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ABSTRACT 
 
 
Highway construction and maintenance relies heavily upon mined aggregates as a core 
ingredient.  The proximity of aggregate mine sites to highway or other construction locations is 
an important issue since the total project costs are highly affected by transportation 
cost/efficiency and also deterioration of the existing highway infrastructure as influenced by 
frequent, heavy shipments traveling long distances.  Likewise, the transportation costs for 
hauling mined aggregates are minimized when shipments are loaded to capacity payload 
weights. 
 
This is the first attempt in a series of forthcoming studies to explore mineral shipment 
characteristics with a spatial regression model.  A comprehensive survey was conducted to 
determine both the location and type of need for road improvements.  This study investigates the 
spatial relationships between construction aggregate shipments and the hauling trucks’ payload 
weights as it pertains to highway deterioration in the State of Washington.  Many studies have 
examined the relationship between transportation cost and construction unit productivity but 
there’s minimal information available pertaining to the relationship between payload weights, 
shipment distances and highway deterioration.  
 
To identify impacted highway segments resulting from aggregates shipments, mine locations and 
shipment distances in cooperation with payload weights are examined.  Naturally, spatial non-
stationarity of the data is possible whenever any process takes place over many different 
geographical locations. As such, it’s appropriate and necessary to test the mining industry data 
for spatial dependences.  As a result, the paper employs a spatial error regression model with 
distance based weights matrix to address spatial autocorrelation, to capture the interaction 
between spatial units and to predict the incremental change in payload weights resulting from 
increasing hauling distance.  Results show a highly significant positive relationship between 
payload weights and increasing shipment distances.   
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INTRODUCTION 
 
The aggregates industry is highly influenced by transportation efficiency in terms of high cost of 
shipments.  Therefore, the proximity of mine site location to the construction site or any other 
end use location is crucial.  That actual cost of transportation may explain the high correlation 
between mine and construction site locations (Transportation of Mining/Mineral Survey: 
Summary Report, Khachatryan, Jessup (unpublished data)).  Despite the low value per ton 
characteristic, an aggregate is heavy, which makes truck transportation very costly but necessary.   
According to the Transportation of Mining/Mineral Survey the majority of aggregate is hauled 
within close distances from its production origin.  Particularly, about 80% of total production 
(78% of mine sites) was hauled within 20 miles or less from the mine location.  For the 
determination of most deteriorated highway segments by heavily loaded trucks and for 
construction investments to be efficient, the distance of aggregate shipments in cooperation with 
payload weights are examined.  
 
 This study utilizes data from the survey investigating the transportation and operational 
characteristics of Washington’s mined products conducted by the Strategic Freight 
Transportation Analysis (SFTA) at Washington State University.  This data is utilized to 
investigate the spatial relationship between mine locations, payload weights and shipment 
distances.  While the survey included 12 separate types of mined minerals, only construction 
aggregates (sand and gravel, rock/stone) related information was used in this study.   To analyze 
and evaluate that purpose, a Geographic Information Systems (GIS) and GeoDa (Anselin, 2003) 
(1) are used as analytical tools to create desired maps and to conduct spatial analysis.   
The geographic distribution of aggregates mines throughout the state is relatively evenly 
dispersed.  However, upon closer investigation of these mine locations in relation to the road 
network and highly urbanized areas one may find local clustering.  This is partially explained by 
a high concentration of highways, homes and office construction in highly urbanized areas (B. 
Finnie, J. Peet 2003) (2).   
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In addition to the general visual inspection of the point pattern, exploratory data analysis using 
GIS and GeoDa showed systematic pattern in the spatial distribution of the data variables such as 
payload weights and annual production volumes. Global Moran’s I (an indicator for spatial 
autocorrelation) value showed statistically significant spatial autocorrelation in the regression 
residuals, which then requires addressing the issue of spatial autocorrelation. The importance of 
this assumption in most of the statistics that the values of observations in each sample are 
independent can be violated by positive spatial autocorrelation if samples are taken from 
geographically close locations.  Consequently, utilizing data on aggregate mine locations, 
production volumes, shipment payload weights, configurations of trucks, as well as information 
on number of axles and transportation characteristics in general, this paper employs a spatial 
error regression model to address spatial autocorrelation of the data and to predict the 
incremental change in payload weights resulting from an increase in hauling distance.   
 
