failure _d: relapse
analysis time _t: weeks

initial: log likelihood = -140.16289
alternative: log likelihood = -173.94938
rescale: log likelihood = -136.69022
rescale eq: log likelihood = -116.95156
Iteration 0: log likelihood = -116.95156
Iteration 1: log likelihood = -110.07546
Iteration 2: log likelihood = -104.66173
Iteration 3: log likelihood = -104.64227
Iteration 4: log likelihood = -104.64227
ml model estimated; type -ml display- to display results

Threshold Regression Estimates Number of obs = 42
Wald chi2(2) = 27.39

Log likelihood = -104.64227 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lny0
_Itreatmen~1 -1.273925 .2442516 -5.22 0.000 -1.75265 -.7952011

_cons 2.009787 .170641 11.78 0.000 1.675336 2.344237

mu
_Itreatmen~1 .588838 .1535616 3.83 0.000 .2878628 .8898132

_cons -.5886176 .1340773 -4.39 0.000 -.8514042 -.3258309

. set seed 1

. trhr, var(treatment2) timevalue(4 9 14) ci graph(hz)

(running stthreg on estimation sample)

Bootstrap replications (2000)

(output omitted )

Hazard Ratio for Scenario , at Time = 4

var Hazard Ratio [95% Percentile C.I.]

_Itreatment_1 5.9588129935 1.8366861 147.06873

(running stthreg on estimation sample)

Bootstrap replications (2000)

(output omitted )

Hazard Ratio for Scenario , at Time = 9

var Hazard Ratio [95% Percentile C.I.]

_Itreatment_1 .38571350099 .17518535 .84617594
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(running stthreg on estimation sample)

Bootstrap replications (2000)

(output omitted )

Hazard Ratio for Scenario , at Time = 14

var Hazard Ratio [95% Percentile C.I.]

_Itreatment_1 .19011874598 .07150129 .44462474
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Figure 5. Estimated hazard functions
by the treatment2 variable for the
leukemia data by the threshold regres-
sion model
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It is clear that the hazard ratios calculated at weeks 4, 9, and 14 are quite different.
At week 4, the estimated hazard ratio of the drug B group versus the standard drug
group is 5.96 (the 95% bootstrap CI of the hazard ratio excludes 1 on the left); while at
week 9, the estimated hazard ratio drops to 0.38 (the 95% bootstrap CI of hazard ratio
excludes 1 on the right); the hazard ratio keeps decreasing to 0.19 at week 14 (the 95%
bootstrap CI of the hazard ratio excludes 1 on the right).

Obviously, the change of hazard ratio over time is huge, and the change is captured
by the threshold regression model. In figure 5, it is clear that the hazard function curves
of the two groups cross over time, and that is why the hazard ratio of the drug B group
versus the standard drug group changes from 5.96 (a value greater than 1) at week 4
to 0.19 (a value less than 1) at week 14. We can use the graph(hr) option of the trhr
command to depict the hazard ratios for different time points to illustrate the changing
pattern of the hazard ratio over time. For example, the following command can be
used to plot the estimated hazard-ratio values in a specified time span from week 4 to
week 30 with a reference line for a hazard ratio of 1. The generated plot is shown in
figure 6.

. trhr, var(treatment2) timevalue(4(1)30) graph(hr) graphopt(title(Hazard Ratio)
> ytitle(Estimated Hazard Ratio) legend(on) yline(1,lpattern(shortdash))
> ymtick(1) ymlabel(1))
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On the other hand, because of the proportional-hazards assumption, the Cox model
can only be used to estimate a constant hazard ratio across the whole time span for
the drug B group versus the standard drug group. The following command fits the Cox
model to the leukemia remission data. The resulting hazard ratio is a constant 0.75
with the 95% CI including 1. This is obviously a misleading outcome for these data
where the PH assumption is violated.

. xi: stcox i.treatment2
i.treatment2 _Itreatment_0-1 (naturally coded; _Itreatment_0 omitted)

failure _d: relapse
analysis time _t: weeks

Iteration 0: log likelihood = -93.98505
Iteration 1: log likelihood = -93.71683
Iteration 2: log likelihood = -93.716786
Refining estimates:
Iteration 0: log likelihood = -93.716786

Cox regression -- Breslow method for ties

No. of subjects = 42 Number of obs = 42
No. of failures = 30
Time at risk = 541

LR chi2(1) = 0.54
Log likelihood = -93.716786 Prob > chi2 = 0.4639

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

_Itreatmen~1 .7462828 .3001652 -0.73 0.467 .3392646 1.641604

In the following sections, we detail the use of the four new threshold regression
commands one by one with examples.

