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What hypotheses do “nonparametric”
two-group tests actually test?

Ronán M. Conroy
Royal College of Surgeons in Ireland

Dublin, Ireland
rconroy@rcsi.ie

Abstract. In this article, I discuss measures of effect size for two-group compar-
isons where data are not appropriately analyzed by least-squares methods. The
Mann–Whitney test calculates a statistic that is a very useful measure of effect
size, particularly suited to situations in which differences are measured on scales
that either are ordinal or use arbitrary scale units. Both the difference in medians
and the median difference between groups are also useful measures of effect size.

Keywords: st0253, ranksum, Wilcoxon rank-sum test, Mann–Whitney statistic,
Hodges–Lehman median shift, effect size, qreg

1 Introduction

It is a common fallacy that the Mann–Whitney test, more properly known as the
Wilcoxon rank-sum test and also known as the Mann–Whitney–Wilcoxon test, is a test
for equality of medians. Many of its users are probably unaware that the test calculates
a useful parameter (and therefore should not be called “nonparametric”) that is often
of more practical interest than the difference between two means.

I will use an extreme case to illustrate the tests available to compare two groups
and, in particular, the procedures that examine differences in medians.

I will use a dataset that is deliberately constructed so that the medians of two
groups are equal but with distributions skewed in opposite directions. Although this is
an extreme case, you should bear in mind that differences between two groups in the
shape of underlying distributions will have consequences in the same direction, albeit
smaller than the ones illustrated here.

c© 2012 StataCorp LP st0253
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The dataset is as follows:

. list

group value

1. 0 5
2. 0 5
3. 0 5
4. 0 5
5. 0 5

6. 0 5
7. 0 7
8. 0 8
9. 0 9
10. 0 10

11. 1 1
12. 1 2
13. 1 3
14. 1 4
15. 1 5

16. 1 5
17. 1 5
18. 1 5
19. 1 5
20. 1 5

2 The Mann–Whitney test

Both groups have a median of 5, but group 0 has no values less than 5 and group 1 has
no values greater than 5. We can confirm that the medians are the same by using the
table command:

. table group, contents(p50 value)

group med(value)

0 5
1 5
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Next we run the Wilcoxon rank-sum test (Mann–Whitney test):

. ranksum value, by(group)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

group obs rank sum expected

0 10 137 105
1 10 73 105

combined 20 210 210

unadjusted variance 175.00
adjustment for ties -37.63

adjusted variance 137.37

Ho: value(group==0) = value(group==1)
z = 2.730

Prob > |z| = 0.0063

The test gives a highly significant difference between the two groups. Clearly, the
test cannot be testing the hypothesis of equal medians, so what hypothesis does it test?
We can see the answer by adding the porder option.

. ranksum value, by(group) porder

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

group obs rank sum expected

0 10 137 105
1 10 73 105

combined 20 210 210

unadjusted variance 175.00
adjustment for ties -37.63

adjusted variance 137.37

Ho: value(group==0) = value(group==1)
z = 2.730

Prob > |z| = 0.0063

P{value(group==0) > value(group==1)} = 0.820

3 The Mann–Whitney statistic: A useful measure of ef-
fect size

The last line of the output states that the probability of an observation in group 0
having a true value that is higher than an observation in group 1 is 82%. In reality,
the limitations of measurement scales will often produce cases where the two values are
tied. So the parameter is calculated on the basis of the percentage of cases in which a
random observation from group 0 is higher than a random observation from group 1,
plus half the probability that the values are tied (on the rationale that if the values are
tied, the true value is greater in group 1 in half the randomly selected pairs and greater
in group 2 in the other half of them).
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This parameter forms the basis of the Mann–Whitney test, a parameter that is a
very useful measure of effect size in many situations. A researcher will frequently be
faced with a measurement scale that either is not interval in nature (such as a five-
point ordered scale) or has no naturally defined underlying measurement units. Typical
examples of the latter are scales to measure moods, attitudes, aptitudes, and quality
of life. In such cases, presenting mean differences between groups is uninformative.
The Mann–Whitney statistic, on the other hand, is highly informative. It tells us the
likelihood that a member of one group will score higher than a member of the other
group (with the caveat above about the interpretation of tied values). In the analysis of
controlled treatment trials, this measure is equivalent to the probability that a person
assigned to the treatment group will have a better outcome than a person assigned to
the control group. Using this can overcome the problem of many outcome scales used
in assessing treatments being measured in arbitrary units.

