
 
 

EMPIRICAL LIKELIHOOD ESTIMATORS  
 

OF THE  
 

LINEAR SIMULTANEOUS EQUATIONS MODEL  
 

 
 
 
 
 
 
 

Thomas L. Marsha, Ron C. Mittelhammerb, and George G. Judgec  
 
 
 
 
 
 
 
 

Selected Paper  
American Agricultural Economics Association 

Chicago, August 2001 
 
 
 
 
 
 
 
 
 

 
aAssistant Professor, 342 Waters Hall, Kansas State University, Manhattan, KS, 66506, 785-532-4913, 
tlmarsh@agecon.ksu.edu.; bProfessor, Washington State University, and cProfessor, University of 
California, Berkeley.  Copyright 2001 by T. L. Marsh, R. C. Mittelhammer, and G. G. Judge. All rights 
reserved. Readers may make verbatim copies of this document for non-commercial purposes by any 
means, provided that this copyright notice appears on all such copies. 



 2

Empirical Likelihood Estimators of the Linear Simultaneous Equations Model  
 
Abstract:  Information theoretic estimators are specified for a system of linear simultaneous equations, 
including maximum empirical likelihood, maximum empirical exponential likelihood, and maximum log 
Euclidean likelihood.  Monte Carlo experiments are used to compare finite sample performance of these 
estimators to traditional generalized method of moments.   
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1. Introduction 

It is becoming increasingly evident that asymptotically justified estimators can have severe performance 

limitations in finite sample estimation, especially for economic data sampling processes that involve 

endogenously and simultaneously determined  random variables (Zellner; van Akkeren, Judge, and 

Mittelhammer; Mittelhammer and Judge).  For example the traditional two and three stage least squares 

estimators are consistent and asymptotically normally distributed, but have no optimality justification 

for small sample estimation except in very restrictive sampling contexts.   Moreover, there is increasing 

evidence that traditional asymptotically efficient moment based estimators may have large biases for the 

relatively small sample sizes usually encountered in applied economic research (Newey and Smith 

2000).   In response to limitations of traditional approaches for small sample estimation, we investigate 

alternative empirical likelihood-type estimators of the linear simultaneous system of equations and their 

performance in relatively small finite samples.   

Empirical likelihood-type estimators have been suggested in various forms as alternatives to 

traditional estimators [Owen, 1988, 1991, 2000; Qin and Lawless; Kitamura and Stutzer; Imbens, Spady, 

and Johnson; Mittelhammer, Judge and Miller].  Empirical likelihood estimators do not require 

specification of the specific parametric functional form of likelihood functions, but rather make mild 

assumptions concerning the existence of certain zero-valued moment conditions.  To date, there has 

been only limited analysis of small- and medium-sized sample performance of these estimators.  Imbens, 

Spady, and Johnson investigated the properties of point estimators and hypothesis testing procedures in 

the context of single parameter models.  Mittelhammer and Judge examined single equations models 

when the orthogonality condition between explanatory variables and equation noise is not fulfilled.  

Finite sample properties of empirical likelihood-type estimators have yet to be analyzed rigorously 

within a simultaneous systems context.  
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In this paper we examine the performance of three different Empirical Likelihood (EL) 

estimators within a linear simultaneous systems framework.  These include the Maximum Empirical 

Likelihood (MEL), Maximum Empirical Exponential Likelihood (MEEL), and Maximum Log Euclidean 

Likelihood (MLEL) estimators.  To evaluate the performance of the EL type estimators over a range of 

finite sample sizes, Monte Carlo sampling experiments are performed for a system of three simultaneous 

equations.  The mean square error between the true and estimated values of model parameters is used to 

compare the finite sample performance of the various EL estimators, as well as their performance 

relative to the generalized method of moments estimation procedure.  In addition, Monte Carlo 

experiments are used to compare the size and power of asymptotic normal Z and asymptotic chi-square 

Wald tests.  Although these results are specific to the collection of particular Monte Carlo experiments 

analyzed, the sampling evidence reported does provide an indication of the relative performance among 

the estimators. 