3 stthreg: The command to fit the threshold regression
model

3.1 Introduction to stthreg

stthreg fits the threshold regression model introduced in section 1. Maximum likeli-
hood estimation is used to estimate the regression coefficients in vectors γ and β. A
subject i in the sample dataset who is observed to die contributes the FHT probability
density f(t(i)|μ(i), y

(i)
0 ) to the sample likelihood function, where t(i) is the observed time

of death of the subject. A subject j in the sample dataset who lives to the end of the
study contributes the survival probability 1− F (t(j)|μ(j), y

(j)
0 ) to the sample likelihood

function, where t(j) is the right-censored survival time of the subject. Among the n
subjects in the sample, subjects with observed death times are indexed 1 to n1 and sub-
jects with right-censored observations are indexed n1 + 1 to n. Then the log-likelihood
function is written as
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ln L (β, γ) =
n1∑
i=1

ln f
(
t(i)|μ(i), y

(i)
0

)
+

n∑
j=n1+1

ln
{

1 − F
(
t(j)|μ(j), y

(j)
0

)}
(5)

The maximum-likelihood estimation routine with the lf method (Gould et al. 2010)
is incorporated in the stthreg command to find the maximum likelihood estimates of
the regression coefficients in the threshold regression model. The convergence speed is
fairly fast.

3.2 Syntax of stthreg

stthreg
[
if
] [

in
]
, lny0(varlist) mu(varlist)

[
noconstant cure lgtp(varlist)

level(#) init(string) nolog maximize options
]

3.3 Options

lny0(varlist) specifies independent variables that will be used in the linear regres-
sion function for ln y0 in the threshold regression model, as in (3). For example,
if Z1, . . . , Zk in (3) are used, then this lny0(varlist) option should be written as
lny0(Z1 . . . Zk). Note that the intercept coefficient γ0 in (3) will be automati-
cally added in the linear regression function for ln y0, and this intercept coefficient
will correspond to the cons term in the lny0 section of the output regression coef-
ficient table. The estimation results for the other regression coefficients in the linear
regression function for ln y0 correspond to the independent variables in the lny0
section of the output regression coefficient table. If no independent variable is listed
in lny0(), then only the intercept coefficient will be used in the regression function
for ln y0. In this case, the estimated value of ln y0 is equal to the estimated value of
this intercept coefficient, as can be easily seen in (3). lny0() is required.

mu(varlist) specifies independent variables that will be used in the linear regression
function for μ in the threshold regression model, as in (4). For example, if Z1, . . . , Zl

in (4) are used, then this mu(varlist) option should be written as mu(Z1 . . . Zl).
Note that the intercept coefficient β0 in (4) will be automatically added in the linear
regression function for μ, and this intercept coefficient will correspond to the cons
term in the mu section of the output regression coefficient table. The estimation
results for the other regression coefficients in the linear regression function for μ will
appear after the names of the corresponding independent variables in the mu section
of the output regression coefficient table. If no independent variable is listed in mu(),
then only the intercept coefficient will be used in the regression function for μ. In
this case, the estimated value of μ is merely equal to the estimated value of this
intercept coefficient, as can be easily seen in (4). mu() is required.

noconstant specifies that no intercept is included in the linear regression functions for
ln y0 and μ.
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cure specifies that the model to be fit is a threshold regression cure-rate model. See
section 7 for details about this model.

lgtp(varlist) specifies independent variables that will be used in the linear regression
function for lgtp() in the threshold regression cure-rate model. This lgtp() option
can be used only when the cure option is used.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

init(string) specifies initialization values of the regression coefficients in maximum
likelihood iterations. The syntax is the same as ml init, which is the command to
set initial values in the maximum likelihood estimation routine of Stata.

nolog specifies that the iteration log of the log likelihood not be displayed.

maximize options: iterate(#),
[
no
]
log, trace, tolerance(#), ltolerance(#),

nrtolerance(#), and nonrtolerance; see [R] maximize. These options are sel-
dom used.

3.4 Saved results of stthreg

stthreg saves the following in e():

Scalars
e(N) number of observations e(chi2) χ2

e(df m) model degrees of freedom e(p) significance
e(ll) log likelihood

Macros
e(cmd) stthreg e(ml method) type of ml method
e(depvar) name of dependent variable e(technique) maximization technique
e(chi2type) Wald or LR; type of model e(crittype) optimization criterion

chi-squared test e(properties) b V
e(vce) oim e(predict) program used to implement
e(opt) type of optimization predict

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of

the estimators

Functions
e(sample) marks estimation sample

3.5 Melanoma dataset

We use melanoma.dta to illustrate how to use the stthreg package of commands.
melanoma.dta is originally from Drzewiecki and Andersen (1982). It contains observa-
tions retrieved from case records for 205 melanoma patients. These 205 patients, who
were all in clinical stage I, were treated at the Plastic Surgery Unit in Odense from 1964
to 1973. Follow-up was terminated on January 1, 1978. Some patients died during the
study period, but others were still alive at the end of the study and thus were consid-
ered to be right-censored observations in our analysis. Eight variables are included in



T. Xiao, G. A. Whitmore, X. He, and M.-L. T. Lee 267

this dataset to illustrate the use of the stthreg command: survtime (on-study time in
days), status (0 = censored, 1 = death), sex (0 = female, 1 = male), ici (degree of
inflammatory cell infiltrate), ecells (epithelioid cell type), ulcerat (ulceration), thick
(tumor thickness), and age (in years).

