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Forecast of CO, Emissions From the U.S.
Transportation Sector: Estimation From a
Double Exponential Smoothing Model

by Jaesung Choi, David C. Roberts, and Eunsu Lee

This study examines whether the decreasing trend in U.S. CO, emissions from the transportation
sector since the end of the 2000s will be shown across all states in the nation for 2012-2021. A
double exponential smoothing model is used to forecast CO, emissions for the transportation sector
in the 50 states and the U.S., and its findings are supported by the validity test of pseudo out-of-
sample forecasts. We conclude that the decreasing trend in transportation CO, emissions in the U.S.
will continue in most states in the future.

INTRODUCTION

The movement of people and goods is brought about through methods of transportation that use
fossil fuel combustion, which proportionally emits carbon dioxide (CO,) into the Earth’s atmosphere.
The impacts of this greenhouse gas (GHG) are fundamentally connected to transport modes, their
energy supply structures, and the basic facilities over which they operate (Rodrigue 2013). As
Lakshmanan and Han (1997) and Schipper et al. (2011) pointed out, CO, emissions from U.S.
transportation energy use increased up until 2008 due to the growth of three factors: travel demand,
population, and gross domestic product (GDP); however, both the consumption of fossil fuels by
and CO, emissions from the transportation sector in the U.S. have shown significantly decreasing
trends since 2008 because of multiple short-term and long-term factors, including slow growth after
the economic recession, a hike in fuel prices, increasing fuel efficiency, and a decrease in vehicle
mileage of passenger cars (U.S. Energy Information Administration 2014).

The decrease in U.S. CO, emissions in transportation over time is considerably related to the
significant decrease in fuel consumption by light-duty vehicles,' which outweighs increases in fuel
consumption by other modes. Fuel consumption by light-duty vehicles is projected to decrease from
4,539 million barrels of oil in 2012 to 4,335 million by 2040, which is the opposite of the increasing
fuel consumption trend over the past three decades (The U.S. Energy Information Administration
2014). However, heavy-duty vehicles, airplanes, marine vessels, Iubricants, and military use are
expected to continue to increase fuel consumption for the next two decades (U.S. Energy Information
Administration 2014).

Since the Kyoto Protocol in 1997, the international treaty has established binding obligations
for both developed and developing countries to reduce emissions of greenhouse gases in the
atmosphere. It is noteworthy that the U.S. was emitting the second highest CO, emissions in the
world, but the long-term and significant decrease of CO, emissions from the transportation sector is
now in progress (U.S. Department of Energy 2010).

Historically, U.S. CO, emissions from the transportation sector have shown a trend over time,
and thus they can be forecasted by using a statistical forecasting technique considering such a trend.
Since Brown (1956) and Brown and Meyer (1960) developed the double exponential smoothing
(DES) procedure to forecast a mean, a trend, and the variation of a noise, this method has been
advanced by Goodman (1973), Gardner (1985), and Gijbels et al. (1999). For example, Goodman
(1973) developed residual analysis to improve the forecast accuracy of DES models, while Gardner
(1985) introduced general exponential smoothing to consider seasonality. In addition, Gijbels et al.
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(1999) provided some insights into existing exponential smoothing theory by using a DES model
within a nonparametric regression framework.

Numerous studies have used DES models to forecast in a variety of fields, including
environmental pollution. Collins (1976) and Chu and Lin (1994) used a DES model to forecast levels
of consolidated sales and earnings as well as the relationship between expected yearly recruitment
levels and the necessary target requirements in high schools in Hong Kong, respectively. In 1999,
Oh et al. (1999) applied a DES model to predict ozone formation in air pollution in South Korea;
and Taylor (2003) forecasted electricity demand in England and Wales by using double seasonal
exponential smoothing in order to minimize the seasonal effects of electricity consumption. Elliott
and Timmermann (2008) empirically applied a DES model to predict U.S. inflation and stock
returns, while Taylor (2012) used it to capture the density of the number of calls arriving at call
centers. On the other hand, Xie and Su (2010) applied an exponential smoothing model to develop a
river water pollution predictor in China, and Gupta (2011) developed an adaptive sampling strategy
by using a DES model to evaluate carbon monoxide pollution by urban road traffic.