 

2. Empirical Likelihood Estimators 

Consider the ith equation of a system of q linear simultaneous equations 

( ) ( ) ( )  for 1,...,i i i i i i i i i i q= + + = + =Y Y � ; � 0 0 / 0  

where Yi is a 1n×  vector of endogenous variables, and ( ) ( ) and i iY X represent the ( )in q× matrix of 

endogenous and ( )in k× matrix of predetermined explanatory variables, respectively. The ( )1n×  vector 

i0  represents the unobserved residuals for the ith equation.  The parameters to be estimated include the 

( )1iq ×  vector i�  associated with the right hand side endogenous variables and the ( )1ik ×  vector i�  

associated with the predetermined variables.  The structural parameters are combined into the 

( )( )1i iq k+ ×  vector [ ]' | ' 'i i i=/ � � .   
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In the event one or more of the regressors is correlated with the equation noise, then 

E 1
i in−  ≠  0( )Μ ε  or plim 1

i in−  ≠  0( )Μ ε  and traditional Gauss-Markov procedures such as the least 

squares (LS) estimator, or equivalently the method of moments (MOM) -extremum estimator 

i,mom
ˆ =/ ( )1

(i) (i)arg n−∈Β  ′ − = X Y M / �β , are biased and inconsistent, with unconditional expectation and 

probability limit such that i i
ˆ Ε ≠ / /  and plim ˆ

i i
  ≠ / / .  For a complete system of simultaneous 

equations a consistent generalized method of moments (GMM) estimator can be derived from 

 ( ) [ ]1
q vn− ′⊗ − = I Z Y M/ �  

where ( )1,...,v qvec=Y Y Y is a ( )1nq×  vector of vertically concatenated endogenous variables, 

ý  is a ( )n m×  matrix of instrumental variables, M is a block diagonal matrix whose ith block is 

given by M(i) and ( )1,..., qvec=δ δ δ  is a ( )1K ×  vector of structural parameters to be estimated.  

Here ( )
1

q

i ii
K q k

=
= +∑  is the total number of endogenous and predetermined structural 

parameters in the system.  If Z=X then the GMM estimator is equivalent to three stage least 

squares (3SLS).  Hansen and Hansen, Heaton, and Yaron provide details on large and finite 

properties of GMM estimators. 

 In contrast to the GMM approach, empirical moment conditions for EL type estimators are  

expressed in the form 

 ( ) [ ]q v
 ′⊗ − =  
I p Z Y M/ �:  

where the  unknown ( )1n×  vector p consists of an empirical probability distribution supported on the 

sample outcomes, and : denotes the extended Hadamard (elementwise) product operator.  Comparing 
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the two moment conditions it is evident that the GMM approach restricts p 1/  for 1,...,i n i n= = , while 

the EL approach treats the unknown ip s′  as parameters to be estimated.  Note that although we are 

currently examining a linear system of equations , the nonlinear equivalent follows with only slight 

modifications in notation.   

The extremum problem for information theoretic estimation can be formulated as 

 ( ) ( ) [ ]
n

q v i i
i 1

max  s.t. , p 1, p 0 i
=

   ′φ ⊗ − = Σ = ≥ ∀     
p,

p I p Z Y M/ �
δ

:  

which maximizes the objective function ( )φ p  subject to moment, normalization, and nonnegativity 

constraints.  The different objective functions considered for the functional specification of ( )φ p  

include the traditional empirical log-likelihood objective function ( )i1
ln p

n

i=∑ , the empirical exponential 

likelihood (or negative entropy) function ( )i i1
p ln p

n

i=∑ , and the log Euclidean likelihood function 

� �� �1 2 2

1
p 1

n

ii
n n�

 

�Ç .  Each specification leads to a uniquely defined estimator of / .  These estimating 

criteria are nested within the Cressie-Read power divergence statistic that is based on the concept of 

closeness between estimated and empirical distributions relating to the choice of  p-distributions.  The 

Cressie-Read statistic is discussed further in Cressie and Read, Read and Cressie, and Baggerly. 