. use melanoma, clear

. describe

Contains data from melanoma.dta
obs: 205
vars: 8 27 Apr 2008 14:21
size: 6,560

storage display value
variable name type format label variable label

sex float %9.0g sex
survtime float %9.0g survival time
status float %9.0g status status at end of follow-up
ici float %9.0g ici degree of ici
ecells float %9.0g ecells epitheloid cells
ulcerat float %9.0g ulcerat ulceration
thick float %9.0g tumor thickness (1/100 mm)
age float %9.0g age in years

Sorted by:

. stset survtime, failure(status)

failure event: status != 0 & status < .
obs. time interval: (0, survtime]
exit on or before: failure

205 total obs.
0 exclusions

205 obs. remaining, representing
57 failures in single record/single failure data

441324 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 5565

3.6 Example of stthreg

Before using stthreg, you must stset the data as we have already done in section 3.5.
Below we will run the stthreg command on melanoma.dta. Each of the two parameters
of the underlying Wiener process, ln y0 and μ, are linked to the covariates thick, age,
and sex by the lny0() and mu() options. Note that both ln y0 and μ are linked to the
same covariates in this example, while they can be linked to different covariates in other
contexts.



268 Threshold regression

Deciding which covariates influence ln y0 and μ requires subject matter knowledge
and does not adhere to a simple general rule. Covariates linked to ln y0 are those that
influence the initial health state, such as baseline characteristics. Covariates linked to μ
often include baseline characteristics but also covariates (such as treatment effects) that
affect the drift in health over time. See Lee and Whitmore (2010) for relevant discussion
of this issue.

The stthreg command to fit this threshold regression model is given below:

. xi: stthreg, lny0(sex ecells thick age i.ulcerat)
> mu(sex ecells thick age i.ulcerat)
i.ulcerat _Iulcerat_0-1 (naturally coded; _Iulcerat_0 omitted)

failure _d: status
analysis time _t: survtime

initial: log likelihood = -1243.6028
alternative: log likelihood = -9621.3647
rescale: log likelihood = -1081.5328
rescale eq: log likelihood = -573.47172
Iteration 0: log likelihood = -573.47172
Iteration 1: log likelihood = -538.3778
Iteration 2: log likelihood = -531.08833
Iteration 3: log likelihood = -530.83209
Iteration 4: log likelihood = -530.83114
Iteration 5: log likelihood = -530.83114
ml model estimated; type -ml display- to display results

Threshold Regression Estimates Number of obs = 205
Wald chi2(10) = 64.94

Log likelihood = -530.83114 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lny0
sex .1070979 .1724429 0.62 0.535 -.2308839 .4450797

ecells .3300398 .194412 1.70 0.090 -.0510008 .7110804
thick -.0737792 .0333807 -2.21 0.027 -.1392043 -.0083542

age .0077415 .0042245 1.83 0.067 -.0005384 .0160215
_Iulcerat_1 -.5143228 .2165787 -2.37 0.018 -.9388093 -.0898363

_cons 3.803575 .3145534 12.09 0.000 3.187061 4.420088

mu
sex -.0120426 .0073686 -1.63 0.102 -.0264849 .0023996

ecells -.0224773 .0083094 -2.71 0.007 -.0387633 -.0061912
thick .0005888 .0012388 0.48 0.635 -.0018392 .0030167

age -.000579 .0002101 -2.76 0.006 -.0009908 -.0001672
_Iulcerat_1 -.0000191 .0083654 -0.00 0.998 -.016415 .0163768

_cons .0462283 .0143098 3.23 0.001 .0181816 .0742751
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4 trhr: The postestimation command to calculate hazard
ratios

4.1 Introduction to trhr

trhr is a postestimation command to calculate hazard ratios based on the threshold
regression model fit by stthreg in advance. That is, suppose that a set of predictor
variables {Z1, . . . , Zk−1, G} has been used to predict ln y0 and μ in the threshold re-
gression model by using stthreg, where G is a categorical variable. We can then use
trhr to estimate the hazard ratio of level G = g over the reference level G = 0 at given
values of other predictors, Z1 = z1, . . . , Zk−1 = zk−1, and a given value of time t = t0.
We state as follows how such a hazard ratio is calculated. First, we need to estimate
the hazard value for level G = g at Z1 = z1, . . . , Zk−1 = zk−1 and time t = t0. Set

(zg)′ = (1, z1, . . . , zk−1, g) (6)

Then ln y0 and μ can be estimated for the given (zg)′ in (6) as

ln ŷg
0 = (zg)′γ̂ (7)

μ̂g = (zg)′β̂ (8)

where γ̂ and β̂ are vectors of regression coefficients already estimated by stthreg (see
section 3.1). Furthermore, the estimates of the density, survival, and hazard functions
at time t0 are given as

f (t0|μ̂g, ŷg
0) (9)

S (t0|μ̂g, ŷg
0) = 1 − F (t0|μ̂g, ŷg

0) (10)

h (t0|μ̂g, ŷg
0) =

f (t0|μ̂g, ŷg
0)