The regression results show a statistically significant, positive relationship between shipment 
distance (aggregates haulage) and payload weights.  Additionally aggregate costs significantly 
increase with the increasing distance, causing longer hauls to potentially result in higher 
deterioration to state highways.  In order to investigate the relationship between payload weights 
and shipment distance by axle load, forthcoming study will include data on truck configuration 
and number of axles per truck. 
  
LITERATURE REVIEW 
 
Prior studies focusing on mine operations have focused on issues related to route selection, as 
with Peter Berck 2005 (3).  Berck presents a least cost route selection model for aggregates 
hauling as a part of constructors’ cost minimization strategy, suggesting that the opening of the 
new quarry would change the aggregates transportation pattern.  As a result of the new quarry 
opening the study found no significant increase in the demand for construction aggregates as 
well as a decrease in some environmental externalities (emissions reduction).  Another public 
cost consideration may be the deterioration of road networks used for aggregates hauling, which 
involves investigation of data on payload weights and/or number of axles per truck.  This also 
follows with the desire of construction contractors attempting to increase productivity by 
maximizing the payload weights of the truck shipments (Schexnayder, et. all. 1999) (4).   
 
Additionally, because the shipments represent a major component of construction costs payload 
weights may even exceed allowable measures, thus creating a strong relationship between the 
distance and the payload weights (Chronis, 1987) (5).  Chronis 1991 (6), also suggests that 
overloading trucks by 20% may lead to a decrease in per ton cost of aggregate, since labor costs 
will not change and the fuel price is relatively unaffected.  This assumption might not hold with 
recent fuel price advances, as well as it does not consider corresponding public cost, externalities 
like highway damage or environmental impacts.  In this aspect, many prior research efforts 
mention the relationship between aggregate hauling and construction unit productivity, and there 
is only minimal information available to understand the relationship with hauling distances as 
they pertain to highways deterioration (Day 1991) (7).    
  
This study explores the relationship between incremental changes in payload weights as 
shipment distances increase, while simultaneously detecting and accounting for spatial 



Khachatryan, Jessup 
 

5

autocorrelation in the data.  The identified positive relationship between the aforementioned 
variables suggests that not only longer distances cause higher cost to construction contractors, 
but may also result in higher deterioration level to the roads. 
  
Descriptive evaluation of the mining industry data received from the Transportation of 
Mining/Mineral Survey results showed substantial variation across Washington’s regions.  
Naturally, spatial non-stationarity is involved in any process which takes place over real 
geographical locations (A. Unwin, D. Unwin, 1998) (8).  In other words, the process under 
investigation might not be constant over the entire study area.  In this aspect, the global statistics 
will fail to properly represent relationships between processes, especially when translated into 
local investigation of those processes.  Therefore, because the transportation characteristics of 
the mining/mineral industry involves data containing geographic location information, in most 
cases the data was expected to have spatial dependence or in other words spatial autocorrelation 
(the weaker form of spatial dependence).  Consequently, spatial dependence in the data would 
mean that most of the classical estimation procedures and methods are inappropriate for this 
analysis.    
 
The wide array of studies in the field of spatial econometrics represents diverse approaches for 
addressing spatial autocorrelation in the data.  However, a search of the economic literature did 
not bring favorable results on investigation of spatial autocorrelation of the data representing 
aggregates mining industry.   
 