The Lagrangian form of the extremum problem is given by 

 ( ) ( ) ( )
q n

'
i i (i) i i

i 1i 1

L( , , , ) ' p 1⋅ ==

  η = φ − − −η Σ −    
∑p / � S S = < 0 /λ :  

where ( )1,..., qvec=� � �  is a ( )1mq×  vector  and η  is a ( )1 1×  scalar set of Lagrange multipliers.  First 

order conditions are given by 
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( ) [ ]( )

q
'
i j ji (i) i

j j i 1

L
' j, 0

p p ⋅
=

∂φ∂  = − − ⋅ −η = ∂ ∂ ∑p
Z Y M /λ  

 ( )'
i (i)

i

L
' [., ] 0

∂ = =
∂

p Z M
/

λ
A

: A  

 ( ) ( ) [ ]i (i) i
i

L
'p Z Y M / �

�
: ⋅

∂ = − − =
∂

 

 
n

i
i 1

L
p 1 0

=

∂ = Σ − =
∂η

 

and jp 0, .j≥ ∀   The first set of equations links the unknown ip s′  to the other unknown parameters 

 and / �  through the empirical moment conditions.  The second and third sets of equations relax 

traditional orthogonality conditions required by two and three stage least squares.  The fourth equation is 

the required normalization condition for the empirically estimated probability weights.  Provided 

( )
j

f ( )
p

∂φ
=
∂

p
p  is a monotonic function, then an inverse function, 1f ( )− ⋅ , exists and the general solution 

for p is  

[ ]( )
q

1 '
i j ji (i) i

i 1

f ' j,−
⋅

=

  = − ⋅ +η   
∑p � = < 0 /  

For the three distinct objective functions identified above, three separate econometric estimators are 

derived below. 

2.1 Maximum Empirical Likelihood 

The empirical log-likelihood objective function, ( )i1
( ) ln p

n

i
p

=
φ =∑ , yields the Maximum 

Empirical Likelihood (MEL) estimate of / .  The first order condition with respect to jp  is given by 

 [ ]( )
q

'
i j ji (i) i

j j i 1

L 1
' j, 0

p np ⋅
=

∂  = − − ⋅ −η = ∂ ∑� = < 0 /  
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The optimal pj can be expressed as (note it can be shown that 1η =  at the optimal solution) 

( ) [ ]( )
1q

'
j i j ji (i) i

i 1

p , n ' j, n

−

⋅
=

 
= − ⋅ + 
 
∑� � = < 0 /δ . 

Concentrating the objective function by substituting � �jp ,� /  for jp  generates a system of ( )K mq+  

first order conditions and ( )K mq+  unknowns represented by  and / � .  This leads to a conventional 

empirical likelihood estimator of the linear simultaneous equations model. 

2.2 Maximum Empirical Exponential Likelihood 

The empirical exponential likelihood function, ( )i i1
( ) p ln p

n

i
p

=
φ =∑ , leads to the Maximum 

Empirical Exponential Likelihood (MEEL) estimate of / .  The first order condition with respect to jp  

is given by 

 [ ]( )
q

'
j i j ji (i) i

j i 1

L
1 ln(p ) ' j, 0

p ⋅
=

∂  = + − − ⋅ −η = ∂ ∑� = < 0 /  

The optimal pj can be expressed as  

( )
[ ]( )( )
[ ]( )( )

q '
i j ji (i) ii 1

j n q '
i j ji (i) ij 1 i 1

exp ' j,
p ,

exp ' j,

⋅=

⋅= =

 − ⋅ =
 − ⋅ 

∑
∑ ∑

� = < 0 /

� /

� = < 0 /

 

Concentrating the objective function by substituting � �jp ,� /  for jp  yields a system of ( )K mq+  first 

order conditions and ( )K mq+  unknowns represented by  and / � .  For further insight into the MEEL 

estimator see Mittelhammer, Judge, and Miller (Chapter 17).  

The MEEL estimator has similarities to generalized maximum entropy estimators proposed by 

Golan, Judge, and Miller in that it uses the same functional form of objective function.  However, the 

MEEL estimator is fundamentally different from generalized maximum entropy estimators of the linear 

simultaneous equations model.  MEEL does not utilize user supplied support spaces for the parameters 
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and error terms as do generalized maximum entropy estimators, but rather recovers the unknown 

structural parameters /  and empirically estimated probability weights p supported on the sample 

outcomes.  See Marsh, Mittelhammer, and Cardell for a generalized maximum entropy analysis of the 

linear simultaneous equations model. 