CO, emissions in transportation are different in each state in the U.S. as a result of their geographic
characteristics, levels of economic development and population growth, and transportation and
environmental regulations?. Figure 1 shows CO, emissions from the transportation sector by state
in the U.S. for 2011. California and Texas emit the largest CO, emissions, while Florida, New York,
Illinois, New Jersey, Ohio, Georgia, and Pennsylvania make the second largest CO, emissions,
which are usually in areas of high development of urbanization and industrialization (U.S Energy
Information Administration 2013).

Figure 1: U.S. CO, Emissions by State and the District of Columbia in 2011
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Although the effect of fossil fuel energy consumption on future CO, emissions from private
vehicle use in North America was analyzed in 2008 (Poudenx 2008) and the CO, emissions from
the transportation sector in the U.S. were projected with other statistical models in 2012 (Bastani,
Heywood and Hope 2012, Rentziou, Gkritza and Souleyrette 2012), their research was limited
to a particular transportation industry and did not suggest future-specific CO, emissions per state
in the U.S. over time. Most importantly, their findings lacked the provision of a validity test of
their forecasts. For these reasons, this study forecasts U.S. CO, emissions by state from the overall
transportation sector with the reliable validity test of pseudo out-of-sample forecasts.

The objectives of this study are i) to forecast national and state-level CO, emissions from 2012
to 2021 and ii) to review whether the decreasing trend in U.S. transportation CO, emissions will
be shown across all states during this period. From the findings, this study will be able to provide
administrators and state policy planners with detailed CO, emissions changes in the future in
order to help them plan transportation CO, emissions regulations. The second section of this study
presents discussions of alternative forecasting techniques, and the third section the state and federal
air pollution regulations, including GHG. The fourth and fifth sections are the methodology and the
data. After the results are presented, the conclusions discuss future CO, emissions changes in the
United States.

DISCUSSIONS OF ALTERNATIVE FORECASTING TECHNIQUES

There exist many mathematical forecasting models today. These models include the autoregressive
integrated moving average (ARIMA) technique and the seasonal autoregressive integrated moving
average (S-ARIMA) technique. These methods are statistically sophisticated and mathematically
complex methods that have been popular for forecasting the changes of time series in a broad number
of applications (Zhai 2005). As a couple of researchers pointed out, these techniques regard past
data and error terms of time series as essential information to forecast future changes. With a large
amount of time series data, this technique shows quite a good accuracy of forecasting (Shumway
and Stoffer 2011, Stock and Watson 2011).

However, as Zhai (2005) mentioned in her research, there are a few disadvantages of ARIMA
and S-ARIMA techniques compared with a DES model. First, they have many possible models
due to the number of possible combinations coming from the changes of the numbers in (seasonal)
autoregressive terms, (seasonal) moving average terms, and/or (seasonal) autoregressive terms.
Identifying the correct model among the possible models is likely to be subjective and depends on
the experience and professional knowledge of the researcher. Second, “the underlying theoretical
model and structural relationships are not as distinct as a DES model.” (Zhai 2005, p.10)

STATE AND FEDERAL AIR POLLUTION REGULATIONS INCLUDING GHG

Of'the 50 U.S. states, 32 have completed a climate change action plan to reduce their GHG emissions
in their states since about 2005, which incorporates many specific policy recommendations (U.S.
Environmental Protection Agency 2014C). For instance, the policy recommendations of Arkansas
in 2008 included making a renewable portfolio standard, enacting a carbon tax, increasing energy
efficiency, etc., and other participating states show similar policy recommendations for addressing
GHG emissions (U.S. Environmental Protection Agency, 2014C).

A federal regulation to reduce air pollution initially started in 1955 as the Air Pollution Control
Act and was complemented over time with the Clean Air Act (1963), the Air Quality Act (1967),
the Clean Air Act (1970), and the Clean Air Act Amendments (1990). Since the middle of the 2000s
with the Energy Policy Act (2005), Energy Independence and Security Act (2007), and President
Obama’s announcements of national policies (2009-2011 and 2014), stricter national air quality
standards have been established by the U.S. Environmental Protection Agency (EPA). For more
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detailed information, Table 1 provides each air pollution act and its key points regarding reducing
air pollution and/or GHG emissions (U.S. Environmental Protection Agency, 2014A, 2014B).

