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Abstract 

This paper presents an econometric analysis of land-cover change in western Honduras. Ground-truthed 
satellite image analysis indicates that between 1987 and 1996, net reforestation occurred in the 1,015.12 
km2 study region. While some reforestation can be attributed to a 1987 ban on logging, the area of 
reforestation greatly exceeds that of previously clear-cut areas. Further, new area was also deforested 
between 1987-1996. Thus, the observed land-cover changes most likely represent a complex mosaic of 
changing land-use patterns across time and space. We estimate a random-effects probit model to capture 
drivers of land-cover change that are spatial, temporal or both.  We employ two techniques to correct for 
spatial error dependence in econometric analysis suitable to qualitative dependent variables.  Lastly, we 
simulate the impact of anticipated changes in transportation costs on land cover.  We find that market 
accessibility, increase in national coffee prices, and agricultural suitability are the most important 
determinants of recent land-cover change. 
Keywords: reforestation, Geographic Information Systems (GIS), remote sensing, random-effects 
probit, land-use/land-cover change, Honduras 
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1. Introduction  

Explaining and predicting land-cover and land-use change with respect to social, economic, and 

environmental factors represents a major goal for research into the human dimensions of global change. 

Analysis of land-use and land-cover change offers a means of linking socioeconomic processes 

associated with land development, agricultural activities, and natural resource management strategies, 

and the ways these changes affect the structure and function of ecosystems (Turner and Meyer 1991). 

The study region in western Honduras presents an interesting and currently atypical process of land-

cover change relevant to a spatially explicit analysis: a significant reforestation trend has been occurring. 

While the demographic and socioeconomic context has similarities to those in many developing regions, 

the reforestation represents a reversal in the dominant deforestation trend found in most Latin American 

countries, including Honduras. To understand the complex processes of economic development and 

change, we employ a spatially explicit model of the returns to land use in order to capture some of the 

most important drivers of land-cover change across time.  We employ a random-effects probit model to 

incorporate both temporal and spatial factors to explain observed land-cover changes. 

The research focuses on an area of approximately 1015.12 km2 in the mountains of western 

Honduras. The study region includes Celaque National Park, which contains the highest point in 

Honduras; it also encompasses Gracias, the capital of the Department of Lempira, and the municipio 

(similar to a county) of La Campa, which is the site of in-depth fieldwork. Fieldwork in the area shows 

that this region is undergoing processes of population growth. Agricultural intensification is occurring in 

the more remote rural areas, where recent improvements in infrastructure indicate increasing market 

integration. The processes of agricultural change appear in part to support the predictions of Boserup 

(1967), who proposed that under population pressure and in the absence of a frontier for expansion, 

people intensify agricultural production to meet subsistence demands. In-depth fieldwork in a 

community within the study region reveals that agricultural intensification is associated with increased 

use of chemical fertilizers and oxen-drawn plows, and a shortened (or eliminated) fallow period. At the 

same time, coffee production for the market has been expanding throughout western Honduras, 
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including the study region. Interestingly, a time series analysis of remotely sensed images (1987–1996) 

reveals that reforestation has been occurring (Southworth and Tucker in press). The analysis indicates 

that a small part of this process is due to the regrowth of forest on parcels that were clear-cut in the mid-

1980s. Notably, logging has been restricted under local policies; therefore deforestation due to logging is 

not a major factor during the study period. 

Historically, people raised crops under slash-and-burn agriculture and long fallows (Tucker 1996). 

Today, most rural households still depend upon subsistence production of maize and beans, but most 

have begun to cultivate fields permanently or for extended periods with short fallows. Within La Campa, 

agricultural intensification appears to be related to abandonment of some marginal lands, particularly 

those on steeper slopes. The social processes occurring in the study region have similarities to those in a 

number of other rural areas in the developing world. Population growth, privatization of communal 

lands, and increasing inequality in land distribution have been linked to deforestation (Cernea 1989, 

Anderson 1990, Durham 1995, Kaimowitz and Angelsen 1998). This case provides a context in which to 

address several puzzles facing theories of land-cover change, specifically the circumstances in which 

population growth, economic development, and sociocultural transformations may, at least temporarily, 

promote reforestation. Moreover, the patterns of this land-cover change suggest that the complex 

socioeconomic and biophysical processes determining land-use change must be studied in a spatial 

context. 

2. Conceptual Framework 

There is a small but growing literature addressing the socioeconomic drivers of land-cover change 

(see Angelsen and Kaimowitz 1999 for a thorough review). Nearly all of these studies focus on the 

process of deforestation, which is unidirectional and limiting, particularly because it restricts studying 

the effects of economic development and change on forest cover. Much international public policy 

related to deforestation continues to reflect the idea that deforestation is a function of high population 

growth, low agricultural productivity, and poverty (Angelsen 1999). This approach is invariably 
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shortsighted and too simplistic; for example, there are cases in which population growth is associated 

with improved forest conditions (Varughese 2000). 

Mather (1990) defined a “forest transition” as the point at which social and economic changes allow 

some reforestation to occur. Rudel (1998) offers some possible explanations for this transition, including 

innovations in agricultural production methods. Changes in land use reflect a complicated process 

related to economic development, changes in political or economic institutions, and/or transformations 

in other sectors of the economy that lead to urbanization (Rudel 1998). This section reviews some of the 

important factors that influence land-use change, including the role of infrastructure, agricultural 

intensification, and institutional variables.1 A common theme throughout this literature is the idea of 

economic development and agricultural transformation as a link to probable causes of human-induced 

land-cover change. 

2.1. Infrastructure and Accessibility 

Infrastructure development, particularly the construction of roads, has been the most well 

documented factor that influences land-use change. Road and railway construction are the main policy 

instruments for regional development in rural areas. Roads affect incentives for land-use change in two 

ways. First, they often provide access to previously inaccessible land, which often leads directly to 

increased deforestation in immediate areas, encouraging migrants to convert land (Mertens and Lambin 

2000). This incentive for deforestation is particularly relevant in a frontier setting, such as the settling of 

the Brazilian Amazon in the 1970s and 1980s (Moran et al. 1996).  

Second, road construction can improve market accessibility, which may stimulate increases in 

agricultural production and promote forest clearing. Transportation costs, particularly in the producer 

prices of food products, are a substantial part of total costs. The effect of road construction on land cover 

depends on the type of agricultural production dominant in the region. In subsistence or near-subsistence 

agriculture, improvements in market accessibility are less likely to spur increased production (van 

                                                 

1 See Deacon (1995) and Andersen (1997) for a theoretical model of the effect of policy on deforestation. 
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Amsberg 1998). Export-oriented crops, on the other hand, face world prices that do not fall with locally 

increased production, and any improvements may lead to increased forest clearing. 