S(t0|μ̂g, ŷg
0)

=
f(t0|μ̂g, ŷg

0)
1 − F (t0|μ̂g, ŷg

0)
(11)

where f(·) and F (·) are given in (1) and (2), with σ2 set to 1, and y0 and μ replaced by
their estimates in level g. If we change the nonreference level g to the reference level 0
in (6), we can obtain f(t0|μ̂0, ŷ0

0), S(t0|μ̂0, ŷ0
0), and h(t0|μ̂0, ŷ0

0) by the same means. The
hazard ratio of level G = g over level G = 0 at Z1 = z1, . . . , Zk−1 = zk−1 and time
t = t0 is therefore

Hazard Ratio =
h(t0|μ̂g, ŷg

0)
h(t0|μ̂0, ŷ0

0)
(12)

Using the formulas above, trhr estimates the hazard ratios for a categorical variable
with three options: var(), timevalue(), and scenario(). The var() option specifies
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the name of the categorical variable for which the hazard ratios are to be calculated.
Note that a prerequisite for the execution of trhr is that the categorical variable speci-
fied in the var() option needs to have been expanded into a dummy-variable set by the
xi command (see [R] xi), which can be placed ahead of the previous stthreg command.
The timevalue() option specifies the desired time values at which the hazard ratios
are to be calculated. And the scenario() option specifies the values of all predictors
except G. A setting of these values is referred to as a scenario. The calculated hazard
ratios are with reference to the specified scenario. We do not need to specify a level
value for the categorical G in the scenario() option because all nonreference levels g
of G are enumerated in calculating hazard ratios relative to the reference level 0. The
reference level or the nonreference levels are decided by the xi command, and that is
why xi is needed before trhr is run. By default, the lowest level is used as the reference
level by xi.

Following the notation from (6) to (12), trhr calculates the hazard ratio of level
G = g over level G = 0 with the following command: trhr, var(G) scenario(Z1 =
z1 · · ·Zk−1 = zk−1) timevalue(t0). If the threshold regression model has categorical
predictors other than G being fit by stthreg and if the user has also expanded some
of these categorical predictors to sets of dummy variables by using “i.”, then the user
needs to provide the values of all the created dummy variables instead of the values of the
corresponding original categorical variables in the scenario() option when calculating
the hazard ratios for G. That is because trhr will use these dummy variables, instead
of the original categorical variables, as predictors in calculations. In the scenario()
option, the order of presentation of the predictors does not matter, and the terms in
this option are separated by blanks. If G is the only predictor in the model specified by
stthreg (G also needs to be expanded by xi in this case), then the scenario() option
is not necessary because there is no predictor that needs to be specified for the scenario
value (the levels of G will still be enumerated to calculate the hazard ratios for G in
this case).

Note that if trhr is used after a threshold regression cure-rate model is fit by
stthreg, all the calculations by trhr then automatically correspond to the thresh-
old regression cure-rate model. See section 7 for details about the threshold regression
cure-rate model.

4.2 Syntax of trhr

trhr, var(varname) timevalue(numlist)
[
scenario(string)

graph(hz | sv | ds | hr) graphopt(string) ci bootstrap(#) level keep

prefix(string)
]
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4.3 Options

var(varname) specifies the name of the categorical variable for the calculation of hazard
ratios. var() is required.

timevalue(numlist) specifies the desired values of time at which the hazard ratios be
calculated (for the use of numlist, see [U] 11.1.8 numlist). timevalue() is required.

scenario(string) must be used if any covariates other than the categorical variable
specified in var() are also included in the threshold regression model fit by the
stthreg command. The scenario() option is to assign values to those covariates
by equations, one by one and separated by a blank space. The scenario() option
is to set up a scenario at which hazard ratios are to be calculated.

graph(hz | sv | ds | hr) specifies the type of curves to be generated. The graph(hz)
option is to plot hazard function curves, the graph(sv) option is to plot survival
function curves, the graph(ds) option is to plot density function curves, and the
graph(hr) option is to plot a hazard-ratio tendency plot over the specified time
points.

graphopt(string) specifies the graph settings (titles, legends, etc.). If this option is
used, the default graph settings in the trhr command will be ignored, and the styles
(such as titles, legends, and labels) of the output graphs completely depend on the
options provided in graphopt(). Because the line command in Stata is used in the
trhr command to plot curves, any options suitable for the line command can be
used in the graphopt() option to produce desired graphic styles.

ci specifies to output the bootstrap percentile confidence interval of the estimated
hazard-ratio value. By default, 2,000 bootstrap replications will be performed and
the confidence level is 95%.

bootstrap(#) specifies the number of bootstrap replications. The default is
bootstrap(2000).

level(#) sets the confidence level of the bootstrap percentile confidence interval of the
hazard-ratio value; the default is level(95).

keep saves the estimated hazard-ratio values of specified time points in the current
dataset. The specified time values are saved under a new variable with the name
hr t; the hazard-ratio values are saved under a new variable name that begins with
hr and ends with the name of the corresponding dummy variable. If the ci option
is used, then the lower and upper limit values of the confidence intervals will also be
saved under two new variable names that begin with hrll and hrul, respectively,
and end with the name of the corresponding dummy variable.

prefix(string) specifies a string that will be attached to the head of the names of the
new variables generated by the keep option.
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4.4 Example of trhr

The following command estimates the hazard-ratio value for the two levels of the
ulcerat variable at time 4,000 for a subject with these features: sex=0, ecells=0,
thick=12, and age=40.