DATA 
 
The precise geographic site information for each mine was obtained from the Washington 
Department of Natural Resources, Division of Geology and Earth Resources.  The county and 
state highway system GIS files were downloaded from the WSDOT GeoData Distribution 
Catalog.  Annual production (tons) was obtained from Transportation of Mining/Mineral Survey 
results. 
 
Information related to mining operations and characteristics was obtained from the 
Transportation of Mining/Mineral Survey results conducted by the research and implementation 
project Strategic Freight Transportation Analysis (SFTA).  The main objective of this survey was 
to examine the transportation characteristics of Washington’s mining industry and to analyze 
spatial relationship between mine locations and the road network.  To collect relevant data, the 
first phase began with a survey to mining firms/companies in late December of 2005.  The 
second phase of the survey, designed for non-responder companies, followed after about two 
weeks.  The first phase of the survey resulted in a response rate of 20.4% (mining sites), which 
increased to 47.2% at the end of the second phase. 
 
The survey results show that aggregates represent about 96 % of Washington’s mined minerals 
volume (Transportation of Mining/Mineral Survey: Summary Report, Khachatryan, Jessup 
(unpublished data)).  More than 90% of transported mined commodities were hauled using trucks 
as a mode of transportation from mine pit to points of sale or processing plants (Wallace P. 
Bolen, 2004) (9). With the average payload weight of 23.2 tons, about 37% of aggregates are 
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moved by straight truck, 44% by straight truck & trailer, and 14% by tractor & trailer; the 
remaining portion is shipped using other truck configurations. 
 
According to the survey results 35% of the aggregates production was shipped within 5 miles of 
the production origin, 21% were transported to distances within 6 to 10 miles, 24% - within 11 to 
20 miles, 13% - from 21 to 40 miles, 4% - from 41 to 100 miles, and only a small proportion of 
the production was hauled to longer distances.  The number of axles typically on the ground 
varies depending on the truck type.  According to the survey results, the number of axles 
(typically on the ground) for trucks leaving mining facilities ranges from 2 to 6, with the average 
of 3.4 and mode of 3 axles.  Trailer (if used) axles on the ground ranged from 2 up to 7, with an 
average and mode of 3.  Total number of axles for truck or tractor ranges from 2 to 9, with 
average of 3.6 axles.  With the average of 3, the total number of axles on 1st trailer varies from 2 
to 5. 
 
Spatial Autocorrelation  
 
The first law of geography states “everything is related to everything else, but near things are 
more related than distant things”—Waldo Tobler.  The simplest definition of spatial 
autocorrelation is a correlation of one variable with itself throughout space.  Many authors state 
that spatial autocorrelation exists as a systematic spatial variation in values across space, where 
high values at one location are associated with high values at neighboring location creating 
positive autocorrelation.  Whereas high and low value patterns between neighboring areas 
represent negative autocorrelation (Upton and Fingleton, 1985) (10).   
 
As such, spatial autocorrelation is a problem for regression models when the error terms 
introduce some spatial pattern in which areas or points close together display similar values than 
areas or points further away (in this study points are represented by x y coordinates of mine site 
locations).  Because the mining industry data involves geographic location information of mine 
sites, it is appropriate and necessary to test the data for spatial dependences.  The number of local 
and global spatial statistics is available for the test for the complete spatial randomness of the 
data depending on its form.  One of the oldest indicators of global spatial autocorrelation is 
Moran’s I (Moran, 1950) (11), which (applied to polygon or point data) compares the value of 
specific variable at any one location with that of all other locations and emphasizes similarities 
over space (Fotheringham et. al. 2002) (12).   
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where N is the number of point observations (locations), iX  is the value of variable at location i, 
Xj is the value of variable at location j, X is the mean of the variable and Wij is a spatial weight 
matrix applied to the comparison between locations i and j.  
  
In contrast, local statistics emphasize differences over space and can be used to check for the 
spatial stationarity of the data.  While global statistics assumed invariant, local statistics vary 
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over space and are spatial, thus can be mapped (12).  In other words, global Moran I’s major 
limitation is that it tends to average local variations in the strength of spatial autocorrelation. 
 