2.2. Agricultural Intensification 

Agricultural improvements, such as increased yields from improved seed varieties or improved 

farming practices, reduce pressures on forests only if they reduce the potential profitability of agriculture 

on currently forested lands. This result would occur only if the demand for the agricultural product is 

very inelastic (as in the case of subsistence agriculture). Therefore, the effect of agricultural 

intensification could be a short-term increase in forest cover.  

By contrast, if the price of the agricultural product were determined in world markets (for example, 

in the case of an export crop such as coffee), agricultural improvements would increase the potential 

profitability of agriculture on currently forested lands (van Amsberg 1998). In this case, intensification 

could lead to increased deforestation, depending on the relative suitability of the landscape for the new 

crops. Carpentier et al. (2000) found substantial evidence in the Amazon of increased deforestation rates 

corresponding to increased intensification on previously cleared land. What is missing in the literature is 

a study of agricultural intensification in a non-frontier setting, where land scarcity is an issue. 

3. Methodology 

 In order to link land-cover changes to land-use change, one approach is to estimate the relative 

returns to land use. We assume that, in equilibrium, land is devoted to the use that generates the highest 

potential profitability (reflected in land rents). Forest clearing and land conversion take place when a 

land user estimates that the probable returns from the converted land outweigh the costs of conversion. 

Each parcel of land has a certain inherent productivity, which is determined by the overall suitability of 

the land for agricultural production, including geophysical characteristics (soil quality, slope, elevation), 

and climatic conditions (precipitation and temperature). In developing countries, reliable data are often 

lacking on location-specific prices from which we could construct measures of opportunity costs for all 

possible land uses. However, cost of access to market centers are an important component of both input 

and output prices (Chomitz and Gray 1996, Nelson and Hellerstein 1997). Building on the insights of 



 6

von Thünen (1966) and Ricardo (1981), we model observed land-cover changes are as a function of the 

relative profitability of all possible land uses at a particular location at a particular point in time. 

3.1. Recent Land-Cover Changes  

Landsat 5 TM images were obtained for March of 1987, 1991, and 1996, because this month 

corresponds to the end of the dry season when agricultural fields can be easily distinguished from 

forests. Geometric rectification was carried out using 1:50,000-scale maps and the nearest-neighbor 

resampling algorithm, with a root mean square (RMS) error of less than 0.5 pixels (< 15 m). Using a 

similar procedure, the rectified 1996 image served as the basis to rectify the 1987 and 1991 images. An 

overlay function verified that the images overlapped exactly across the three image dates.  All the 

images underwent radiometric calibration, atmospheric correction, and radiometric rectification. 

Training sample data were used to determine the land-cover classes on the ground and then train the 

satellite image to recognize them.  Classes for agriculture, young fallows (approximately 1–3 years), 

cleared areas, bare soil, water, and urban areas were aggregated to create a non-forest class. Forest was 

defined as having a canopy closure of 25 percent or greater, based on forest plots from fieldwork. In 

addition, this canopy closure threshold indicates areas that function as forest, both physically and 

socially, for the communities who use this landscape. Only two cover classes, forest and non-forest, 

were used to simplify the change analysis and modeling procedure. 

Fieldwork in March 2000 verified the land-cover trajectories of 100 randomly selected locations, 

either based solely on visual inspection of tree size and age etc., or on a combination of visual analysis 

and interview data. Changes in land cover across the three dates—1987, 1991, and 1996—were detected 

using an image grid addition technique resulting in eight possible change classes. Results of this change 

detection indicated significant bi-directional change over the study period, with reforestation as the 

dominant process (Table 1).  This change image then becomes the dependent variable for the 

econometric models.  The unit of analysis is the pixel (900 m2), with 4,120 observations. 

Mertens and Lambin (2000) also used a three-date change grid for their analyses.  With 

classifications of forest/non-forest over three dates, 23 or eight possible change classes result (Table 2).  
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These eight change classes represent fundamentally different land cover and reflect the different land-

use patterns across time.  For example, forest/non-forest/non-forest represents more permanent clearing 

while forest/forest/non-forest is recent deforestation.  In the case of western Honduras, there are three 

main processes of land-cover change related to land-use change.  First, since 1987 an abandonment of 

marginal areas, on steeper slopes and closer to roads and towns, formerly used in swidden maize and 

bean cultivation has occurred.  Secondly, from 1991 recent clearings appeared at higher elevations, 

farther from roads and towns, that are smaller and more likely used for coffee (Southworth et al. in 

review).  Lastly, there is a fallow cycle, shortened though it may be, for remaining maize and bean 

production.  Therefore, with some confidence, we can link reforestation and permanent clearing to 

maize and beans, and recent deforestation to coffee. 

3.2. Spatially Explicit Model 

An empirical spatial model of land use, first developed by Chomitz and Gray (1996), states that 

land will be devoted to the activity yielding the highest rent, or return to use.  Formally, we specify a 

latent model of land rent.  The potential rent, Rikt, or all future returns associated with devoting plot i to 

land use k is given by its net present value: 

 ( )
0

ir t
ikT ikt ikt ikt ikt

t

R P Q C X e dt
∞

−

=

= −∫ , (3.1) 

where Pikt is the price of output of k at point i ¸ Cikt is a vector of input prices to k, Qikt is the potential 

output, and Xikt is the optimal quantities of inputs for k all at time t, with the discounting function e-r
i
t 

2(Chomitz and Gray 1996, Nelson and Hellerstein 1997). The production function is given by: 

 ; 0 1; 0 1h
k i h h

hh

Q G X α α α= < < < ≤∑∏ , (3.2) 

assuming for simplicity a Cobb-Douglas relationship between the inputs and outputs, with output 

elasticities (the vector of a coefficients) potentially summing to 1 (Beattie and Taylor 1993). The factor 

                                                 

2 We are assuming an individual-specific discount rate, which do not observe.  Nelson et al. (in press and 2001) 
motivates this individual-specific discount rate as a function of land tenure at each point.  In our case, this discount 
rate is part of the unmodeled heterogeneity that is incorporated into the random-effects framework. 
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G represents a set of geophysical features that determine the location-specific suitability for a particular 

land use (Nelson et al.  in press). 

 In most cases, data for P, C, and Q are not available for every plot i,3 and thus a reduced-form 

model is most often used to represent a potentially endogenous relationship between P and C (Chomitz 

and Gray 1996; Nelson and Hellerstein 1997, Mertens and Lambin 2000). In equilibrium, spatial 

differentials in farm-gate prices are related to the differences in transport costs to major markets. For 

each commodity, functions relating output and input prices to the distance to market, D, are given by: 

 
( )
( )

0 1

0 1

exp and

exp ,
ikt kt kt i

ikt kt kt i

P D

C D

γ γ

δ δ

= +

= +
 (3.3) 

where γ0k and δ0k represent fixed costs, output prices decrease with distance (γ1k < 0), and input prices 

increase (δ1kt> 0).  