. set seed 1

. trhr, var(ulcerat) timevalue(4000) scenario(sex=0 ecells=0 thick=12 age=40) ci

(running stthreg on estimation sample)

Bootstrap replications (2000)
1 2 3 4 5

.................................................. 50

.................................................. 100

(output omitted )

.................................................. 1950

.................................................. 2000

Hazard Ratio for Scenario sex=0 ecells=0 thick=12 age=40, at Time = 4000

var Hazard Ratio [95% Percentile C.I.]

_Iulcerat_1 1.1206067911 .05079897 46.630562

5 trpredict: The postestimation command for predic-
tions

5.1 Introduction to trpredict

After a threshold regression model is fit by stthreg, we can use the command trpredict
to predict the initial health status value y0, the drift value of the health process μ,
the probability density function of the survival time f(t|μ, y0), the survival function
S(t|μ, y0), and the hazard function h(t|μ, y0) for a specified scenario, as we did in calcu-
lating the hazard ratios in section 4.1 where hazard function values at a specified time
point are predicted and are used to calculate the corresponding hazard-ratio values. To
specify the scenario values, use the scenario() option. Note that in the scenario() op-
tion, we need to provide the scenario values of all predictors (including dummy-variable
predictors) specified in the previous stthreg command. This is a little bit different
from the scenario() option in the trhr command, where we do not need to provide
the scenario values for the dummy variables expanded from the categorical variable G
for which the hazard ratios are calculated. Again the reason is that the program will
automatically enumerate all levels of G.

Also we can predict those quantities for the scenario values and on-study time values
corresponding to each subject in the dataset (this use is similar to the predict command
in Stata). Following equations from (7) to (11), we can see that when the elements of
z in (7) and (8) are set to be the corresponding covariate values of a subject, and when
t in (9), (10), and (11) is set to the on-study time of this subject, we can calculate
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the predicted values ln ŷ0 (and hence ŷ0), μ̂, f(t|μ̂, ŷ0), S(t|μ̂, ŷ0), and h(t|μ̂, ŷ0) for
this subject by using the regression coefficient estimates γ̂ and β̂. Then by applying
this procedure to each subject in the dataset we obtain those predicted values for each
subject.

Note that after running the trpredict command, the following six variables will
be added to the current dataset: lny0, y0, mu, f, S, and h. These six variables, re-
spectively, correspond to ln ŷ0, ŷ0, μ̂, f(t|μ̂, ŷ0), S(t|μ̂, ŷ0), and h(t|μ̂, ŷ0). The option
prefix(string) is used to add a specified prefix string to the default names of those six
variables. Also note that if the trpredict command is run after fitting a threshold re-
gression cure-rate model by using the cure option in stthreg, then two more variables,
lgtp and p, in addition to the six variables above, will be added to the current dataset.
These two variables correspond to the estimate of the logit of p and the estimate of p,
where p is the susceptibility rate. See section 7 for details of the threshold regression
cure-rate model.

5.2 Syntax of trpredict

trpredict
[
, prefix(string) scenario(string) replace

]
5.3 Options

prefix(string) specifies a prefix string that will be attached to the names of the six
new variables generated by the trpredict command. For example, if prefix(abc )
is used, then the names of the six variables will be abc lny0, abc y0, abc mu, abc f,
abc S, and abc h.

scenario(string) specifies a scenario for which the predictions are calculated by using
the standard threshold regression model or the threshold regression cure-rate model
fit previously. Note that specifying a scenario means specifying the values of the
predictors in the standard threshold regression model or the threshold regression
cure-rate model fit previously.

replace is used to force replacement of the variables (in the current dataset) with the
same names as the six (or eight) new prediction variables without warning.

5.4 Example of trpredict

Below we first use two trpredict commands to predict the six quantities {(ln ŷ0, ŷ0,
μ̂, f(t|μ̂, ŷ0), S(t|μ̂, ŷ0), and h(t|μ̂, ŷ0)} for two different scenarios (scenario 1:
Iulcerat 1=0, ecells=0, thick=12, age=40, and sex=0; scenario 2: Iulcerat 1=1,
ecells=0, thick=12, age=30, and sex=1). Then we use the line commands to overlay
the predicted survival curves to compare these two scenarios (see figure 7).
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. trpredict, scenario(_Iulcerat_1=0 ecells=0 thick=12 age=40 sex=0)
> prefix(Scenario1_) replace

