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Abstract. The classical instrumental-variables estimator is extremely sensitive
to the presence of outliers in the sample. This is a concern because outliers can
strongly distort the estimated effect of a given regressor on the dependent vari-
able. Although outlier diagnostics exist, they frequently fail to detect atypical
observations because they are themselves based on nonrobust (to outliers) es-
timators. Furthermore, they do not take into account the combined influence
of outliers in the first and second stages of the instrumental-variables estima-
tor. In this article, we present a robust instrumental-variables estimator, ini-
tially proposed by Cohen Freue, Ortiz-Molina, and Zamar (2011, Working paper:
http://www.stat.ubc.ca/˜ruben/website/cv/cohen-zamar.pdf ), that we have pro-
grammed in Stata and made available via the robivreg command. We have im-
proved on their estimator in two different ways. First, we use a weighting scheme
that makes our estimator more efficient and allows the computations of the usual
identification and overidentifying restrictions tests. Second, we implement a gen-
eralized Hausman test for the presence of outliers.

Keywords: st0252, robivreg, multivariate outliers, robustness, S-estimator, instru-
mental variables

1 Theory

Assume a linear regression model given by

y = Xθ + ε (1)

where y is the n × 1 vector containing the value of the dependent variable, X is the
n × p matrix containing the values for the p regressors (constant included), and ε is
the vector of the error term. Vector θ of size p × 1 contains the unknown regression
parameters and needs to be estimated. On the basis of the estimated parameter θ̂, it is
then possible to fit the dependent variable by ŷ = Xθ̂ and estimate the residual vector

c© 2012 StataCorp LP st0252
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170 Robust instrumental variables

r = y− ŷ. In the case of the ordinary least-squares (LS) method, the vector of estimated
parameters is

θ̂LS = arg min
θ

r′r

The solution to this minimization leads to the well-known formula

θ̂LS =
(
XtX

)︸ ︷︷ ︸
nbΣXX

−1
Xty︸︷︷︸
nbΣXy

which is simply, after centering the data, the product of the p × p covariance matrix of
the explanatory variables Σ̂XX and the p×1 vector of the covariances of the explanatory
variables and the dependent variable Σ̂Xy (the n simplify).1

The unbiasedness and consistency of the LS estimates crucially depend on the ab-
sence of correlation between X and ε. When this assumption is violated, instrumental-
variables (IV) estimators are generally used. The logic underlying this approach is to
find some variables, known as instruments, that are strongly correlated with the trou-
blesome explanatory variables, known as endogenous variables, but independent of the
error term. This is equivalent to estimating the relationship between the response vari-
able and the covariates by using only the part of the variability of the endogenous
covariates that is uncorrelated with the error term.

More precisely, define Z as the n × m matrix (where m ≥ p) containing the instru-
ments. The IV estimator (generally called two-stage least squares when m > p) can be
conceptualized as a two-stage estimator. In the first stage, each endogenous variable
is regressed on the instruments and on the variables in X that are not correlated with
the error term. In the second stage, the predicted value for each variable is then fit
(denoted X̂ here). In this way, each variable is purged of the correlation with the error
term. Exogenous explanatory variables are used as their own instruments. These new
variables are then replaced in (1), and the model is fit by LS.

The final estimator is (again centering the data and recalculating the intercept term)

θ̂IV =
{
Σ̂XZ

(
Σ̂ZZ

)−1

Σ̂ZX

}−1

Σ̂XZ

(
Σ̂ZZ

)−1

Σ̂Zy (2)

where Σ̂XZ is the covariance matrix of the original right-hand-side variables and the
instruments, Σ̂ZZ is the covariance matrix of the instruments, and Σ̂Zy is the vector of
covariances of the instruments with the dependent variable.

A drawback of the IV method is that if outliers are present, all the estimated co-
variances are distorted, even asymptotically. Cohen Freue, Ortiz-Molina, and Zamar
(2011) therefore suggest replacing classical estimated covariance matrices in (2) with
some robust counterparts that withstand the contamination. These could be minimum
covariance determinant scatter matrices as presented in Verardi and Dehon (2010) or
S-estimators of location and scatter as described by Verardi and McCathie (2012). We
use the latter, and the superscript S is used to indicate it.