 Mertens and Lambin (2000) also considered forest pattern and fragmentation as another 

important determinant of profitability.  The value of forest/non-forest at a particular parcel is dependent 

on that parcel’s position in a patch of forest or agricultural land.  Generally, fragmented and edge areas 

are more likely to experience change.  Agricultural economists have begun to include these landscape 

measures in studies of land use (Geoghegan et al. 1997, Parker 20004).  Landscape pattern has been 

show to be related to the configuration and concentration of land values and agricultural production. An 

obvious example of landscape pattern and agricultural productivity is the issue of scale economies. Scale 

economies can vary by crop type and the intensity of production.  Certain parcels may be too small or 

fragmented to farm efficiently. Spillover effects and spatial externalities across land uses are also 

important determinants of land-use change by contributing to the profitability of a particular parcel.  

Substituting (3.3) and (3.2) into (3.1), following Chomitz and Gray (1996) and Nelson et al.  (in 

press), the reduced form of the model becomes: 
                                                 

3 Note: we are equating the unit of analysis, the pixel, with a plot. This assumption induces a spatial scale issue: we 
do not observe the decision-maker directly (Mertens et al. 2000).  
4 Parker (2000) uses landscape concentration/fragmentation indices in land use pattern as an analogy to the familiar 
Herfindahl index of industrial concentration. 
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 0 1 2ln ik K k i k i i iR D G Xα α α β= + + ≡ , (3.4) 

where the returns to land use k at location i is a function of the transportation costs (D), geophysical 

features (G), and the vector of output elasticities (a).  

3.3. Econometric Estimation 

Modeling determinants of deforestation alone makes most sense when land is converted in a 

frontier setting, or as claim for property rights. Understanding the occurrence of reforestation is more 

complicated. Many models do not account for reforestation at all.  Mertens and Lambin (2000) were the 

first to study trajectories of change as a dependent variable.  They contend that land-use change is 

necessarily a complex process of biophysical and socioeconomic interaction and, thus, cannot be 

captured in one absolute measure of forest cover.  They estimated these change trajectories in a 

multinomial logit formulation, assuming that each unique combination of land-cover change represents a 

functionally different land-cover class (Table 2). 

 The trajectories of change approach has intuitive appeal precisely because it incorporates the path-

dependency of land-cover change for a particular pixel.  Some land-cover changes are irreversible, or 

arguably cannot reverse at time scales that are within the scope of a particular individual’s decision-

making (e.g., the return to primary forest).  However, the multinomial logit formulation violates the 

assumptions of logistic regression: namely, that each alternative is uncorrelated (Greene 1997).  The 

path-dependency necessitates correlation. The initial land-cover, and the land-cover at each subsequent 

time stage, determines the structure of the trajectories.  Moreover, the latent land rent model as 

developed by Chomitz and Gray (1996) implies that change has occurred (in some prior time period) 

where it is most profitable.  The distance proxies for input and output costs are only valid under the 

assumption of a spatial equilibrium (Nelson et al. in press).  In the multinomial logit approach of 

Mertens and Lambin (2000), all independent variables are time-invariant, so there is no formal 

motivation for the determinants of change in land use. 
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 We replicated Mertens and Lambin’s (2000) technique in a recent paper (Munroe et al. under 

review).  We found that the multinomial logit with eight unique outcomes was outperformed by a 

simple, binary logit (forest/non-forest in 1996) conditioned on prior land cover from the two previous 

time periods.  In order to explain the dynamic and bi-directional changes more explicitly, we employ a 

more sophisticated model in this analysis.  Due to recent theoretical advances, empirical applications of 

panel techniques in probit models are becoming more common (Coble et al. 1996; Gould and Dong 

2000).  The use of panel data in the probit formulation is a way of controlling for omitted variables, 

particularly those relating to heterogeneity across space.  The random-effects formulation allows for 

correlation between the individual-specific effects and the vector of independent variables.   

 Assume any land cover can be represented by k, out of a set j possible uses. Following Equation 

(3.4) we assume that land is devoted to the use with the highest rent, or point i is devoted to use k at time 

t if  

 ,ikt ijtR R j k> ∀ ≠ . (3.5) 

This formulation can be expressed as a binary variable Y: 

 { }1 0 1,..., ; 1,...,1 if

0 otherwise,
i t i t i N t TY R R

Y
= == >

=
 (3.6) 

where 1 represents forest and 0 non-forest.  This formulation is sufficiently flexible to represent the 

removal of land from production.  The latent land rent equation, Equation (3.1), represents a profit 

function: revenue minus cost.  If the cost of cultivating a particular pixel in time t outweighs the 

potential revenue, the choice of 1 would imply the fallowing of land, or passively allowing it to return to 

a forested state.  Likewise, conversion to agriculture or continuation of agricultural production is 

represented by 0.   

We assume that land rent is a function of location-specific characteristics specified in Equation 

(3.4). However, we may not have captured all possible sources of variation in land rent.  Panel 

techniques are one way of capturing more information about a cross-sectional data set to lead to greater 
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efficiency in estimation. Any binary choice model assumes that the error term in the latent response 

function is independently, identically distributed, and independent of the vector of explanatory variables, 

X.  The effects of possible omitted variables can be contributed to three types of effects: spatially variant 

effects, period effects, and effects that vary across time and space.  We denote time by t and space by i.  

The error can then be written as: 

 it i t itv a λ ε= + + , (3.7) 

where ai denotes individual effects, λt represents time-specific effects, and εit denotes effects that vary 

with time and space (Hsiao 1996).  The fixed-effects model would assume that there is no correlation 

between ai and X. To allow for such correlation, we incorporate factors that vary across time, space, and 

both. We econometrically estimate Equation (3.4) as a random-effects probit model using panel data.  

The specification becomes a multivariate probit model: 

 1 if 0it i i it it t t i iktY X S T u vβ δ λ= + + + + > , (3.8)   

where X is a set of parcel-specific characteristics, and ß is the vector of parameters (Chomitz and Gray 

1996), S represents landscape pattern variables that vary over space and time with parameters δ, λ  is the 

parameter for time effects T,  u represents the individual heterogeneity, and v is a uncorrelated 

disturbance term with zero mean and constant variance.   

The random-effects estimator uses both the vector of time-invariant explanatory variables, X, 

and the individual-specific disturbance term, u, to successfully filter individual heterogeneity.  We 

estimate one additional parameter, ρ, to test for the presence of random effects: 

 

[ ] [ ]

[ ] ( )

2 2

2

2 2

var var ,

corr ,

i it it u v

u
it is

u v

u v ε σ σ

σε ε ρ
σ σ

+ = = +

= =
+

 (3.9) 

This model was estimated using LIMDEP (v 7.0) software (Greene 1998). 
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3.4.  Independent Variables 

The land-cover change trajectories are a function of the factors that determine agricultural suitability 

and market accessibility. Table 3 contains a list of relevant variables and their definitions. We tested for 

partial correlations among all independent variables to identify potential multicollinearity. While nearly 

all of the variables were significantly correlated, this correlation was never above 0.50 (using Pearson’s 

C measure of partial correlation). Other spatially explicit models of deforestation have included 

measures of soil quality as a determinant of agricultural suitability. The probability of conversion 

depends on this suitability. Prior research suggests that soil quality does not vary significantly across the 

study area, so we do not include it in this study (Tucker 1996, 1999b). Instead, the effects of elevation 

and slope are by far the most crucial for agriculture. 