. trpredict, scenario(_Iulcerat_1=1 ecells=0 thick=12 age=30 sex=1) prefix(Scen
> ario2_) replace

. twoway line Scenario1_S _t || line Scenario2_S _t,
> title("Scenario Comparison") ytitle("Predicted Survival Function")
> xtitle("Analysis Time (Days)")
> text(.85 3500 "_Iulcerat_1=0, ecells=0, thick=12, age=40, sex=0")
> text(.6 3500 "_Iulcerat_1=1, ecells=0, thick=12, age=30, sex=1")

_Iulcerat_1=0, ecells=0, thick=12, age=40, sex=0

_Iulcerat_1=1, ecells=0, thick=12, age=30, sex=1
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Figure 7. Predicted survival functions for two different scenarios by threshold regression

6 sttrkm: The model diagnostic command

6.1 Introduction to sttrkm

For a categorical independent variable, the Kaplan–Meier nonparametric survival curve
can be plotted for each categorical level of this variable. If we include such a categorical
independent variable as the only predictor in the threshold regression, survival curves
for each level can also be predicted parametrically by the threshold regression model
(see section 5.1). The command sttrkm overlays these two types of curves and provides
a graphic goodness-of-fit diagnosis of the threshold regression model. The closer the
Kaplan–Meier nonparametric survival curves are to the predicted curves, the better the
threshold regression model fits the data with this variable. A counterpart command for
the Cox model is stcoxkm. Note that unlike trhr and trpredict, the sttrkm command
is not a postestimation command, and hence the estimation command stthreg is not
required before the sttrkm command. However, you must stset your data before using
sttrkm.
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6.2 Syntax of sttrkm

sttrkm
[
if
] [

, lny0(varname) mu(varname) cure lgtp(varname) noshow

separate obsopts(sttrkm plot options) obs#opts(sttrkm plot options)

predopts(sttrkm plot options) pred#opts(sttrkm plot options) addplot(plot)

twoway options byopts(byopts)
]

6.3 Options

lny0(varname) specifies the categorical predictor that will be used in the linear regres-
sion function for ln y0 in the threshold regression model. Note that either lny0() or
mu() (see below) can be omitted if you do not want to use this categorical predictor
for either ln y0 or μ in the threshold regression model. However, if both lny0() and
mu() are used, the categorical predictor specified in these two options must be the
same.

mu(varname) specifies the categorical predictor that will be used in the linear regression
function for μ in the threshold regression model.

cure is used to diagnose the goodness of fit of a threshold regression cure-rate model.
See section 7 for details of this model.

lgtp(varname) specifies the categorical predictor that will be used in the linear regres-
sion function for lgtp() in the threshold regression cure-rate model. This lgtp()
option can be used only when the cure option is used. Note that when cure is used,
lny0(), mu(), or lgtp() can be omitted if you do not want to use this categorical
predictor for ln y0, μ, or lgtp() in the threshold regression cure-rate model. How-
ever, if any of these three options is used, the categorical predictor specified in these
options must be the same.

noshow specifies to not show st setting information.

separate specifies to draw separate plots for predicted and observed curves.

obsopts(sttrkm plot options) affects rendition of the observed curve.

obs#opts(sttrkm plot options) affects rendition of the #th observed curve; not allowed
with separate.

predopts(sttrkm plot options) affects rendition of the predicted curve.

pred#opts(sttrkm plot options) affects rendition of the #th predicted curve; not al-
lowed with separate.

addplot(plot) specifies other plots to add to the generated graph.

twoway options are any options documented in [G-3] twoway options.

byopts(byopts) specifies how subgraphs are combined, labeled, etc.
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6.4 Example of sttrkm

Below we use the sttrkm command to overlay the threshold regression predicted survival
curves with the Kaplan–Meier observed survival curves for each level of the ici variable.
We used the separate option of the sttrkm command to separate the plots for different
levels of ici. The generated graph is shown in figure 8.

. sttrkm, lny0(ici) mu(ici) noshow separate
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Figure 8. Threshold regression predicted plot versus Kaplan–Meier plot by the ici
variable for the melanoma data

7 Threshold regression cure-rate model

7.1 Introduction to threshold regression cure-rate model

As mentioned in section 1, the Wiener process has probability P (FHT = ∞) = 1 −
exp(−2y0μ/σ2) that it will never hit the boundary at zero if it is drifting away from the
boundary, that is, if μ > 0. We now denote this probability by 1 − p0. When hitting
the boundary represents a medical failure, p0 is sometimes called the susceptibility rate
and 1 − p0 the nonsusceptibility rate or cure rate. The former is the proportion of the
population that would eventually experience the medical failure if given enough time,
while the latter is the proportion that is cured and will never experience the medical
failure.