In the case of the mining industry the global forms of statistics might not be representative of the 
situation in any particular region of the state and may hide some interesting and important local 
variations of the characteristics that the study investigates (12).  For example in the Western 
regions of the state, due to availability of many construction projects (demand) or favorable 
weather conditions, larger percentage of mines can be found in operation, or more aggregate 
shipments than it would be in the Eastern part of the state (Transportation of Mining/Mineral 
Survey: Summary Report, Khachatryan, Jessup (unpublished data)).  This is where the important 
local variation in relationships would be partially or completely unnoticeable.  Preliminary 
manipulation of the data showed some dissimilarity in the data across study area regions, which 
builds a strong foundation for the idea of investigating the data using local forms of spatial 
analysis.   
The localized version of Moran’s I statistic (LISA) has the following form: 
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where N is the number of observation, iX  is the observed value of the variable X at location i, 
X is the mean of the variable, and Wij is a spatial weight matrix, which represents the strength of 
the linkage between i and j locations (Anselin L. 1995) (13).  
 
Spatial Weight Matrices 
 
The potential interaction between two spatial units can be expressed by the spatial weight matrix 
W. Contiguity based spatial matrices can be used for the data involving areas such as counties, 
regions, states or even countries.  Distance based weights can be appropriate for point data, as 
well as for polygon data if centroids are calculated.  Each type in turn can be different according 
to specified order of contiguity, distance band or number of neighbors.  Although, each type of 
spatial weights can be formed based on specific situations or nature of the spatial data, however, 
there is no precise agreement about the type of weight matrix to be employed for spatial analysis 
(Anselin, 1988) (14).  In the spatial N by N weight matrix, each element wij = 1 when i and j are 
neighbors and wij = 0 otherwise, the diagonal elements of which are set to zero.  Rows of the N 

by N weight matrix are standardized such that ijs
ij

ijj

w
w

w
=
∑

.  Resulting weights matrix is no 

longer symmetric, which ensures averaging neighboring values (Anselin and Bera 1998) (15).  
 
For the contiguity type weight matrices “neighbors” can be classified spatial units that share a 
border.  Anselin, 2005, (16), (15) provide details on higher order contiguity weight matrices – 
queen, rook.  Distance based matrices can be based on either the distance between i and j 
locations of observations or number of neighbor observations.  Where, in the first case 
“neighbors” for one location can be considered all points/locations that are within the specified 
distance from that point.  While for the “number of nearest neighbor” approach, number of 
points/neighbors should be specified in order to be considered as neighbors.  For example, if for 
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some specific purposes 4 nearest neighbors approach is adopted, the weights matrix will consider 
only 4 nearest points for each of the point in the study area.  Weights with number of nearest 
neighbors (KNN) approach standardize the number of neighbors, which assumes that an equal 
number of neighbors are more important than the distance between neighbors. 
  
THE MODEL 
 
Spatial Error Dependence 
One reason for spatial dependence in an estimated model could arise as a result of mine site 
location near to highly urbanized regions of the study area.  Urbanization is usually positively 
related with aggregates consumption. Thus, mine sites located near to densely populated areas 
might operate with higher annual production levels, than those located in less populated regions.  
Similar local demand characteristics could partially explain production levels or shipment’s 
payload weights, as well as shipment distances.   
 
As mentioned earlier, spatial autocorrelation is a problem for regression models when the error 
terms introduce some spatial pattern in which areas or points close together display similar 
values than areas or points further away.  Widely used specification is a spatial autoregressive 
process in the error terms.  The spatial error model assumes the following linear regression: 
y X β ε= + , with Wε λ ε υ= + ,  
Where λ  is the spatial autoregressive coefficient for the error lag Wε , and υ  is homoskedastic 
error term.   
  