The statistic has a long history of being rediscovered and, consequently, goes under
a variety of names. The history dates back to the original articles in which Wilcoxon
(1945, 1950) described the test. He failed to give the test a name and failed to spec-
ify the hypothesis it tested. The importance of the article by Mann and Whitney
(1947) is that they made the hypothesis explicit: their article is entitled “On a test
of whether one of two random variables is stochastically larger than the other”. How-
ever, the statistic they actually calculated in the article, U, is not the probability that
one variable is larger than the other. Birnbaum (1956) pointed out that transforming
U by dividing it by its maximum value resulted in a useful measure, but he failed to
name the measure. In 1976, Herrnstein proposed the transformation, but the article
(Herrnstein, Loveland, and Cable 1976) appeared in an animal psychology journal, and
his proposal to assign the letter rho to the transformed value was extremely unoriginal.

Perhaps as a result, the literature is now replete with statistics that are nothing
other than Mann–Whitney statistics under other names. Bross (1958), setting out the
calculation and use of ridit statistics, noted that the mean ridit score for a group was the
probability that an observation from that group would be higher than an observation
from a reference population. Harrell’s C statistic, which is a measure of the difference
between two survival distributions, is a special case of the Mann–Whitney statistic,
and indeed, in the absence of censored data, it reduces to the Mann–Whitney statistic
(Koziol and Jia 2009). Likewise, the tendency to refer to the Mann–Whitney statistic
as the area under the receiver operator characteristic curve is common in literature
evaluating diagnostic and screening tests in medicine, and is extremely unhelpful. The
name entirely obscures what the test actually tells us, which is the probability that a
person with the disorder or condition will score higher on the test than a person without
it. The area under the receiver operator characteristic curve has been proposed as a
measure of effect size in clinical trials (Brumback, Pepe, and Alonzo 2006), which would
extend the bafflement to a new population of readers.

As a measure of effect size, the Mann–Whitney statistic has been renamed not
once, but repeatedly, and with willful obstinacy. McGraw and Wong (1992) proposed
what they called “a common language effect size” that was none other than the Mann–
Whitney statistic. The measure was generalized by Vargha and Delaney (2000), who in
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the process renamed it the measure of stochastic superiority. It has since been further
generalized by Ruscio (2008), who renamed the statistic A. He points out that it is
insensitive to base rates and more robust to several other factors (for example, extreme
scores and nonlinear transformations), in addition to its excellent generalizability across
contexts. Finally, Acion et al. (2006) rebranded it the “Probabilistic index”; they
advocated it as an intuitive nonparametric approach to measuring the size of treatment
effects.

Stata users can use the ranksum command to calculate the Mann–Whitney statistic.
More usefully, Newson’s (1998) package somersd provides confidence intervals. Newson
named the statistic “Harrell’s C”.

. somersd group value, transf(c) tdist
Somers´ D with variable: group
Transformation: Harrell´s c
Valid observations: 20
Degrees of freedom: 19

Symmetric 95% CI for Harrell´s c

Jackknife
group Coef. Std. Err. t P>|t| [95% Conf. Interval]

value .18 .0711805 2.53 0.020 .0310175 .3289825

Note that the output of somersd will have to be manipulated in this case to provide
the statistic comparing the higher and lower groups. It reports the probability that an
observation in the first group will be higher than an observation in the second group.
A simple way to overcome this is to reverse the group codes by using Cox’s (2003)
vreverse, one of several user-written commands to reverse variables (like all user-
written commands, it may be located and installed within Stata by using the findit
command).

. vreverse group, generate(r_group)
note: group not labeled

. somersd r_group value, transf(c) tdist
Somers´ D with variable: r_group
Transformation: Harrell´s c
Valid observations: 20
Degrees of freedom: 19

Symmetric 95% CI for Harrell´s c

Jackknife
r_group Coef. Std. Err. t P>|t| [95% Conf. Interval]

value .82 .0711805 11.52 0.000 .6710175 .9689825

This accords with the earlier output from ranksum but has the added advantage of
presenting us with a useful confidence interval.
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4 How and when to test medians

The Mann–Whitney test is a test for equality of medians only under the very strong
assumption that both of the two distributions are symmetrical about their respective
medians or, in the case of asymmetric distributions, that the distributions are of the
same shape but differ in location. Thus the common belief that the test compares
medians is true only under some implausible circumstances.