The variables used in this analysis are given in Table 3. Slope and elevation for the region were 

calculated using a Digital Elevation Model (DEM) at a scale of 1:50,000.  Distance to nearby markets is 

an important determinant of the agricultural suitability of a particular parcel. In this region, there are 

many different types of roads ranging from paved roads and seasonal roads to footpaths. We weighted 

the distance to market destinations by road type by assigning an impedance factor. There are roads 

leading to two different types of destinations. One road out of the region leads to both Santa Rosa de 

Copán (regional center of exchange) and Tegucigalpa (the capital city).  In addition, much local 

exchange takes place in nearby towns and villages. We assign a base impedance factor to cleared land 

(1) and forested land (2). Roads and paths are given impedance factors as following: two-lane (0.05), 

one-lane (0.10), seasonal (0.15) and paths (0.20). Because slope is a crucial component of cost of access, 

we multiply these base costs by a slope function: (1+slope2/50)*land-cover cost (Nelson et al. in press). 

Using Arc/Info GRIDTM , we then calculated the least-cost path from every pixel to the road out of the 

region, and to the nearest town or distance on this base cost surface, providing a weighted measure of 

distance to markets. 

This region has been undergoing notable land-use change: from predominantly slash-and-burn, 

shifting cultivation to more instances of stable, intensified staple production.  In addition to the 
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predominance of maize and beans subsistence production, there has been a recent expansion of coffee 

production.  Large patches of stable clearings at low elevations and flatter slopes often correspond to 

maize and bean production, while newer, smaller clearings at higher elevations and steeper slopes 

generally relate to coffee (Southworth et al. under review).  To capture changing land-use patterns, we 

included measures of landscape configuration for each time period.  Distance to edge and the size of the 

patch of forest/non-forest to which the pixel belonged were included.  The closer a particular parcel is to 

a different land-cover type (i.e., forest to non-forest or vice versa), the higher the probability that it will 

show change. It is intuitive that most forest clearing occurs at the edge of a forest: the most accessible 

areas are cleared first. It is less intuitive to assume that previously cleared area is more likely to return to 

forest cover if it borders a patch of forest. Patch size is defined as the number of spatially contiguous 

(orthogonal) pixels classified as forest or non-forest, multiplied by pixel size to calculate the actual area.  

These measures were calculated for all three time points. 

Table 4 contains descriptive statistics of the geophysical and accessibility variables by change 

class (f = forest, n = non-forest).  Stable forest occurs at higher elevations, steeper slopes, and further 

from local and regional centers of exchange.  Areas that have experienced reforestation over the study 

period also tend to be on steeper slopes, at higher elevations.  For areas that have experienced 

reforestation from 1987-1991 or from 1991-1996, weighted distance out of the region is significantly 

below the mean. 

Table 5 contains the trends in the distance to edge and patch size measures over time.  The 

smallest patches were of the minimum area that can be detected by Landsat 5 Thematic Mapper (30 m x 

30 m or 0.0009 km2), and the largest patches were over 400 km2.  Mean patch size over all classes 

increased from 1981-1997, and then decreased from 1991-1996.  The mean patch sizes for stable forest 

and non-forest were larger than for the classes that experienced change.  Areas that experienced change 

were also closer to an edge, as expected.  We know that the expansion of coffee production in the study 

area has been an important factor in land-cover change beginning in the early 1990s (Tucker 1999a, 

1999b).  The price of coffee nearly doubled during this time (Table 6), which can be interpreted as an 
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exogenous shock.  We added a variable representing this temporal change by including a three-year 

moving average percentage change in the coffee price (with 1987 as the base year equal to 1). 

 3.4.1.  Spatial Effects 

Understanding spatial patterns, both absolute and relative, is crucial in any study of land-use 

change. Most biophysical processes, including vegetation growth and climate, exhibit spatial 

autocorrelation. In addition, many human activities exhibit neighborhood effects. Only a few methods of 

modeling spatial effects in models of land-use choice have been tested empirically. Following Nelson 

and Hellerstein (1997), we incorporate a spatially weighted average of slope at neighboring locations. 

Prior studies assume that deforestation in one period tends to occur in areas proximate to clearing 

from a previous period (Mertens and Lambin 2000). Adoption of particular farming technology or 

cultivation patterns might also exhibit observable spatial effects. Unfortunately, spatial effects are often 

omitted from econometric models of land-cover change due to the difficulty of incorporating them into 

models with limited dependent variables, which can result in misspecification.  Anselin and Bera (1998) 

distinguish between error (nuisance) and lag (substantive) spatial dependence, two types of specification 

error. In the case of spatial error dependence, ignoring spatial effects can result in inefficient, but not 

biased, estimators. Ignoring substantive spatial dependence is much more serious. If the spatial 

dependence is caused by spatial interaction, a true functional relationship among observations across 

space, econometric estimation will yield biased and inefficient estimators (Anselin 1988). When human 

activities exhibit a spatial spread, there is every reason to think that spatial dependence will be 

substantive in nature. There is to date no econometric technique for estimating the full structure of 

spatial error dependence in a probit model except Beron and Vijverberg (in press), which involves a 

recursive importance simulator (RIS) that does not converge easily or quickly for a data set with more 

than a few dozen observations.  Currently, there is no model that accounts for substantive spatial 
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interaction in a qualitative dependent variable framework and there is no test statistic for spatial 

interaction, either 5 (Anselin 2001). 

Mertens and Lambin (2000) chose a regular sample of their data set across space to avoid spatial 

autocorrelation. We test statistically whether spatial sampling can effectively correct for spatial 

autocorrelation. One way to test for spatial autocorrelation in land cover by distance is to examine the 

covariance structure among observations at varying distances. Geostatistical techniques, such as 

semivariogram analysis, can easily detect such autocorrelation on a continuous surface. If one wishes to 

find a sufficient distance to sample an image without capturing spatial dependence, a semiovariogram 

can provide a graphical depiction of where spatial dependence is highest. In this case, it is difficult to 

derive a continuous variable, particularly when the land-cover classes represent discrete choices (to clear 

or not to clear, for example). Therefore, a binary or multinomial measure of spatial autocorrelation must 

be used instead. 