1. The constant term has to be recalculated.
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The robust IV estimator can therefore be written as

θ̂S
RIV =

{
Σ̂

S

XZ

(
Σ̂

S

ZZ

)−1

Σ̂
S

ZX

}−1

Σ̂
S

XZ

(
Σ̂

S

ZZ

)−1

Σ̂
S

Zy

As shown by Cohen Freue, Ortiz-Molina, and Zamar (2011), this estimator inherits the
consistency properties of the underlying multivariate S-estimator and remains consistent
even when the distribution of the carriers is not elliptical or symmetrical. They also
demonstrate that under certain regularity conditions, this estimator is asymptotically
normal, regression and carrier equivariant. Finally, they provide a simple formula for
its asymptotic variance.

An alternative estimator that would allow a substantial gain in efficiency is

θ̂W
RIV =

{
Σ̂

W

XZ

(
Σ̂

W

ZZ

)−1

Σ̂
W

ZX

}−1

Σ̂
W

XZ

(
Σ̂

W

ZZ

)−1

Σ̂
W

Zy

where W stands for weights. First estimated are the robust covariance Σ̂
S

XZy and

the robust Mahalanobis distances—that is, d̂i =
√

(Mi − μ̂M)Σ̂
−1

M (Mi − μ̂M)′ , where

M = (X,Z,y), Σ̂M = Σ̂
S

XZy is the scatter matrix of explanatory variables, and μ̂M

is the location vector. Outliers are then identified as the observations that have a
robust Mahalanobis distance d̂i larger than

√
χ2

p+m+1,q, where q is a confidence level
(for example, 99%), given that Mahalanobis distances are distributed as the square
root of a chi-squared with degrees of freedom equal to the length of vector μ̂M. Finally,
observations that are associated with a d̂i larger than the cutoff point are downweighted,
and the classical covariance matrix is estimated. The weighting that we adopt is simply
to award a weight of 1 to observations associated with a d̂i smaller than the cutoff value
and to award a weight of 0 otherwise.

The advantage of this last estimator is that standard overidentification, underiden-
tification, and weak instruments tests can easily be obtained, because this weighting
scheme amounts to running a standard IV estimation on a sample free of outliers and
the asymptotic variance of the estimator is also readily available. We use the user-
written ivreg2 command (Baum, Schaffer, and Stillman 2007) to compute the final
estimates; the reported tests and standard errors are those provided by this command.2

Finally, a substantial gain in efficiency with respect to the standard robust IV estimator
proposed by Cohen Freue, Ortiz-Molina, and Zamar (2011) can be attained. We illus-
trate this efficiency gain by running 1,000 simulations using a setup similar to that of
Cohen Freue, Ortiz-Molina, and Zamar (2011) but with no outliers: 1,000 observations
for five random variables (x, u, v, w, Z) drawn from a multivariate normal distribution
with mean μ = (0, 0, 0, 0, 0) and covariance

2. The robivreg command is not a full wrapper for the ivreg2 command. However, a sample free
of outliers can easily be obtained by using the generate(varname) option that we describe in the
next section.
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Σ =

⎛⎜⎜⎜⎜⎝
1 0 0 0.5 0
0 0.3 0.2 0 0
0 0.2 0.3 0 0

0.5 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠
The data-generating process is Y = 1 + 2x + Z + u, where x is measured with error

and only variable X = x + v is assumed observable. To remedy this endogeneity bias,
X is instrumented by Z. For this setup, the simulated efficiency of the two estimators
is 46.7% for the raw θS

RIV estimator and 95.5% for the reweighted θW
RIV estimator. The

efficiency is calculated as follows: Assume θS
RIV (θW

RIV) is asymptotically normal with
covariance matrix V , and assume V0 is the asymptotic covariance matrix of the classical
θIV estimator. The efficiency of θS

RIV (θW
RIV) is calculated as eff(θS

RIV) = λ1(V −1V0),
where λ1(E) denotes the largest eigenvalue of the matrix E, and V0 and V are the
simulated covariances.