Nevertheless, there are times when a researcher explicitly wishes to test for a dif-
ference in medians. For example, mean length of hospital stay is generally skewed and
often badly affected by small numbers of very long admissions, so the 50th percentile
of the stay distribution may be of more interest than the mean. A researcher might
therefore be tempted to test for equality of medians with the median test. However,
once again, we need to be cautious:

. median value, by(group)

Median test

Greater
than the group

median 0 1 Total

no 6 10 16
yes 4 0 4

Total 10 10 20

Pearson chi2(1) = 5.0000 Pr = 0.025

Continuity corrected:
Pearson chi2(1) = 2.8125 Pr = 0.094

The median test does not actually test for equality of medians. Instead, it tests a
likely consequence of drawing two samples from populations with equal medians: that
a similar proportion of observations in each group will be above and below the grand
median of the data. And as we can see, the test provides at least some support for the
idea that the medians are different.

On the other hand, quantile regression does test for the equality of medians. It is
the direct equivalent of the t test for medians, because the mean minimizes squared
error, whereas the median minimizes absolute error:
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. qreg value group
Iteration 1: WLS sum of weighted deviations = 27.481539

Iteration 1: sum of abs. weighted deviations = 30
Iteration 2: sum of abs. weighted deviations = 26
Iteration 3: sum of abs. weighted deviations = 24

Median regression Number of obs = 20
Raw sum of deviations 24 (about 5)
Min sum of deviations 24 Pseudo R2 = 0.0000

value Coef. Std. Err. t P>|t| [95% Conf. Interval]

group 0 1.221911 0.00 1.000 -2.56714 2.56714
_cons 5 .8640215 5.79 0.000 3.184758 6.815242

This accords with what we know of the data: the medians are identical and the difference
in the medians is 0. Quantile regression is also more powerful in that it can be extended
to other quantiles of interest and it can be adjusted for covariates.

Note that the difference in medians between two groups does not correspond to the
median difference between individuals. To confirm this, we can use Newson’s (2006)
cendif command:

. cendif value, by(group)
Y-variable: value
Grouped by: group
Group numbers:

group Freq. Percent Cum.

0 10 50.00 50.00
1 10 50.00 100.00

Total 20 100.00
Transformation: Fisher´s z
95% confidence interval(s) for percentile difference(s)
between values of value in first and second groups:

Percent Pctl_Dif Minimum Maximum
50 2 0 4

The median difference between members of group 0 and members of group 1 is 2,
with a 95% confidence interval from 0 to 4. This measure, usually called the Hodges–
Lehman median difference (Hodges and Lehmann 1963) is, as Newson (2002) points
out, a special case of Theil’s (1950a; 1950b; 1950c) median slope.

The researcher therefore has to relate the statistical procedure to the purpose of the
study: computing the difference in medians tests for a difference between two conditions.
In the case of hospital stay, the effect of a new treatment on length of stay could be
tested by comparing the median stay in two groups, one of whom received the new
treatment and the other acting as control. However, when the interest is the impact
on the individual, the difference in medians between groups is misleading. Here the
expected effect of treatment on the individual is best measured by the median difference
between patients in the treatment and control groups.
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5 Conclusion

The Mann–Whitney test is based on a parameter that is of considerable interest as a
measure of effect size, especially in situations in which outcomes are measured on scales
that either are ordinal or have arbitrary measurement units. Unfortunately, it has been
often misrepresented as a test for the equality of medians, which it is not. The Mann–
Whitney statistic also has been subject to so many rediscoveries and rebrandings over
the years.

Those who wish to test the equality of medians between two groups should avoid
the Mann–Whitney test and should consider qreg as a more powerful and versatile
alternative to the median test. It is important, however, to distinguish between the
difference between the medians of two groups, which measures the effect of a policy or
condition on the location of the distribution of the outcome of interest, and the median
difference between individuals in the two groups (Hodges–Lehman median difference),
which is a measure of the expected benefit to the individual associated with being a
member of the superior group.
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