The join count statistic was employed using SpaceStat v. 1.90 for both a forest/non-forest and a 

three-date change classified image. The images were sampled using the regular sampling technique of a 

non-overlapping moving window, with increasing window size (9 x 96 up to 25 x 25, 35 x 35, and 55 x 

55). The center pixel, and its value (change class), was retained for each window. The statistic is defined 

as:  

 

( )

( ) ( )2

1/2 and

1/2 ,

ij i j
i j

ij i j
i j

BB w x x

BW w x x

=

= −

∑∑

∑∑
 (3.10) 

where BB is defined as the number of joins where xi and xj take the same value. BW is defined as the 

number of joins where xi and xj take differing values. If either is significant, one can reject the null 

                                                 

5 Kelejian and Prucha (in press) have developed a suite of Moran’s I statistics for various logit model formulations, 
but these statistics can only identify residual (or nuisance) spatial autocorrelation. See also Pinkse (1999). 
6 Because of the sheer size of the image, anything below a 9 x 9 window was so computationally intensive that it 
would have been very difficult to derive a weights matrix for each observation. However, at this window size, 
everything was spatially autocorrelated, so it is evident that an ideal window must be bigger to correct for spatial 
dependence. 
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hypothesis of spatial randomness. In the first case, a significant BB would imply positive spatial 

autocorrelation, or spatial dependence. The second case, BW, implies negative spatial autocorrelation or 

spatial repulsion (Anselin 1995). No statistic for BW was significant in this analysis, so they are not 

reported. This statistic is necessarily defined as a binary one; therefore, each change class was compared 

to all other change classes.7 

A weighting function that defines sequential occurrences of land-cover change classes is need to 

compute this statistic. For each sampling distance, a contiguity matrix was determined by “adjacent” 

pixels; e.g., those pixels that were east, west, north, and south of each other as defined by the sampling 

distance. For example, if the sampling distance is 5 pixels on a 30-meter resolution image, pixels within 

150 m are defined as neighbors. For a sampling distance of 25 pixels, pixels within 750 m are defined as 

neighbors. The significance of the test statistic by change class by sampling distance is reported in Table 

4.  Because of the skewness in land-cover change composition (the predominance of stable forest and 

stable non-forest and the patchiness of the classes that changed), no one sampling distance would 

sufficiently remove spatial autocorrelation. We ultimately chose to sample the image using a 15 x 15 

window, or sampling distances of 450 meters. At this distance, we had effectively filtered out much of 

the spatial autocorrelation in the smaller change classes, and the extent of spatial autocorrelation (as 

measured by sequential occurrences of like change classes) had significantly dropped for all classes. 

In addition to sampling across space we chose to employ a spatial filtering technique. One 

commonly used method for removing residual spatial dependence from a regression is the trend surface 

approach (Cliff and Ord 1981, Anselin 1995).  A trend surface model is defined as some function of the 

spatial coordinates xi1 and xi2: 

                                                 

7 No statistic currently exists for comparing multinomial spatial dependence. In SpaceStat v. 1.90, a statistic called 
jtot can be computed that tests for spatial heterogeneity across the data set (the BW case only). The statistic was also 
significant for this data set at varying window sizes, indicating that we could reject the null hypothesis of spatial 
uniformity. 
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where p and q represent the order of some polynomial relationship8 in the spatial coordinates and µi 

represents the mean of the function of regressor variables (Cliff and Ord 1981): 

 ( )1,...,i i ikx xµ µ= . (3.12) 

We include two variables, xcoord and ycoord, representing the x and y Universal Transverse Mercator 

(UTM) coordinates for each pixel.  

4. Results 

4.1. Spatial and Temporal Complexity 

We estimated four different models and compared their relative success in predicting land-cover 

change from 1987 to 1991, and 1991 to 1996.  We assumed that changing cultivation patterns, from 

primarily subsistence agriculture to increasing coffee production is a major factor in recent land-cover 

change, beginning in the early 1990s.  Unfortunately, we have no spatially explicit measure for these 

patterns; i.e., yields, etc.  We know that there is fundamentally a different relationship between the 

independent variables and the choice of subsistence or coffee production.  The preferred coffee cultivars 

require higher, moister elevations to grow well.  Effective transportation costs may be different for 

coffee.  The Honduran Coffee Institute (IHCAFE) has been an agent for promoting modern production 

methods and providing technical assistance (Jansen 1998); it has given support to the region’s aspiring 

coffee producers. Decree 175-87 has devolved funds to coffee-growing counties for road improvements 

in proportion to their production, and the National Coffee Fund (FCN) has provided additional funds for 

road improvements to counties with nascent production to encourage expansion.  During this time 

period, no significant changes took place in the road network; however, we know that much construction 

has taken place since the mid-1990s.  Therefore, it is possible that a coffee farmer would temporarily 

endure extremely high transportation costs with the high confidence that new roads were coming and 
                                                 

8 Generally, the higher the order of this polynomial, the more complex the underlying spatial dependence can be.  
However, multicollinearity is also a consequence.  We assume a linear relationship only. 
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costs would subsequently be reduced.  We simulate a change in transportation costs for areas most 

suitable for coffee production (within one standard deviation of mean elevation for areas experiencing 

recent clearings).  We also compare the predictive measure of including the spatial filter (x and y UTM 

coordinates).  Therefore, the four models are as follows: with transportation costs and spatial effects 

constant, with reduced transportation costs after 1991 and spatial effects constant, with transportation 

costs constants and spatial effects variables, and with both reduced transportation costs after 1991 and 

spatial effects variables. 

4.2. Parameter Values and Marginal Effects 

Table 8 reports the results for all four models and marginal effects evaluated at the mean for Model 

1.  Elevation was positively correlated with forest cover in all four models.  The effect of slope was not 

statistically significant, but the spatially lagged slope was significant and positive in two instances.  

Distance to the nearest village was also positively related to forest cover indicating that local trade may 

be more closely related to subsistence production and therefore the abandonment of marginal fields.  , 

The sign of effect of distance out of the region varied, depending on whether or not a spatial filter was 

included. If the location was specifically taken into account (Models 1 and 2), the impact was negative, 

meaning that distance was positively correlated with clearing.  If the spatial filtering variables were left 

out (Models 3 and 4), the effect was negative and much stronger if transportation costs were reduced. 

Thus, we think that there is a fundamentally different relationship between distance to regional markets 

both for newer vs. older clearings, and for more suitable areas (based on elevation and slope) for coffee 

than for subsistence production. 

One important question in this research regarded the role of pattern in explaining land-cover 

changes.  We tested to see whether edge agricultural areas are most likely to be abandoned, or whether 

edge forest areas were more likely to be converted.  The marginal effect of distance to edge was 

negative (indicating that interior areas are more stable), but was not significant.  The marginal effect of 

patch size (as a measure of fragmentation) was also negative.  This parameter was significant in two of 

the models.  This finding indicates that fragmented areas are also more likely to be converted. 
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The coefficient for ρ, which is the coefficient for individual heterogeneity, was significant for all 

models.  If random effects were not present, the variance estimated for ui, in (3.9) would be 

insignificant, and the correlation would collapse to zero.  The spatial effects variables (x and y 

coordinates) were strongly positive and significant.  However, when included, the magnitude of the 

constant greatly increased, indicating that including these effects led to overfitting of the model.  