2 The robivreg command

2.1 Syntax

The robivreg command implements an IV estimator robust to outliers.

robivreg depvar
[
varlist1

]
(varlist2 = instlist)

[
if
] [

in
] [

, first robust

cluster(varname) generate(varname) raw cutoff(#) mcd graph

label(varname) test nreps(#) nodots
]

where depvar is the dependent variable, varlist1 contains the exogenous regressors,
varlist2 contains the endogenous regressors, and instlist contains the excluded instru-
ments.

2.2 Options

first reports various first-stage results and identification statistics. May not be used
with raw.

robust produces standard errors and statistics that are robust to arbitrary heteroskedas-
ticity.

cluster(varname) produces standard errors and statistics that are robust to both
arbitrary heteroskedasticity and intragroup correlation, where varname identifies
the group.
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generate(varname) generates a dummy variable named varname, which takes the
value of 1 for observations that are flagged as outliers.

raw specifies that Cohen Freue, Ortiz-Molina, and Zamar’s estimator (2011) should be
returned. Note that the standard errors reported are different from the ones that
they proposed because these are robust to heteroskedasticity and asymmetry. The
asymptotic variance of the raw estimator is described in Verardi and Croux (2009).

cutoff(#) allows the user to change the percentile above which an individual is con-
sidered to be an outlier. The default is cutoff(0.99).

mcd specifies that a minimum covariance determinant estimator of location and scatter
be used to estimate the robust covariance matrices. By default, an S-estimator of
location and scatter is used.

graph generates a graphic in which outliers are identified according to their type, and
labeled using the variable varname. Vertical lines identify vertical outliers (observa-
tions with a large residual), and the horizontal line identifies leverage points.

label(varname) labels the outliers as varname. label() only has an effect if specified
with graph.

test specifies to report a test for the presence of outliers in the sample. To test for
the appropriateness of a robust IV procedure relative to the classical IV estimator,
we rely on the W statistic proposed by Dehon, Gassner, and Verardi (2009) and
Desbordes and Verardi (2011), where

W =
(
θ̂ IV − θ̂S

RIV

)t {
V̂ar

(
θ̂IV

)
+ V̂ar

(
θ̂S
RIV

)
− 2Ĉov

(
θ̂ IV, θ̂S

RIV

)}−1 (
θ̂ IV − θ̂S

RIV

)
Bearing in mind that this statistic is asymptotically distributed as a χ2

p, where p is the
number of covariates, it is possible to set an upper bound above which the estimated
parameters can be considered to be statistically different and hence the robust IV

estimator should be preferred to the standard IV estimator. When the cluster()
option is specified, a cluster–bootstrap is used to calculate the W statistic.

nreps(#) specifies the number of bootstrap replicates performed when the test and
cluster() options are both specified. The default is nreps(50).

nodots suppresses the replication dots.

3 Empirical example

In a seminal article, Romer (1993) convincingly shows that more open economies tend
to have lower inflation rates. Worried that a simultaneity bias may affect the estimates,
he instruments the trade openness variable—the share of imports in gross domestic
product—by the logarithm of a country’s land area.
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From a pedagogical perspective, it is useful to start with the dependent variable
(which is the average annual inflation rates since 1973), in levels, as in example 16.6 of
Wooldridge (2009, 558).

. use http://fmwww.bc.edu/ec-p/data/wooldridge/OPENNESS

. merge 1:1 _n using http://www.rodolphedesbordes.com/web_documents/names.dta

Result # of obs.

not matched 0
matched 114 (_merge==3)

. ivregress 2sls inf (opendec = lland)

Instrumental variables (2SLS) regression Number of obs = 114
Wald chi2(1) = 5.73
Prob > chi2 = 0.0167
R-squared = 0.0316
Root MSE = 23.511

inf Coef. Std. Err. z P>|z| [95% Conf. Interval]

opendec -33.28737 13.91101 -2.39 0.017 -60.55245 -6.022284
_cons 29.60664 5.608412 5.28 0.000 18.61435 40.59893

Instrumented: opendec
Instruments: lland

The coefficient on opendec is significant at the 5% level and suggests that a country
with a 50% import share had an average inflation rate about 8.3 percentage points lower
than a country with a 25% import share.