Table 1: Federal Acts and Announcements and Their Key Points

Federal Acts and Key points

Announcements

Air Pollution Control First federal-level act to prevent air pollution and provided a

Act (1955) research fund to define scope and sources in air pollution.

Clean Air Act (1963) Establishment of a national program for preventing air pollution
and started researching into techniques to reduce it.

Air Quality Act (1967) Authorized enforcement to reduce air pollution problems caused
by interstate transport of pollutants.

Clean Air Act (1970) Established national air quality standards.

Clean Air Act Established a program to reduce 189 air pollutants and

Amendments (1990) complemented provisions regarding the attainment of national air
quality standards.

Energy Policy Act Authorized to develop renewable energy or use innovative energy-

(2005) efficient technology for reducing air pollution, including GHG
emissions.

Energy Independence Authorized to increase energy efficiency and the production of

and Security Act (2007) clean renewable fuel.

Obama announcements Presidential announcements to enhance GHG and fuel efficiency

of national policies standards.

(2009-2011 and 2014)

Note: Information about federal acts and announcements and their key points is from USEPA (2014A,
2014B).

METHODOLOGY

Let us define:

a = Smoothing weight for the level of the time series.

B = Time-varying slope.

& = Disturbances.

u, = Time-varying mean.

S, = Smoothed state of the time series estimates u, in Eq. (1).
S’ = Smoothed state of the time series estimates u, in Eq. (2).
S, = Smoothed values of the S’; estimates /..

Y, = Observed value at time t.

Y,(m) = Forecast value ahead to m periods at time t.

We start with a simple exponential smoothing (SES) model to derive the DES model. The model
equation for the SES is:

(1) Y= pp + &, t=1,..T
The smoothing equation is:
(2) St = O(Yt + (1 - O()St_l.
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The m-step prediction equation is:
(3) Te(m) = S,

The m-step prediction value ¥;(m) is estimated through Eq. (1) and Eq. (2) (Elliott and
Timmermann 2008, SAS 9.2 User’s Book 2013). Eq. (1) is an estimation of the time-varying mean
and disturbances, while the smoothed state S, that is computed after Y, is observed is updated through
Eq. (2). The smoothed state is a result of the combination of its actual observation plus the first
lagged smoothed state with the control of smoothed weight. Exponential smoothing does not regard
the effect of each past lag equally, and rather gives more weight to recent observations; hence, the
smoothing weight between 0 and 1 is adjusted for this purpose. The smoothing process is backdated
from time to time 1 to determine the starting value of the smoothed state at time 0 (Chatfield and Yar
1988). The SES model cannot deal with trending data since all predictions at time t from one-step-
ahead to m-step-ahead are always the same as the value of in S, Eq. (3). Thus, a DES model is used
to reflect the effect of a trend in the data.

The model equation for this is:

4) Y, = p + Bt + g, t=1..,T
The smoothing equations are:

(5) Sy=a¥,+ (1 — S,

(6) S”t = O(S’t + (1 —_ Ol)S”t_l.

The m-step prediction equation is:
(D) 7uGm) = (2+75) 8" = (14175

The m-step prediction value Y, (m) is the forecast value from the DES model, which is estimated
by using the same process as in the SES model, but uses another smoothed series in Eq. (5) and Eq.
(6). (Elliott and Timmermann 2008, SAS 9.2 User’s Book 2013). The DES model is constructed
when the SES method is twice run through the two different smoothed series in Eq. (5) and Eq. (6).
The DES method can extrapolate nonseasonal patterns and trends such that the time series is smooth
and has a slowly time-varying mean.