4.3. Assessing Predictive Power 

For each model, we computed a pseudo-R2 statistic using Zavoina and McKelvey’s measure for   

probit models using an Inverse Mill’s ratio (Zavoina and McKelvey 1975).  According to this measure, 

overall predictive power of each model was roughly equivalent, ranging from 0.51-0.58.  The model 

with spatial effects and constant transportation costs had the best fit.   

In this analysis, the most important objective was to see which whether spatial and/or temporal 

variation would more accurately predict the bi-directional change in land cover over the study period.  

Using the estimated parameters, we generated probability predictions by assigning a land-cover class 

based on the maximum probability.  Predicted values for each sample point (roughly 4,000 points out of 

a possible 120,000) at each time point were calculated.  These results are found in Table 9.   

Surprisingly, all models were better at predicting the occurrence of reforestation than that of 

deforestation.  Only the two models that incorporated a spatial filter predicted any occurrences of 

forest/forest/non-forest.  The number of recent clearings was highest in the model with both a spatial 

filter and reduced transportation costs. The model with constant transportation costs and no spatial 

effects also predicted no occurrences of old and permanent forest clearing (forest/non-forest/non-forest).  

Figure 1 contains graphical depictions of actual and predicted land cover for all models. 

5. Discussion 

Chomitz and Gray (1996) developed a powerful and useful framework for linking observed land 

cover to land use. In this model, one defines the relative returns to land use using spatially explicit data, 

informed by theories of von Thünen (1966) and Ricardo (Currie 1981). However, there are drawbacks to 

this approach. In particular, there are certain factors that cannot be considered in this kind of analysis. 
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5.1 Data Limitations 

In the current model, there is no way to know which crop is planted in an individual clearing. We 

observe only forest/non-forest. In other studies (Nelson and Hellerstein 1997, Nelson et al. 2001, Nelson 

et al. in press), several land-use classes are modeled for one point in time. Comparing only two points in 

time, the possibility of switching from one land use to another, as a result of some exogenous event 

(e.g., policy changes, road construction), can be captured through a classified land-cover image. 

However, the higher degree of detail in the classification, the greater the chance for error. In our 

analysis, we can speculate on the purpose of the observed clearings by (a) the point in time in which 

they occurred and (b) the location of the clearing relative to geophysical (slope, elevation) and 

socioeconomic (distance to markets) factors. As indicated above, fieldwork in La Campa revealed that 

cultivation patterns are changing (Tucker 1996). We also know that new clearings are occurring in 

places farther removed from markets. Therefore, some of the recent clearing likely relates to expanding 

coffee production. Interestingly, only one of the models could predict recent clearings with much 

accuracy, and they all performed much better in predicting reforestation. Therefore, there is likely a 

missing component to the model as it stands. Conversion costs are currently missing from the model: 

there are high start-up costs to coffee production. However, a missing or understated cost would 

generally lead to overprediction of this class, not underprediction. Thus, we are most likely missing a 

factor related to the returns to coffee expansion. We are not currently capturing enough variation in the 

returns to land use in each point in time. 

5.2.  Spatial Scale and Spatial Effects 

In this formulation, the unit of analysis is the pixel, and the size of this pixel has varied based on 

the land-cover and other spatial data used: 30 m in this analysis; 80 m in Cameroon (Mertens and 

Lambin 2000); 500 m Panama (Nelson et al. in press, Nelson et al. 2001); and 1 km in Belize (Chomitz 

and Gray 1996). Land-cover data, generally from remote sensing techniques, are used to compensate for 

not having parcel-level data referenced by land users. Therefore, a spatial scale effect is induced. We 

cannot match the pixel to the land user. Particularly in the case of western Honduras, we know that the 
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same person or group of people may manage many different, non-contiguous areas. In order for this 

scale effect not to have serious implications for model accuracy, we have to make the assumption that 

land is managed as a portfolio. That is to say, land users manage many different potentially 

heterogeneous pixels each according to its highest valued use. This assumption may be too strict. One 

could imagine scenarios where a land manager would retain a pixel in a land use that is really not 

suitable because of the fixed cost of converting that one pixel, especially if it were surrounded by other, 

more suitable pixels. We plan to investigate this issue in fieldwork to determine how valid the 

assumption is for western Honduras. We do know that recent clearings, particularly for coffee 

production, tend to be very small, sometimes right at or just below the size that we can accurately detect 

with Landsat TM data, so it may not be an unreasonable assumption. 

Identifying and correcting for spatial effects in econometric models is of growing concern in 

studies of land use (Anselin and Bera 1998). However, many underlying spatial effects cannot 

adequately be captured in this framework. In a limited dependent variable model formulation, change is 

seen as either the realization of a process or its absence. The model is thus capturing what is called a 

latent regression (Liao 1994): there is an unmodeled profit or utility maximization process that is leading 

to land-cover change (or preventing it). It is important to remember that spatial effects, if present, would 

be found in this underlying process, and not necessarily in the observed land-cover changes (Anselin 

2001). In other words, linking pattern to observed changes may not be enough. Because of the extreme 

difficulty of incorporating spatial effects in models with qualitative dependent variables, much more 

research is needed in this area. If one examines only landscape patterns as a means for uncovering 

spatial pattern in land use (e.g., the realized pattern of land-cover change), it stands to reason that one 

might be missing the true spatial patterns in the underlying latent regression.  Any regional model 

should be supplemented with better knowledge of what spatial interaction might be present. A growing 

number of land-use studies emphasize the importance of including spatial effects (LeSage 1993, 

Benirschka and Binkley 1994, Polsky 2001). The fact that spatial interaction cannot be modeled in this 



 22

framework currently underscores the need for careful analysis at a finer scale (e.g., the household 

analyses undertaken by Mertens et al. (2000) and Geoghegan et al. (1999)). 

5.3. Conclusion 

Both socioeconomic and forest transformations are occurring in the study region. This area is 

developing intensified linkages to world markets, and it can serve as an arena for future comparative 

studies. It is often assumed that changes in agricultural systems under conditions of population growth 

and poverty lead to deforestation and general degradation of the landscape. We have much evidence to 

suggest that the situation in western Honduras is more complex. Evidently, the availability of 

agricultural intensification techniques has led farmers to establish more permanent agricultural fields 

and to reduce the use of marginal land for the production of maize and beans. The expansion of coffee 

production represents a novel process that is changing the landscape directly and indirectly. Those who 

can afford it see coffee as a good investment, and government programs for road improvements in 

coffee-growing areas provide an incentive for producers. The construction of new roads then alters the 

relative profitability of proximate land uses by changing all transportation costs within the region. 