We may be worried that outliers distort these estimates. For instance, it is well
known that countries in Latin America have experienced extremely high inflation rates
in the 1980s. Hence, we refit the model with the robivreg command.
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. robivreg inf (opendec = lland), test graph label(countryname)

(sum of wgt is 8.3000e+01)

IV (2SLS) estimation

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

Number of obs = 83
F( 1, 81) = 2.50
Prob > F = 0.1181

Total (centered) SS = 1322.080301 Centered R2 = 0.0514
Total (uncentered) SS = 10844.0201 Uncentered R2 = 0.8844
Residual SS = 1254.073829 Root MSE = 3.935

inf Coef. Std. Err. t P>|t| [95% Conf. Interval]

opendec -12.07379 7.642656 -1.58 0.118 -27.28027 3.1327
_cons 14.60224 2.500814 5.84 0.000 9.626404 19.57808

Underidentification test (Anderson canon. corr. LM statistic): 16.073
Chi-sq(1) P-val = 0.0001

Weak identification test (Cragg-Donald Wald F statistic): 19.453
Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38

15% maximal IV size 8.96
20% maximal IV size 6.66
25% maximal IV size 5.53

Source: Stock-Yogo (2005). Reproduced by permission.

Sargan statistic (overidentification test of all instruments): 0.000
(equation exactly identified)

Instrumented: opendec
Excluded instruments: lland

H0: Outliers do not distort 2SLS classical estimation

chi2(2)=10.53
Prob > chi2 = .005

Once the influence of outliers is downweighted, the value of the coefficient on opendec
becomes much smaller and loses statistical significance. Our test for outliers, requested
using the option test, confirms that outliers distort enough the original estimates such
that robustness should be favored at the expense of efficiency.

The outliers can be easily identified using the graph option. We facilitate the iden-
tification of each type of outlier by setting vertical and horizontal cutoff points in the
reported graph. The vertical cutoff points are 2.25 and −2.25. If the residuals were
normally distributed, values above or below these cutoff points would be strongly atyp-
ical because they would be 2.25 standard deviations away from the mean (which is 0 by
construction), with a probability of occurrence of 0.025. The reported residuals are said
to be robust and standardized because the residuals are based on a robust-to-outliers
estimation and have been divided by the standard deviation of the residuals associated
with nonoutlying observations. In line with our downweighting scheme, the horizontal



176 Robust instrumental variables

cutoff point is, by default,
√

χ2
p+m+1,0.99. Vertical outliers are observations above or

below the vertical lines, while leverage points are to the right of the horizontal line.
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Figure 1. Identification of outliers when inf is used

Romer (1993) was fully aware that his results could be sensitive to outliers. This is
why he decided to use as a dependent variable the log of average inflation.

. ivregress 2sls linf (opendec = lland)

Instrumental variables (2SLS) regression Number of obs = 114
Wald chi2(1) = 11.06
Prob > chi2 = 0.0009
R-squared = 0.1028
Root MSE = .66881

linf Coef. Std. Err. z P>|z| [95% Conf. Interval]

opendec -1.315804 .3957235 -3.33 0.001 -2.091408 -.5401999
_cons 2.98983 .1595413 18.74 0.000 2.677135 3.302525

Instrumented: opendec
Instruments: lland

The coefficient on opendec is now significant at the 1% level and suggests, using
the Duan smearing estimate, that a country with a 50% import share had an average
inflation rate about 5.4 percentage points lower than a country with a 25% import share.