DATA

The data on CO, emissions® measured in million metric tons (MMT) from the transportation sector
in the 50 states and the District of Columbia through fossil fuel combustion were obtained from
the EPA for 1990-2011 (U.S. Environmental Protection Agency 2013). However, according to the
central limit theorem, only 22 observations in a state may not be large enough to make the assumption
that our sample data are well approximated by a normal distribution. To confirm this statistically, the
normality of every state’s CO, emissions data was tested by using an Anderson—Darling test, and the
null hypothesis of no normality was not rejected, even at the 10% significance level.

Nevertheless, motor gasoline consumption data,* which are strongly correlated with CO,
emissions from the transportation sector, were available for 1960-2011 from the State Energy
Data System in the U.S. Energy Information Administration (USEIA) (U.S Energy Information
Administration 2013). Thus, following some calculation processes, 29 new observations in each
state from 1960 to 1989 were added for the state-level CO, emissions. First, we calculated the
ratio of CO, emissions and motor gasoline consumption from 1990 to 2011 in a state. Second, we
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summed the 22 calculated ratios and divided it by 22 to find the average annual CO, emissions
per unit of motor gasoline consumption (the value of 22 was from the difference between 1990
and 2011). Third, motor gasoline consumption from 1960 to 1989 in a state was multiplied by the
calculation result from step 2. Finally, the CO, emissions for the transportation sector from 1960 to
1989 by state were calculated through the third process. To check that the new dataset from 1960 to
2011 was normally distributed, an Anderson—Darling test in each state was again performed, and the
non-normality assumption was statistically rejected at the 5% significance level.

Table 2 shows the CO, emissions from the transportation sector in the 50 states, the District
of Columbia, and the U.S. for 1960-2011. Total U.S. CO, emissions increased until 2007, but
decreased thereafter. Most states showed a similar trend, but 14 states have recently increased their
CO, emissions: Alabama, Alaska, Hawaii, Idaho, Iowa, Louisiana, Nebraska, New Jersey, North
Dakota, Ohio, Oklahoma, Tennessee, Texas, and Utah.

EMPIRICAL RESULTS

Before discussing the empirical results, this study’s discussion is built around an assumption based
on a technical report from the U.S. Energy Information Administration (2014). We assumed that
motor gasoline consumption in the transportation sector will decrease in the next 10 years even
though the U.S. economic recovery occurs, since a decrease in vehicle mileage from passenger cars,
which is a possible cause of the recent decrease in CO, emissions in the U.S. transportation sector,
is expected to be maintained.

As discussed in the methodology section, an SES model was not appropriate with the trending
data of CO, emissions in the U.S. transportation sector, since it only gives reliable forecasts when
a time series fluctuates about a base level. For this reason, a DES model that yields good forecasts
with trending data was performed to forecast CO, emissions in the U.S. transportation sector.

Pseudo out-of-sample forecasts® were estimated to test the out-of-sample performances of the
DES models in each state and the U.S. The models were fitted with the CO, emissions data from
1960 to 2005, and then the forecasted CO, emissions from 2006 to 2011 were compared with the
actual observations during the same period, which were 10% of the sample size to verify forecasting
accuracy. Table 3 provides the actual observations and 95% forecast confidence intervals for
2006-2011. The overall forecasting accuracies by the DES models in the 47 states and the U.S. are
high; the actual observations of CO, emissions in 20 states are within the 95% forecast confidence
intervals, which means that in 95% of all samples, they would contain the actual CO, emissions; 27
states and the U.S. only have one or two actual observations of CO, emissions among six of the 95%
forecast confidence interval(s). On the other hand, Alaska, Idaho, North Carolina, and North Dakota
show poor forecasting accuracies since three or four actual observations of CO, emissions are not
within the 95% forecast confidence intervals for 2006-2011.

Next, the DES models in every state, the District of Columbia, and the U.S. were regressed
with the transportation CO, emissions data from 1960 to 2011 by using the statistical package
program SAS 9.3. The regression results in Table 4 show the parameter estimates for smoothed
level, smoothed trend, smoothing weight, root mean square error (RMSE), and goodness of fit (R?).
Columns 1, 2, and 3 start with the information on smoothed level, smoothed trend, and smoothing
weight, with the three concepts explained as follows: if a smoothed level is 1869 and a smoothed
trend is -19.8, then the forecast value in the first forecast year has a value of 1849 (=1869-19.8). In
the second forecast year, the forecast value is 1829 (=1849-19.8), and so on. A smoothing weight
between 0 and 1 is adjusted to give more weight to recent observations.