The purpose of this analysis was to combine techniques from land-cover analysis, landscape-pattern 

analysis, and econometric estimation to determine the likely direction and quantity of land-cover change 

in the near future, as well as to rank and quantify the relative factors that have caused recent land-cover 

change. We account for the spatial drift in both human and biophysical activities by including distance 

to edge, patch size, and spatially lagged dependent variables in the analysis. Fieldwork is planned to 

capture on-the-ground measures of agricultural intensification and coffee expansion, to add to future 

analyses, and perhaps to better predict future land-cover change.  

Mertens and Lambin (2000) made an important contribution to the literature by suggesting that 

temporal and spatial complexities must be included in a study of land-cover change: aggregate measures 

are not enough. More important, simultaneous deforestation and reforestation over time point to a very 

complex pattern of land use, one that is well addressed by a study of the relative returns to land use over 

time. However, obtaining reliable econometric results for these temporal complexities is difficult; the 
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relatively simple multinomial logit formulation is not appropriate when correlation among alternatives 

exists (whether spatial or temporal).  Predicting land-cover change in a panel formulation makes better 

sense for linking the socioeconomic drivers of land-use change to observed land-cover changes.  In our 

region, we have at least two simultaneous processes of change: abandonment of marginal land and new 

clearings for market-oriented crops.  These processes are difficult to model exhaustively solely from 

observed land-cover changes, and it is evident that both spatial heterogeneity (at the parcel level and 

across the landscape) and external processes (changes in exogenous economic conditions) are important 

factors. 
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Table 1. Recent Land-Cover Changes in Western Honduras 

  1987 1991 1996 
Forest 554.38 537.57 559.92 

Deforestation  82.92 90.40 
Reforestation  100.68 113.74 

Non-Forest 460.78 480.85 455.20 
 

 

Table 2. Land-Cover Change Trajectories and Their Descriptions for 1987, 1991, 1996 
Category 1987 1991 1996 Land-Cover Change Classes 

1 Forest Forest Forest Stable primary or secondary forest 
2 Forest Non-Forest Non-Forest Old and permanent forest clearing 
3 Forest Non-Forest Forest Old forest clearing with regrowth 
4 Forest Forest Non-Forest Recent forest clearing 
5 Non-Forest Non-Forest Non-Forest Stable permanent agriculture 
6 Non-Forest Forest Non-Forest Forest regrowth with new clearing 
7 Non-Forest Forest Forest Old and permanent forest regrowth 
8 Non-Forest Non-Forest Forest Recent forest regrowth 

Source: Mertens and Lambin (2000:474). 
 

Table 3. Spatially Explicit Independent Variables 

Variable  Definition 

Geophysical Characteristics  
Slope Slope in degrees 
Elevation Meters above mean sea level 
Accessibility Measures  
Weighted distance to nearest town/village Distance to nearest center of trade in km, weighted by road type and transport cost 
Weighted distance to outside markets Distance to road that leads to Santa Rosa de Copán and Tegucigalpa 
Changes in Landscape Pattern  
Distance to edge Distance to nearest pixel of different cover type (forest/non-forest) for each time period 
Patch size Natural log of total area of patch that contains the pixel for each time period 
Spatial Effects  
UTM X-coordinates Meters east-west 
UTM Y-coordinates Meters north-south 
Spatial lag Weighted average of slope at neighboring locations 
Temporal Effects  
Scaled coffee price Percentage change in coffee price, three-year moving average prior to each time period 
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Table 4. Descriptive Statistics by Change Class  

Land-Cover Change Trajectories 
Slope, 
degrees 

Spatially 
Lagged 
Slope, 
degrees 

Elevation, 
100m 

Weighted 
distance out 
of region 

Weighted 
distance to 
nearest 
village 

All Mean 15.96 16.15 13.56 1956.60 286.56 
n=4720 Std. Deviation 12.80 8.87 4.60 1430.48 232.72 

  Minimum 0.00 0.00 5.61 6.79 3.39 
  Maximum 63.43 42.70 27.98 8827.90 1313.66 

f-f-f Mean 18.33 18.47 15.80 2646.01 403.75 

n=1871 Std. Deviation 13.51 9.19 5.03 1735.08 293.11 
  Minimum 0.00 0.00 5.95 48.86 11.69 
  Maximum 63.43 42.70 27.98 8827.90 1313.66 

f-f-n Mean 14.30 14.99 13.13 1748.69 258.64 
n=214 Std. Deviation 12.45 8.44 4.04 1101.39 178.00 
  Minimum 0.00 0.00 5.89 91.70 13.35 

  Maximum 57.10 34.20 26.98 6138.69 987.15 
n-f-f Mean 16.59 16.94 13.97 1860.99 242.58 
n=214 Std. Deviation 12.99 8.21 4.50 1081.02 152.43 

  Minimum 0.00 0.28 6.38 46.96 7.43 
  Maximum 53.90 35.55 23.33 4304.49 644.84 
n-f-n Mean 14.83 15.42 12.28 1485.27 235.61 

n=177 Std. Deviation 13.58 8.86 4.06 1077.93 147.11 
  Minimum 0.00 0.34 5.67 91.17 14.03 
  Maximum 60.00 35.84 22.07 4174.33 640.33 

f-n-f Mean 13.58 14.19 12.36 1529.18 211.54 
n=294 Std. Deviation 11.44 7.59 3.11 803.02 160.90 
  Minimum 0.00 0.22 5.90 82.35 19.71 

  Maximum 56.16 36.22 22.46 4373.71 858.05 
f-n-n Mean 13.69 13.65 11.93 1510.45 209.86 
n=227 Std. Deviation 11.09 7.49 3.15 912.17 150.03 

  Minimum 0.00 0.00 5.96 156.51 9.61 
  Maximum 52.18 31.96 22.74 4034.81 864.88 
n-n-f Mean 14.02 14.96 11.94 1439.48 196.96 

n=268 Std. Deviation 12.08 8.49 3.25 825.52 128.31 
  Minimum 0.00 0.47 5.79 8.61 14.75 
  Maximum 55.17 35.68 22.20 3981.48 724.90 

n-n-n Mean 14.45 14.38 11.67 1432.98 197.29 
n=1488 Std. Deviation 11.97 8.41 3.45 926.53 114.38 
  Minimum 0.00 0.00 5.61 6.79 3.39 

  Maximum 62.71 41.04 23.20 4227.76 626.65 
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Table 5. Change in Landscape Pattern by Change Class, 1987-1996 

    1987 1991 1996   1987 1991 1996 

    
Distance to 
Edge, m 

Distance to 
Edge, m  

Distance to 
Edge, m   

Patch Size, 
km2 

Patch Size, 
km2 

Patch Size, 
km2 

All Mean 117.67 142.31 81.91  226.34 255.14 179.17 

n=4720 Std. Deviation 194.93 266.02 87.96  125.08 143.36 114.44 
  Minimum 0.05 0.05 0.04  0.00 0.00 0.00 