However, even though taking the log of average inflation has certainly reduced the
influence of extreme values of the dependent variable, outliers may still be an issue.
Hence, we refit the model again with the robivreg command.
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. robivreg linf (opendec = lland), test graph label(countryname)

(sum of wgt is 8.9000e+01)

IV (2SLS) estimation

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

Number of obs = 89
F( 1, 87) = 3.03
Prob > F = 0.0851

Total (centered) SS = 18.9763507 Centered R2 = 0.1479
Total (uncentered) SS = 533.2560195 Uncentered R2 = 0.9697
Residual SS = 16.17036311 Root MSE = .4311

linf Coef. Std. Err. t P>|t| [95% Conf. Interval]

opendec -1.225348 .7034456 -1.74 0.085 -2.623523 .1728262
_cons 2.796497 .2300043 12.16 0.000 2.339339 3.253656

Underidentification test (Anderson canon. corr. LM statistic): 20.963
Chi-sq(1) P-val = 0.0000

Weak identification test (Cragg-Donald Wald F statistic): 26.806
Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38

15% maximal IV size 8.96
20% maximal IV size 6.66
25% maximal IV size 5.53

Source: Stock-Yogo (2005). Reproduced by permission.

Sargan statistic (overidentification test of all instruments): 0.000
(equation exactly identified)

Instrumented: opendec
Excluded instruments: lland

H0: Outliers do not distort 2SLS classical estimation

chi2(2)=4.86
Prob > chi2 = .088
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In that case, the magnitude of the coefficient is preserved, but its statistical sig-
nificance sharply decreases. Once again, we can identify outliers by using the graph
option.
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Figure 2. Identification of outliers when ln(inf) is used

In figure 1, we can see that taking the log of inf has been insufficient to deal with
all outliers in the dependent variable because Bolivia remains an outlier. Furthermore,
Romer was right to be worried that Lesotho or Singapore may “have an excessive influ-
ence on the results” Romer (1993, 877). The remoteness of these two observations from
the rest of the data led to an inflation of the total sample variation in trade openness,
resulting in undersized standard errors and spuriously high statistical significance.

For the final example, we illustrate the use of the test option with the cluster()
option. The clustering variable is idcode.
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. webuse nlswork, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. keep if _n<1501
(27034 observations deleted)

. robivreg ln_w age not_smsa (tenure = union south), cluster(idcode) test

(sum of wgt is 8.4700e+02)

IV (2SLS) estimation

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on idcode

Number of clusters (idcode) = 209 Number of obs = 847
F( 3, 208) = 5.16
Prob > F = 0.0018

Total (centered) SS = 126.4871762 Centered R2 = -0.0831
Total (uncentered) SS = 2988.447827 Uncentered R2 = 0.9542
Residual SS = 136.9920776 Root MSE = .4031

Robust
ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

tenure .1260126 .0439573 2.87 0.005 .0393536 .2126715
age .0029424 .0032327 0.91 0.364 -.0034306 .0093155

not_smsa -.2569617 .0921363 -2.79 0.006 -.4386024 -.075321
_cons 1.434409 .1009936 14.20 0.000 1.235307 1.633511

Underidentification test (Kleibergen-Paap rk LM statistic): 16.263
Chi-sq(2) P-val = 0.0003

Weak identification test (Cragg-Donald Wald F statistic): 27.689
(Kleibergen-Paap rk Wald F statistic): 11.305

Stock-Yogo weak ID test critical values: 10% maximal IV size 19.93
15% maximal IV size 11.59
20% maximal IV size 8.75
25% maximal IV size 7.25

Source: Stock-Yogo (2005). Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.

Hansen J statistic (overidentification test of all instruments): 0.010
Chi-sq(1) P-val = 0.9207

Instrumented: tenure
Included instruments: age not_smsa
Excluded instruments: union south

Test with clustered errors

bootstrap replicates (50)
1 2 3 4 5

.................................................. 50

H0: Outliers do not distort 2SLS classical estimation

chi2(4)=2.86
Prob > chi2 = .582
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The robust–cluster variance estimator has been used to estimate the standard errors,
and as previously explained, a cluster–bootstrap procedure (sampling is done from
clusters with replacement to account for the correlations of observations within cluster)
has been used to calculate the W statistic of the outlier test.

4 Conclusion

The robivreg command implements an IV estimator robust to outliers and allows their
identification. In addition, a generalized Hausman test provides the means to evaluate
whether the gain in robustness outweighs the loss in efficiency and thus justifies the use
of a robust IV estimator.
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