The preceding susceptibility rate p0 is determined by the parameter values of the
Wiener model when μ > 0. Research populations, however, often have proportions of
susceptible and nonsusceptible individuals that do not correspond to p0 and 1 − p0.
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In this common situation, it is better to let the susceptibility rate be a free parame-
ter that is independently linked to covariates in the threshold regression model. We
will use p to denote this mathematically independent susceptibility rate and use 1 − p
to denote the corresponding cure rate. We therefore enrich the threshold regression
model with an additional parameter p. Specifically, we replace the probability density
function f(t|μ, σ2, y0) in (1) by pf(t|μ, σ2, y0) and the cumulative distribution function
F (t|μ, σ2, y0) in (2) by pF (t|μ, σ2, y0). Note that the probability density function inte-
grates to p in this case and therefore is improper. We link the log-odds ratio or logit of
p to a linear combination of covariates, as follows:

logit(p) = log
(

p

1 − p

)
= λ0 + λ1Z1 + · · · + λkZk = Z′λ

We continue to set the variance parameter σ2 of the Wiener process to 1. Hence the log-
likelihood function for this enriched threshold regression model is the following extension
of (5):

ln L(β,γ,λ) =
n1∑
i=1

ln p(i)f
(
t(i)|μ(i), y

(i)
0

)
+

n∑
j=n1+1

ln
{

1 − p(j)F
(
t(j)|μ(j), y

(j)
0

)}
We call this enriched threshold regression model the threshold regression cure-rate
model. The stthreg package can also be used for the threshold regression cure-rate
model, and the commands are summarized as follows:

• stthreg: The cure option is used to fit a threshold regression cure-rate model;
when the cure option is used, the lgtp() option is enabled and can be used to
specify independent variables that will be used in the linear regression function
for lgtp in the threshold regression cure-rate model.

• trhr: When used after stthreg that fits a threshold regression cure-rate model,
all the results produced by trhr will correspond to the threshold regression cure-
rate model.

• trpredict: When used after stthreg that fits a threshold regression cure-rate
model, all the results produced by trpredict will correspond to the threshold
regression cure-rate model.

• sttrkm: The cure option is used to diagnose the goodness of fit of a threshold
regression cure-rate model; when the cure option is used, the lgtp() option is
enabled and can be used to specify the categorical predictor that will be used in
the linear regression function for lgtp in the threshold regression cure-rate model.
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7.2 Kidney dataset

In the next section, we use kidney.dta to illustrate how to use the four commands
for the threshold regression cure-rate model. The kidney dialysis dataset (kidney.dta)
is taken from Nahman et al. (1992) and analyzed by Klein and Moeschberger (2003).
The dataset considers the time to first exit-site infection (in months) in patients with
renal insufficiency. Two groups of patients are compared: patients who used a surgically
placed catheter and patients who used a percutaneous placed catheter. There are three
variables in the dataset—time, infection, and group. The variable time records the
on-study time; infection indicates whether the time is an event time (infection = 1)
or a right-censoring time (infection = 0) for each observation; and group indicates
which group the observation is in (1 = surgical group, 2 = percutaneous group).

. use kidney, clear

. describe

Contains data from kidney.dta
obs: 119
vars: 3 27 Jan 2008 03:49
size: 714

storage display value
variable name type format label variable label

time float %9.0g Time to infection (months)
infection byte %8.0g Infection indicator (0=no, 1=yes)
group byte %8.0g group Catheter placement (1=surgically,

2=percutaneously)

Sorted by:

. stset time, failure(infection)

failure event: infection != 0 & infection < .
obs. time interval: (0, time]
exit on or before: failure

119 total obs.
0 exclusions

119 obs. remaining, representing
26 failures in single record/single failure data

1092.5 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 28.5
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7.3 Examples for the threshold regression cure-rate model

The following four commands generate figures 9 to 11 for kidney.dta.

. sts, by(group) noshow

. stcoxkm, by(group) noshow separate title("Cox Predicted vs. Observed")

. sttrkm, lny0(group) mu(group) noshow separate
> title("TR Predicted vs. Observed")

. sttrkm, lny0(group) mu(group) lgtp(group) cure noshow separate
> title("TRC Predicted vs. Observed")
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Figure 9. Kaplan–Meier plot by the
group variable for the kidney data
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Figure 10. Cox predicted plot versus
Kaplan–Meier plot by the group vari-
able for the kidney data
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Figure 11. Threshold regression pre-
dicted plot versus Kaplan–Meier plot
by the group variable for the kidney
data
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Figure 12. Threshold regression
cure-rate model predicted plot versus
Kaplan–Meier plot by the group vari-
able for the kidney data

Figure 9 shows the Kaplan–Meier survival curves for the two groups. The two
survival curves can be seen to cross each other. Before a time point around month 8, the
estimated survival probability (infection-free probability) of the surgical group is higher
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than that of the percutaneous group; after that time point, however, the estimated
survival probability of the surgical group falls away relative to that of the percutaneous
group. The crossing survival curves suggest that the proportional-hazards assumption
does not hold. The violation of the PH assumption can also be diagnosed from a graph
generated by the stphplot command (graph not shown).