2.3 Maximum Log Euclidean Likelihood 

The log Euclidean likelihood function � �� �1 2 2

1
( ) p 1

n

ii
n n�

 

I  �Çp  yields the Maximum Log 

Euclidean Likelihood (MLEL) estimate of / .  The first order condition with respect to jp  is now 

 [ ]( )
q

'
j i j ji (i) i

j i 1

L
2np ' j, 0

p ⋅
=

∂  = − − − ⋅ −η = ∂ ∑ � = < 0 / . 

The optimal pj can be expressed as  

( ) ( ) [ ]( )1 '
j i j ji (i) ip , 2n ' j,

−
⋅ = − ⋅ + η � / � = < 0 / . 

Again concentrating the objective function by substituting � �jp ,� /  for jp  yields a system of ( )K mq+  

first order conditions and ( )K mq+  unknowns represented by  and / � .  Of the three specifications 

considered in this study, the MLEL estimator has received the least attention in the econometrics and 

statistics literature. 

3. Asymptotic Properties 

The MEL, MEEL, and MLEL estimators are all consistent, asymptotically normally distributed, and 

asymptotically efficient relative to the optimal estimating function estimator (Imbens, Spady, and 

Johnson; Kitamura and Stutzer; Mittelhammer, Judge, and Miller, Chapter 17).  The estimators are 

asymptotically distributed as ( ) ( )1/ 2 N ,
d

n / / �

A − →  where the index A  represents the specific EL 

estimator { }, ,MEL MEEL MLELA∈ .  For iid sampling the asymptotic covariance matrix 
  is defined as  
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1

1 1 1

1

( ) ( )
plim plim ( ) ( ) plim

n

j j
j

n n n

−

− − −

=

 ′  ∂ ∂    ′=     ′ ′ ∂ ∂      
∑h / K /


 K / K /

/ /

 

In the expression above  

[ ]

[ ]

1 (1) 1

( )

,

( ) [ ,.]

,

j

j

jq q q

Y j

j

Y j

M /

h / =

M /

#

  − ⋅
   ′= ⊗  
  − ⋅  

 

and     

[ ]
1

( ) ( )
n

j q v
j=

 ′= = ⊗ − ∑h / K / , = < 0/  . 

See Imbens, Spady, and Johnson, as well as Kitamura and Stutzer, for underlying assumptions and proof 

of consistency and asymptotic normality.  In the case of non-iid sampling, Kitamura and Stutzer extend 

the above covariance expression.    

     

3.1 Hypothesis Testing 

Since the EL estimators are consistent and asymptotically normally distributed, asymptotically valid 

normal and chi-square test statistics can be used to test hypotheses about / .  Consistent estimates of 

asymptotic covariance matrices can be constructed by using MEL, MEEL, and MLEL estimates of / , 

respectively.  The plim terms can be based on either sample averages or else expectations can be taken 

with respect to the  estimated p̂  distributions, effectively replacing the n-divisors in the preceding 

expression defining Ω  with non-uniform jp̂  weights applied to each sample observation, respectively.  

Because 
0ˆ

ˆ
ij ij

ii

Z
G � G

 
:

is asymptotically N(0,1) under the null hypothesis H0: 
0

ij ijG  G , the statistic Z can 

EH XVHG WR WHVW K\SRWKHVLV DERXW WKH YDOXHV RI WKH /ij’s.   
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To define Wald tests on the elements of  

, let  H0: ( ) [ ] R / �  be the null hypothesis to be tested.   

Here R(

) is a continuously differentiable L-dimensional vector function with 
( )

rank
�È Ø

É ÙÊ Ú�

R /

/

=L�K.  In 

the special case of  a linear null hypothesis, H0:  R/ U . Then the Wald test statistic has a 32 limiting 

distribution with L degrees of freedom under H0, where the statistic is defined by  

� � � �

1

2( ) ' ( ) LW
R R

R / U 
 5 / U
/ /

�

�

Ë Û�� �
Ì Ü � � F
� �Ì ÜÍ Ý

. 