Spatial Regression Model Selection 
Spatial regression model selection decision was made according to Luc Anselin’s comprehensive 
guide to GeoDa statistical software – “Exploring Spatial Data with GeoDaTM: A Workbook” 
(15). Regression analysis started with Ordinary Least Squares regression; further, Lagrange 
Multiplier (LM) diagnostics provided basis for the spatial autoregressive model selection.  Both 
LM-Error and LM-Lag tests showed statistically significant results, which led to examination of 
their Robust form statistics.  At this step Robust LM-Error statistic showed statistically 
significant results, accordingly the spatial error model was chosen for next stage of the 
regression analysis.  
 
RESULTS 
 
To investigate the relationship between payload weights and shipment distances, payload 
weights of aggregates shipments by trucks was selected as a dependent variable; proportion of 
shipments within 5 – 10, 11 – 20, 21 – 40 and 41 – 100 mile distances were analyzed as 
explanatory variables. 
   
The regression results indicate that payload weights and all distance categories are positively 
related, with an adjusted R2 of 0.28.  In addition to the less favorable fit, there are quite a few 
specification problems.  Particularly, regression diagnostics disclose considerable non-normality 
and high level of spatial autocorrelation.  Moran's I, LM-Error, LM-Lag and LM-Sarma tests are 
all significant.  Moran’s I scatter plot (Figure 2) visualizes the statistic indicated in the Table 1, 
under the “Diagnostics For Spatial Dependence” section.  As it was described in the “Spatial 
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Error Dependence” section, the decision for the model selection was based on LM-Error and 
LM-Lag test statistics.  Because both tests showed statistically significant results, the Robust 
forms for both tests were examined.  Consequently, as a result of significant Robust LM-Error 
statistic, spatial error regression was employed.   

 
 
 
 
 
 
 
 
 
 
 

TABLE 1 Regression Summary of Output: Ordinary Least Squares Estimation  

Dependent Variable Payload weights   
Number of 
Observations 288

Mean dependent var. 19.9097  Number of Variables 6
S.D. dependent var.  12.6885  Degrees of Freedom 282
R-squared 0.290294  F-statistic 23.0695
Adjusted R-squared 0.277711  Prob(F-statistic) 2.06E-19
Sum squared residual 32907.2  Log likelihood  -1091
Sigma-square 116.692  Akaike info criterion 2193.99
S.E. of regression 10.8024  Schwarz criterion 2215.97
S.E of regression ML 10.6893      
     
Variable Coefficient Std.Error t-Statistic Probability
CONSTANT       2.381654 1.79817 1.324488 0.1864126
 0_5_MILE  17.24359 2.74068 6.29172 0.0000000
6_10_MILE 23.31129 2.956789 7.883989 0.0000000
 11_20_MILE 16.8195 3.084599 5.452736 0.0000001
21_40_MILE 23.32615 4.375268 5.331365 0.0000002
41_100_MILE 31.64233 7.334185 4.314362 0.0000222
     
REGRESSION DIAGNOSTICS     
MULTICOLLINEARITY CONDITION NUMBER   5.926111   
TEST ON NORMALITY OF ERRORS    
TEST  DF VALUE  PROB  
Jarque-Bera 2 27.7393 0.0000009   
DIAGNOSTICS FOR HETEROSKEDASTICITY   
RANDOM COEFFICIENTS       
TEST  DF VALUE PROB  
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Breusch-Pagan test 5 8.05721 0.1531107  
Koenker-Bassett test 5 7.023928 0.2188668   
SPECIFICATION ROBUST TEST    
TEST DF VALUE PROB  
White   20 39.02313 0.0066234  
DIAGNOSTICS FOR SPATIAL DEPENDENCE   
FOR WEIGHT MATRIX : treshold distance based  (row-standardized weights)   
TEST     MI/DF VALUE PROB  
Moran's I (error)   0.111457 3.503859 0.0004587  
Lagrange Multiplier (lag)  1 7.213300 0.0072365  
Robust LM (lag)  1 0.357543 0.5498742  
Lagrange Multiplier (error) 1 10.86660 0.0009791  
Robust LM (error)   1 4.01084 0.0452086  
Lagrange Multiplier (SARMA) 2 11.22414 0.0036535   
 