All the models in the 50 states, the District of Columbia, and the U.S. in Table 4 have statistically
significant smoothing weights at 1%, and the overall model fits run from 0.8 to 0.98, meaning that
the DES models used show high model fits for 1960-2021. On the other hand, the RMSE increases
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when the CO, emissions in a state increase, and thus California, Florida, and Texas show high
RMSE:s relative to the other states.

To make the estimation efficient and proper, a Ljung—Box chi-square test for error autocorrelation
and a Dickey—Fuller test for stationarity were performed. In the DES models of each state and
the U.S., the Ljung—Box chi-square tests showed that the autocorrelations of lags 1 and 2 in the
prediction error are zero at the 1% significance level, while the Dickey—Fuller tests showed that a
stationary time series is likely at the 1% significance level. The lagged variables in the DES models
were assumed to be exogenous since the error terms were not serially correlated (Gujarati and Porter
2009).

In Table 4, the District of Columbia, Idaho, Iowa, Kansas, Nebraska, North Dakota, Oklahoma,
South Dakota, Tennessee, and Utah are projected to increase CO, emissions from the transportation
sector for 20122021 since their smoothed trends are greater than 0; however, owing to the possible
poor forecasting accuracy of North Dakota in the pseudo out-of-sample forecast procedure, the
findings for this state need to be carefully interpreted. On the other hand, 41 states are projected
to show a decrease in CO, emissions because of the negative smoothed trends in Table 4. The
levels of decreasing emissions will be different in each state, with California showing the largest
CO,emissions decrease due to the largest negative smoothed trend value of -5.31.

Table 5 shows the forecast values of CO, emissions from the transportation sector in the 50
states, the District of Columbia, and the U.S. for 2012-2021. The summation of CO,emissions
in all states is well matched to the forecast of U.S. CO, emissions. In California, CO, emissions
from the transportation sector will significantly decrease by as much as one quarter of its 2011
CO, emissions by 2021, while Texas and Florida, which emitted the second and third highest CO,
emissions in 2011, will gradually decrease their CO, emissions, too. In contrast, the 10 states in
Table 4 projected to increase CO, emissions will increase their CO, emissions for 2012-2021, but
their proportion of total CO, emissions will only range from 9% to 11% during this period; hence,
the overall decreasing CO, emissions trend in the U.S. will remain. The findings for these 10 states
might be a result of factors such as sudden population increases, less strict air pollution regulations
in the transportation sector, and/or local economic growth through oil booms, agriculture production
increases, or industrial development.
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Table 2: CO, Emissions from the Transportation Sector by State, the District of Columbia,
and the U.S. from 1960 to 2011 (Unit: MMT)