Imbens, Spady, and Johnson and Kitamura and Stutzer provide further details on Lagrange multiplier 

and pseudo-likelihood ratio hypothesis testing procedures.  Mittelhammer, Judge, and Miller discuss 

specification and application of empirical likelihood ratio tests.  

 

4. Finite Sample Properties 

The derivation of the finite sample properties of the EL estimators presented above is not tractable.  

Hence, Monte Carlo sampling experiments are used to identify and compare the repeated sampling 

properties of the estimators.  In this study we attempt to focus on small-to-medium sample size 

performance of the EL estimators, and their relative performance to 3SLS.  To measure the performance 

of the estimators, we use the mean square error (MSE) between the true and estimated values of 

structural coefficients.  Moreover, rejection probabilities of true and false hypothesis are used to 

estimate the size and power of statistical tests. 

4.1 Monte Carlo Experiments 

 For the sampling experiments we specified an overdetermined simultaneous system with 

contemporaneously correlated errors that is similar to empirical models discussed in Cragg, Tsurumi, 
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and Marsh, Mittelhammer, and Cardell.  The structural parameters + and ú of the system in (1) are 

given as  

1 .267 .087 6.2 0 .7 0 .96 0 .06

.222 1 0     ' 4.4 .74 0  0 .13 0  0     

0 .046 1 4 0 .53 .11 0 .56 0

−   
   = − =   
   −   

+ ú . 

The disturbance outcomes are drawn from a multivariate normal distribution with mean zero and 

covariance ⊗� , .  The contemporaneous error covariance specification � is given by  

1 1 .125

1 4 .0625

.125 .0625 8

− − 
 = − 
 − 

� . 

The exogenous variable values are all drawn independently from a N (0,1) distribution.  Results for each 

estimator were obtained by solving by the respective first order conditions defined previously.  In 

particular, the EL type solutions were calculated using the GAUSS constrained optimization application 

module provided by Aptech Systems, Maple Valley, WA. 

 

4.2 Results: Point Estimates 

Table 1 contains the mean values of the distribution of estimated + parameters based on 1000 Monte 

Carlo repetitions for sample sizes of 50, 100, and 200 observations per equation.  From this information 

we can infer several implications as to the performance of the EL estimators.  At 50 observations all 

three of the EL-type estimates are quite similar across all coefficients.  As the observations increased 

from 50 to 200, the MEEL, MEL and MLEL estimators appear to be converging to the true parameter 

values.  Hence, MEEL, MEL, MLEL, and 3SLS all exhibit the property of consistency across the given 

sample sizes, as anticipated from asymptotic theory.  
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Table 2 contains standard errors of the distributions of estimated + parameters based on 1000 

Monte Carlo repetitions for sample sizes of 50, 100, and 200 observations per equation.  Across the 

sample sizes, MEL and MEEL exhibited smaller standard errors for the structural parameters than did 

MLEL.  Overall, the standard errors from 3SLS are larger than those for MEL and MEEL for three of the 

four parameters.  As the observations increase from 50 to 200, standard errors for each estimator appear 

to be converging towards one another, which is expected for asymptotically equivalent estimators.   

In Table 3 the mean square error between the true and estimated structural parameters + are 

reported based on 1000 Monte Carlo repetitions for sample sizes of 50, 100, and 200 observations per 

equation.  MEL and MEEL exhibited smaller MSE for the structural parameters than did MLEL.  The 

MSE from 3SLS is larger than those for MEL and MEEL except for one parameter.  As the sample size 

increases from 50 to 200, each estimator shows a decrease in MSE values for all four structural 

parameters, as expected.    

In all, the MEL and MEEL estimators outperformed 3SLS in MSE.  Further, MEL and MEEL 

estimators outperformed MLEL in MSE.  These results are for the most part encouraging and suggest 

need for additional finite sample analysis of the EL estimators considered in this study. 