Next, the residual standard deviational map (high-high and low-low values suggesting positive 
autocorrelation, high-low and low-high values – negative autocorrelation) is examined, which 
suggests the presence of spatial autocorrelation from "visual inspection", but only the proper 
specification tests can permit for an assessment of the significance of this autocorrelation and for 
an indication of the use of alternative spatial model.  Figures 3 and 4 represent locations (hot 
spots) with significant local Moran statistics of the study area. The legend for the significance 
map provides p-values in different shades of green.   

 

 
FIGURE 2 Moran scatter plot for OLS residuals. 
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FIGURE 3 LISA cluster map for OLS residuals. 
Note: significance filter is set to 0.05 
 
 

FIGURE 4 LISA significance map for OLS residuals. 
*Note: significance filter is set to 0.05 
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The results of spatial error regression are represented in the Table 2, where the estimates for the 
autoregressive parameter of the error process are represented next to Lambda.  The result is 
positive and significant, which more time ensures the suggestion from the OLS estimation 
diagnostics (based on LM-Error, LM-Lag, and Robust form test statistics).   
 
TABLE 2 Regression Summary of Output: Spatial Error Model – Maximum Likelihood 
Estimation 
Spatial Weight:            Threshold distance based       
Dependent Variable Payload weights  Number of Observations 288
Mean dependent var. 19.9097  Number of Variables 6
S.D. dependent var.  12.6885  Degrees of Freedom 282
Lag coeff. (Lambda) 0.301007   
   
R-squared 0.325897   R-squared (BUSE) 
Sum squared residual  Log likelihood  -1085.85
Sq. Correlation   Akaike info criterion 2183.71
Sigma-square 108.529023   Schwarz criterion 2205.69
S.E of regression 10.4177       
     
Variable Coefficient Std.Error z-value Probability
CONSTANT       1.68742 1.867309 0.9036638 0.3661736
 0_5_MILE  18.26757 2.630924 6.943402 0.0000000
6_10_MILE 22.13488 2.895299 7.645112 0.0000000
 11_20_MILE 18.7434 3.039997 6.165599 0.0000000
21_40_MILE 26.32215 4.305979 6.112932 0.0000000
41_100_MILE 31.56302 7.050658 4.476606 0.0000076
LAMBDA 0.3010072 0.084690 3.554222 0.0003792
     
REGRESSION DIAGNOSTICS     
DIAGNOSTICS FOR HETEROSKEDASTICITY    
RANDOM COEFFICIENTS    
TEST  DF VALUE PROB  
Breusch-Pagan test 5 8.024456 0.154893   
     
DIAGNOSTICS FOR SPATIAL DEPENDENCE   
SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX  weights_treshhold.GWT
TEST  DF VALUE PROB  
Likelihood Ratio Test 1 10.28267 0.0013429   
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In this estimation the R2 is listed as a pseudo-R2, and it cannot be compared with that of OLS 
results.  Instead, for this model the Log-likelihood, Akaike information criterion (AIC) and 
Schwarz criterion (SC) are appropriate measures of the fit.  Compared to the OLS diagnostics all 
three are improved in this specification.   Particularly, Log-likelihood is increased from -1091 
(for OLS) to -1085.85, AIC is slightly decreased from 2193.99 (for OLS) to 2183.71, and SC - 
from 2215.97 to 2205.7.  The spatial autoregressive coefficient (λ ) is estimated as 0.30 and is 
statistically highly significant.  
 