In figure 10, we use the stcoxkm command to overlay the Cox predicted survival
curves and the Kaplan–Meier survival curves. As expected, the curves do not match
well. In figure 11, we use the sttrkm command to overlay the threshold regression
predicted survival curves and the Kaplan–Meier survival curves. Clearly, compared
with the Cox predicted curves (figure 10), the threshold regression predicted curves
(figure 11) match the Kaplan–Meier curves better. This application of sttrkm produces
a positive estimate for μ of 0.542 for the percutaneous group (the regression output is
not shown). The susceptibility rate p0 for this group is estimated to be 0.219, and
hence the estimated cure rate is 1 − 0.219 = 0.781. The threshold regression predicted
curve is slightly miscalibrated for the percutaneous group in this application of standard
threshold regression.

To improve the fit, we switch to the threshold regression cure-rate model. We use
the cure and lgtp(group) options inside the sttrkm command to overlay the threshold
regression cure-rate model predicted curves and the Kaplan–Meier curves in figure 12.
There is a noticeable improvement in fit for the percutaneous group when compared
with figure 11. The output for this last threshold regression analysis appears momen-
tarily. The susceptibility rate p, when estimated as a free parameter, is 0.244 for the
percutaneous group. Twice the difference of the maximum log-likelihood values for the
standard and cure-rate models gives 2[−114.4747 − (−116.4909)] = 4.032. Comparison
of this test statistic with a χ2

1 distribution gives a p-value of 0.045, which suggests that
p0 and p differ at the 0.05 significance level.

Next we illustrate how to use the stthreg and trhr commands for the threshold
regression cure-rate model. In stthreg, we specify the cure option to fit a thresh-
old regression cure-rate model. In addition to the lny0() and mu() options, we also
use the lgtp() option to incorporate the group independent variable in the logit link
function for the lgtp() parameter in this threshold regression cure-rate model. The
trhr command is used after the stthreg command to calculate the hazard-ratio values
at month 2 and month 20, based on the threshold regression cure-rate model fit by
stthreg.

. xi: stthreg, lny0(i.group) mu(i.group) lgtp(i.group) cure
i.group _Igroup_1-2 (naturally coded; _Igroup_1 omitted)

failure _d: infection
analysis time _t: time

initial: log likelihood = -141.26094
alternative: log likelihood = -154.434
rescale: log likelihood = -137.01023
rescale eq: log likelihood = -130.91466
Iteration 0: log likelihood = -130.91466 (not concave)
Iteration 1: log likelihood = -124.57115
Iteration 2: log likelihood = -116.61429
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Iteration 3: log likelihood = -114.87662
Iteration 4: log likelihood = -114.6138
Iteration 5: log likelihood = -114.51506
Iteration 6: log likelihood = -114.48821
Iteration 7: log likelihood = -114.47805
Iteration 8: log likelihood = -114.47546
Iteration 9: log likelihood = -114.47485
Iteration 10: log likelihood = -114.47474
Iteration 11: log likelihood = -114.47471
Iteration 12: log likelihood = -114.4747
ml model estimated; type -ml display- to display results

Threshold Regression Cure Rate Model Estimates Number of obs = 119
Wald chi2(3) = 30.34

Log likelihood = -114.4747 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lny0
_Igroup_2 -1.297609 .2357168 -5.50 0.000 -1.759606 -.835613

_cons 1.411293 .1434588 9.84 0.000 1.130119 1.692467

mu
_Igroup_2 .0958833 .3969795 0.24 0.809 -.6821821 .8739488

_cons -.095869 .0764876 -1.25 0.210 -.2457819 .054044

lgtp
_Igroup_2 -14.90171 958.0936 -0.02 0.988 -1892.731 1862.927

_cons 13.76995 958.0933 0.01 0.989 -1864.058 1891.598

. trhr, var(group) timevalue(2 20)

Hazard Ratio for Scenario , at Time = 2

var Hazard Ratio

_Igroup_2 2.4673714479

Hazard Ratio for Scenario , at Time = 20

var Hazard Ratio

_Igroup_2 .04444226172

Finally, we use two trpredict commands to predict the eight quantities [ln ŷ0, ŷ0, μ̂,
l̂gtp, p̂, f(t|μ̂, ŷ0), S(t|μ̂, ŷ0), and h(t|μ̂, ŷ0)] by this threshold regression cure-rate model
for the two scenarios: group=surgical and group=percutaneous. For example, the
estimates for y0 for the surgical group and the percutaneous group are 4.101 and 1.120,
respectively. The estimates indicate that patients in the surgical group have a much
higher initial health status than those in the percutaneous group. The estimates for the
susceptibility rate p for the surgical group and the percutaneous group in the research
population are 1 and 0.244, respectively. And hence the estimates for the cure rate 1−p
for these two groups in the research population are 0 and 0.756, respectively.

. trpredict, scenario(_Igroup_2=0) prefix(Surgical_) replace

. trpredict, scenario(_Igroup_2=1) prefix(Percutaneous_) replace
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8 Conclusion

In this article, we introduced a package to implement threshold regression in Stata.
Threshold regression is a newly developed methodology in the area of survival-data
analysis. Applications of threshold regression can be carried out easily with the help of
our package.
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