4.3. Results:  Hypothesis Testing 

To investigate the size of the asymptotically normal Z test, single scalar hypotheses of the form 

H0: 
0

ij ijγ γ=  are tested  with 0
ijγ set equal to the true values of the structural parameters.  Critical values 

of the tests are based on a normal distribution with a .05 level of significance.  To complement this 

analysis, we investigated the size and power of a joint hypothesis H0: 
0 0

21 21 31 31,γ γ γ γ= =  using the Wald 

test with a .05 level of significance, where the critical value is based on a central chi-square distribution 

with 2 degrees of freedom.  Again the scenarios are analyzed using 1000 Monte Carlo repetitions for 

sample sizes of 50, 100, and 200 per equation.   
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 Table 4 contains rejection probabilities relating to true scalar null hypotheses for structural 

parameters and for the asymptotic normal Z tests based on the MEEL, MEL, MLEL, and 3SLS 

estimators.  These values estimate the size of the test statistic and should approach .05 with increasing 

sample size.  For example, consider the scalDU K\SRWKHVLV WHVW IRU WKH SDUDPHWHU �21=.222.  At 50 

observations the size for 3SLS is 0.0809 and for MEEL it is 0.1260, while at 200 observations the size 

for 3SLS is 0.0600 and for MEEL it is 0.0550.  Overall, 3SLS appeared to estimate the size of the Z test 

statistic better than the other estimators at 50 observations and MEEL performed best at 200 

observations.   

Table 5 contains rejection probabilities for true and false joint hypotheses based on the 

asymptotic chi-square Wald test for the three EL-type estimators and the 3SLS estimator.  For the joint 

hypothesis tests, the size and power values are similar across the estimators.  The test sizes approached 

.05 and the values of the power of the tests approached 1 with increasing sample sizes.  Overall, the 

results indicate that asymptotic test properties based on EL estimators do not dominate, nor are they 

dominated by, 3SLS. 

 

5. Summary and Conclusions 

Three information theoretic estimators for the linear simultaneous equations model were specified, 

including Maximum Empirical Likelihood (MEL), Maximum Exponential Empirical Likelihood 

(MEEL), and Maximum Log Euclidean Likelihood (MLEL).  Asymptotic properties and hypothesis 

testing techniques were identified and discussed for each estimator.  To evaluate the performance of the 

empirical log-likelihood type estimators over a range of finite sample sizes, Monte Carlo sampling 

experiments were performed for a linear system of three simultaneous equations.  Their relative 
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performance was assessed, and also compared to the traditional asymptotically optimal generalized 

method of moment estimator (three stage least squares).   

 In the Monte Carlo experiments completed, the MEL and MEEL estimators outperformed 3SLS 

in means square error (MSE) between the true and estimated structural coefficients of the endogenous 

variables for smaller sample sizes.  The MEEL and MEL estimators outperformed MLEL across all 

sample sizes.  The MEL, MEEL, MLEL, and 3SLS estimators appeared to be converging with increasing 

sample sizes, exhibiting consistency and asymptotic efficiency.  The Monte Carlo results also indicated 

that performance of asymptotic normal Z and chi-square Wald tests based on EL estimators do not 

dominate, nor are they dominated by, 3SLS. 

The findings of this study are encouraging regarding the use of alternative estimators to the 

traditional GMM procedure in finite samples when estimating the parameters of a system of 

simultaneous structural equations and suggest the need for additional finite sample analysis of EL –type 

estimators.  Future areas of research include the performance of the estimators under alternative 

stochastic assumptions than normal iid sampling and the investigation of the finite sample performance 

of alternative test statistics, such as the Lagrange multiplier and pseudo-likelihood ratio statistics. 
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Table 1.  Mean value based on a distribution of parameter estimates from 1000 Monte Carlo simulations 
using 3SLS, MEEL, MEL, and MLEL.  

   Obs  3SLS MEEL MEL MLEL 

�21 = .222      

50  0.2010 0.2003 0.1986 0.2024 

100  0.2727 0.2428 0.2470 0.2405 

200  0.2208 0.2185 0.2182 0.2216 

      

      

�12 =.267      

50  0.2629 0.2356 0.2371 0.2321 

100  0.3091 0.2110 0.2874 0.2677 

200  0.2653 0.2657 0.2624 0.2566 

      

      

�32 = .046      

50  0.0477 0.0548 0.0570 0.0581 

100  0.0522 0.0673 0.0615 0.0679 

200  0.0565 0.0491 0.0478 0.0537 

      

      

�13 = .087      

50  0.0783 0.0778 0.0774 0.0779 

100  0.0880 0.0902 0.0871 0.0894 

200  0.0876 0.0901 0.0892 0.0863 
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Table 2. Standard errors based on a distribution of parameter estimates from 1000 Monte Carlo 
simulations using 3SLS, MEEL, MEL, and MLEL.  