  Maximum 1966.52 2603.52 774.61   352.30 401.21 300.21 
f-f-f Mean 201.28 245.38 112.06  207.38 199.07 165.15 

n=1871 Std. Deviation 278.84 388.93 108.08  71.58 75.16 70.58 
  Minimum 10.29 0.13 0.04  0.00 0.00 0.00 

  Maximum 1966.52 2603.52 774.61   245.79 245.79 211.56 
f-f-n Mean 59.98 51.99 37.09  166.40 151.48 103.35 

n=214 Std. Deviation 94.53 126.85 53.56  98.50 99.91 142.32 
  Minimum 12.25 0.05 8.02  0.00 0.00 0.00 

  Maximum 1191.64 1720.61 517.96   245.79 245.79 300.21 
n-f-f Mean 23.76 43.36 41.58  158.39 145.60 112.35 

n=214 Std. Deviation 26.05 47.42 45.41  175.02 103.58 91.96 
  Minimum 0.20 0.20 0.57  0.00 0.00 0.00 

  Maximum 169.75 352.29 294.41   352.30 245.79 211.56 
n-f-n Mean 35.55 22.43 47.19  229.35 98.37 186.31 

n=177 Std. Deviation 34.55 27.76 53.32  167.94 108.25 145.55 
  Minimum 0.80 0.82 12.08  0.00 0.00 0.00 

  Maximum 153.99 238.91 408.33   352.30 245.79 300.21 
f-n-f Mean 43.68 34.41 38.49  147.36 236.50 93.50 

n=294 Std. Deviation 34.78 24.32 44.35  104.36 197.29 90.14 
  Minimum 10.22 8.05 0.05  0.00 0.00 0.00 

  Maximum 235.26 192.60 310.23   245.79 401.21 211.56 
f-n-n Mean 32.67 54.08 56.13  114.79 293.68 185.13 

n=227 Std. Deviation 24.89 46.35 54.59  111.85 177.78 145.39 
  Minimum 8.23 9.56 9.56  0.00 0.00 0.00 

  Maximum 280.36 340.95 374.47   245.79 401.21 300.21 
n-n-f Mean 37.68 50.55 24.69  220.70 284.62 69.15 

n=268 Std. Deviation 43.33 45.15 27.01  169.57 182.32 86.45 
  Minimum 0.05 9.52 0.05  0.00 0.00 0.00 

  Maximum 276.59 343.40 222.82   352.30 401.21 211.56 
n-n-n Mean 84.02 103.30 82.29  300.36 365.01 250.83 

n=1488 Std. Deviation 70.80 83.05 71.09  124.11 114.65 110.92 
  Minimum 0.12 10.15 8.66  0.00 0.00 0.00 

  Maximum 535.22 666.68 657.26   352.30 401.21 300.21 
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Table 6. Trends in National Coffee Prices, 1987-1996 

Years 
Value, Local Currency 

Three-Year Moving Average % Change 

1984-1986 3474.67  
1988-1990 3734.67 7.48% 

1993-1995 6765.33 81.15% 
Source: FAO (2000) 

 

Table 7. Minimum Sampling Distance for Insignificant Join Count Statistic 
Change Class Description Window Size Distance (m) 

10 Stable Forest >55 x 55 1,650 
12 Forest/Forest/Non-Forest 19 x 19 570 
13 Non-Forest/Forest/Forest 17 x 17 510 
15 Non-Forest/Forest/Non-Forest 11 x 11 330 
16 Forest/Non-Forest/Forest 15 x 15 450 
18 Forest/Non-Forest/Non-Forest 15 x 15 450 
19 Non-Forest/Non-Forest/Forest 13 x 13 390 
21 Stable Non-Forest >55 x 55 1,650 

Forest 87 Initial class >55 x 55 1,650 
Non-Forest 87 Initial class >55 x 55 1,650 
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Table 8. Parameter Values, Models 1-4 

 

Reduced 
Transportation 
Costs, Spatial 
Filter 

Constant 
Transportation 
Costs, Spatial 
Filter 

Constant 
Transportation 
Costs, No Spatial 
Filter 

Reduced 
Transportation 
Costs, No Spatial 
Filter  

  Model 1 Model 2 Model 3 Model 4 
Marginal Effects, 

Model 1 

Constant -97.0039*** -117.6677*** -3.2040*** -2.9187*** -20.1872*** 

xcoord 11.5401*** 11.4569*** -- -- 2.4016*** 

ycoord 3.3984*** 4.7128*** -- -- 0.7072*** 

Elevation 0.2815*** 0.2587*** 0.2092*** 0.1722*** 0.0586*** 

Slope -0.0061 -0.0063 -0.0046 -0.0042 -0.0013 

Lagged Slope 0.0239*** 0.0210*** 0.0062 0.0018 0.0050** 

Distance to Nearest Village 0.0435*** 0.0343*** 0.0445*** 0.0399*** 0.0091*** 

Distance out of the Region -- 0.0003*** -0.0003*** --   
Distance out of the Region,  
Reduced in 1996 0.0038 -- -- -0.0064*** 0.0008 

Change in Coffee Price 0.1963*** 0.2156*** 0.1220** 0.1274*** 0.0408*** 

Distance to Edge -0.0004 -0.0005 0.0002 0.0002 -0.0001 

Patch Size -0.0055* -0.0045 -0.0104 -0.0095*** -0.0011 

ρ 0.7151*** 0.7144*** 0.7568*** 0.7572*** -- 

      

Pseudo-R2 0.57 0.58 0.51 0.52  
***indicates significance at the 99% level, ** at the 95% level, and * at the 90% level. 
 

Table 9. Composition of Land-Cover Change Trajectories 

  Actual   Model 1   Model 2   Model 3   Model 4   

forest all 1871 39.64% 2166 45.89% 2178 46.14% 2394 50.72% 2319 49.13% 
f f nf 214 4.53% 8 0.17% 0 0.00% 1 0.02% 0 0.00% 

nf f f 181 3.83% 25 0.53% 20 0.42% 23 0.49% 33 0.70% 
nf f nf 177 3.75% 3 0.06% 1 0.02% 2 0.04% 2 0.04% 

f nf f 294 6.23% 9 0.19% 10 0.21% 16 0.34% 10 0.21% 
f nf nf 227 4.81% 4 0.08% 1 0.02% 3 0.06% 0 0.00% 

nf nf f 268 5.68% 209 4.43% 202 4.28% 158 3.35% 195 4.13% 
nonforest all 1488 31.53% 2296 48.64% 2308 48.90% 2123 44.98% 2161 45.78% 
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Figure 1. Actual and Predicted Values, Models 1-4 
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