While the relationship between the dependent and explanatory variable is also positive and 
highly significant, the coefficients are slightly changed compared to the OLS results.  In the 
process of spatial error regression predicted values ( ŷ ), prediction errors (the difference between 
the observed and predicted values, ˆy y− ), and model residuals (υ̂ ) are saved in the attributable 
table as vectors, which will be used to map or to recalculate Moran’s I index for comparison with 
previous results.   In Figure 5 a new scatter plot indicates Moran’s I statistic of -0.00042, which 
is essentially the same as zero.  As expected, this is the indication of proper use of the spatial 
error specification, which led to elimination of spatial autocorrelation.  Note that residuals here 
are estimates for spatially filtered (uncorrelated) model error term, ˆˆ ˆ( )I Wυ λ ε= −  
where ˆˆ ˆ ˆWε λ ε υ= + .   
 

 
FIGURE 5 Moran scatter plot for spatial error residuals. 
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FIGURE 6 LISA cluster map for error residuals.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 7 LISA significance map for error residuals.  
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Figures 6 and 7 represent the cluster activity and significance map using error residuals received 
from the spatial regression model.  The results of the cluster map show the elimination of spatial 
autocorrelation in the data, which is supported by the probability significance map.  In 
comparison with the mapped OLS regression residuals, considerable reduction of hotspots can be 
observed.  
  
The spatial error regression results (Table 2) show a sizeable increase (about 4 tons) in payload 
weight from 0 – 5 to 6 – 10 mile distance shipments.  For the next distance change, the payload 
weights are reduced by 3.4 tons (to 18.3 tons).  This can partially be explained by local, more 
restrictive regulations on truck size and weight (in addition to the state level regulation), which 
eventually leads to transportation cost per-ton-mile increases.  Shipment distances from 21 – 40 
and from 41 – 100 miles were estimated with an increase by 7.5 and 5.2 tons accordingly. 
 
In addition to the shipment distances and payload weight data, the GIS database designed and 
used in this study will allow querying and easy manipulation of aggregates transportation related 
data, such as annual production tons, configurations of aggregate hauling trucks, number of 
trucks operating for particular mine site, number of axles on trucks and/or trailers, highway 
routes used for shipments, mine operational hours, production shipment and operational months, 
as well as information on factors that influence monthly shipments, proportions of shipments to 
different end uses (construction or road site, warehouse, factory, etc.).    
 
CONCLUSIONS AND RECOMMENDATIONS 

The main objective of this study was to investigate the relationship between payload weights and 
shipment distances, using aggregates as the first subject.  Visual examination of the point data 
(shapefile) followed by exploratory data analysis detected a systematic pattern in the spatial 
distribution of the variables of main interest.  The data involved geographic locations of mine 
sites, which led to the investigation of spatial dependences or spatial autocorrelation over the 
study area.  Accordingly, the appropriate statistical tests for the assessment of the level of the 
spatial autocorrelation were performed.  Significant results confirmed and ensured the use of 
spatial autoregressive model to address that issue of the autocorrelation.  
 
The second objective of this study was to create a supportive basis for continuing research 
activities where axle load and truck configurations are being investigated. Results help to assess 
the relationship between shipment distances and per axle weights in order to estimate the 
“contribution” of the mining industry to pavement deterioration.  For cost minimization purposes 
many mining operations fully utilize payload weight capacities for truck shipments, thus 
eliminating public costs of highway system deterioration.  The adopted spatial error regression 
model suggested highly significant positive relationship between payload weights and increasing 
shipment distances.  With the exception for shipments within 11 – 20 mile distances, all other 
distances showed an increase in payload weights by approximately 4 to 7 tons.  This directly 
relates to the above-mentioned payload weight maximization goal and emphasizes the 
importance of the mines proximity to the construction sites due to the high cost of aggregates 
transportation.  Meanwhile, the relationship suggests accurately monitoring of truck 
configuration selection in accordance to the payload weights and shipment distances, which will 
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partially ensure the durability of the highway system as it pertains to the transportation of mining 
industry production.      
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