   Obs  3SLS MEEL MEL MLEL 

�21 = .222      

50  0.2193 0.2138 0.2084 0.2197 

100  0.1596 0.1504  0.1527 0.1619 

200  0.0952 0.0930 0.0928 0.0973 

      

      

�12 =.267      

50  0.7232 0.6388 0.6095 0.6444 

100  0.4895 0.4220 0.4128 0.4274 

200  0.3081 0.2914 0.2932 0.2988 

      

      

�32 = .046      

50  0.6211 0.5797 0.5447 0.6129 

100  0.4613 0.3978 0.3800 0.4029 

200  0.2962 0.2846 0.2858 0.2986 

      

      

�13 = .087      

50  0.3983 0.4061 0.4037 0.4074 

100  0.2693 0.2727 0.2709 0.2727 

200  0.1899 0.1909 0.1907 0.1920 
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Table 3. Mean square errors based on a distribution of parameter estimates from 1000 Monte Carlo 
simulations using 3SLS, MEEL, MEL, and MLEL.  

   Obs  3SLS MEEL MEL MLEL 

�21 = .222      

50  0.0485 0.0461 0.0439 0.0486 

100  0.0254 0.0226 0.0233 0.0262 

200  0.0091 0.0087 0.0086 0.0095 

      

      

�12 =.267      

50  0.5225 0.4086 0.3721 0.4161 

100  0.2394 0.1785 0.1707 0.1832 

200  0.0948 0.0848 0.0859 0.0893 

      

         

�32 = .046      

50  0.3853 0.3358 0.2965 0.3754 

100  0.2126 0.1585 0.1445 0.1627 

200  0.0877 0.0809 0.0816 0.0892 

      

      

�13 = .087      

50  0.1585 0.1649 0.1629 0.1659 

100  0.0724 0.0743 0.0733 0.0743 

200  0.0360 0.0364 0.0363 0.0368 
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Table 4.  Rejection Probabilities for True Hypotheses with Asymptotic Normal Z test. 

 Single Hypotheses 
3SLS 

Obs �21=.222  �12=.267  �32=.046  �31=.087  

50 0.0890  0.0660  0.0790  0.0610  

100 0.0730  0.0570  0.0760  0.0570  

200 0.0600  0.0540  0.0260  0.0690  

  

 MEEL 

Obs �21=.222  �12=.267  �32=.046  �31=.087  

50 0.1260  0.0690  0.0550  0.1100  

100 0.0790  0.0420  0.0350  0.0760  

200 0.0550  0.0510  0.0450  0.0510  

  

 MEL 

Obs �21=.222  �12=.267  �32=.046  �31=.087  

50 0.1170  0.0660  0.0610  0.1020  

100 0.0740  0.0400  0.0310  0.0770  

200 0.0570  0.0510  0.0270  0.0650  

  

 MLEL 

Obs �21=.222  �12=.267  �32=.046  �31=.087  

50 0.1310  0.0730  0.0620  0.1190  

100 0.0830  0.0440  0.0310  0.0820  

200 0.0630  0.0490  0.0260  0.0700  
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Table 5.  Rejection Probabilities for True and False Hypotheses with Asymptotic Chi-Square Wald Test. 

 Joint Hypotheses  

 3SLS MEEL 

 
 

�21=.222 
�32=.046 

�21=0 
�32=0   

�21=.222 
�32=.046 

�21=0 
�32=0  

50  0.1240 0.2700   0.1630 0.3040  

100  0.0940 0.3740   0.0990 0.3710  

200  0.0590 0.6470   0.0580 0.6430  

  

 Joint Hypotheses 

 MEL MLEL 

 
 

�21=.222 
�32=.046 

�21=0 
�32=0   

�21=.222 
�32=.046 

�21=0 
�32=0  

50  0.1640 0.3120   0.1790 0.3150  

100  0.0980 0.3670   0.1010 0.3720  

200  0.0590 0.6420   0.0640 0.6590  

 