State/Year 1960 1970 1980 1990 2000 2007 2009 2011
Alabama 13.6 20.7 24.9 28.1 33.6 36.2 32.7 33.6
Arizona 6.7 11.9 17.0 22.8 325 38.0 33.1 31.7
Arkansas 8.5 13.3 15.9 16.2 21.0 21.2 20.4 20.1
Alaska 3.6 53 7.7 12.1 15.7 18.0 13.7 14.3
California 82.9 131.6 156.2 202.8 215.8 238.1 217.5 207.7
Colorado 8.6 14.2 19.0 19.2 25.7 31.5 29.4 28.9
Connecticut 9.0 13.3 14.1 14.7 16.2 17.7 16.4 15.8
Delaware 2.1 32 34 4.5 5.1 52 4.8 42
District of Columbia 2.2 2.6 1.8 1.8 1.8 1.2 1.1 1.2
Florida 234 41.3 59.6 81.4 100.6 115.7 99.4 105.6
Georgia 17.6 30.6 37.2 48.7 61.5 67.1 65.4 65.0
Hawaii 35 59 7.6 11.1 9.0 14.1 9.5 10.2
Idaho 3.5 53 6.1 6.4 8.8 9.6 8.7 9.1
Illinois 393 55.6 57.8 54.4 67.1 73.8 68.4 66.9
Indiana 252 35.0 36.8 40.9 46.6 45.5 40.9 429
lowa 12.9 16.5 17.8 16.3 18.8 223 21.1 21.8
Kansas 12.1 16.5 17.9 19.3 18.8 19.6 19.8 19.1
Kentucky 13.3 21.2 253 26.4 31.5 35.0 32.7 32.6
Louisiana 23.1 36.3 49.9 48.9 61.0 50.8 47.2 50.2
Maine 44 5.8 6.2 8.3 8.6 9.1 8.6 8.4
Maryland 10.7 18.1 21.5 23.6 28.6 31.7 31.8 293
Massachusetts 17.1 243 25.2 28.9 32.1 33.6 30.8 30.9
Michigan 30.2 453 46.2 47.9 57.3 55.4 50.0 48.7
Minnesota 15.8 22.6 25.0 23.8 35.0 36.5 323 323
Mississippi 10.6 16.6 18.5 20.2 25.2 26.7 25.1 24.6
Missouri 21.2 29.9 32.0 33.8 39.5 42.9 39.7 39.4
Montana 4.0 5.7 6.5 59 7.5 9.0 8.0 8.2
Nebraska 6.5 8.6 9.2 10.5 12.2 12.6 12.5 14.2
Nevada 22 4.5 7.0 9.4 14.5 18.3 14.8 13.4
New Hampshire 2.2 3.6 4.1 52 7.3 7.5 7.2 7.1
New Jersey 33.1 45.2 50.1 57.1 65.0 72.6 62.3 66.0
New Mexico 6.5 9.1 11.8 14.9 15.3 15.6 14.0 14.1
New York 47.1 65.0 64.2 64.1 67.2 74.6 72.4 67.0
North Carolina 17.4 27.7 32.7 38.4 50.0 54.9 49.0 47.8
North Dakota 34 4.5 5.4 4.6 5.6 7.1 6.0 8.1
Ohio 41.3 57.8 61.1 56.1 68.9 72.9 64.6 65.2
Oklahoma 14.7 22.1 27.1 23.9 30.3 325 31.1 32.0
Oregon 9.7 15.4 19.1 20.0 22.7 245 229 21.2
Pennsylvania 44.1 56.4 61.6 59.5 70.6 72.2 66.4 64.5
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State/Year 1960 1970 1980 1990 2000 2007 2009 2011
Rhode Island 2.8 3.8 4.0 4.1 4.7 44 4.3 4.0
South Carolina 8.8 144 18.0 22.0 27.1 322 31.3 30.9
South Dakota 3.5 4.6 4.9 4.7 5.8 6.4 6.3 6.6
Tennessee 15.7 24.5 324 32.8 41.6 46.3 41.6 43.1
Texas 64.2 102.3 130.2 152.5 182.9 205.1 190.2 195.5
Utah 4.8 7.9 10.2 10.6 15.7 18.5 16.4 17.5
Vermont 1.5 2.4 2.6 3.0 3.7 39 3.6 34
Virginia 16.9 26.9 329 41.5 48.6 57.2 50.9 48.3
Washington 15.8 253 30.1 41.0 44.8 47.9 42.2 41.2
West Virginia 6.9 9.5 11.7 10.4 12.7 12.5 11.4 11.2
Wisconsin 15.3 21.9 24.4 243 29.8 31.1 29.5 29.2
Wyoming 4.0 5.3 8.0 5.8 7.6 8.9 8.3 7.8
U.S. Total 814 1217 1420 1585 1880 2045 1868 1862

Note: The CO, emissions for the transportation sector from 1960 to 1989 by state and the District of Columbia were calculated
using motor gasoline consumption data from 1960 to 1989 in USEIA (2013); the CO, emissions from 1990 to 2011 were

obtained from USEPA (2013).
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Table 3: Pseudo Out-of-Sample Forecasts of CO, Emissions (MMT) from the Transportation
Sector to Evaluate the DES Models’ Performances by State, the District of
Columbia, and the U.S. from 2006 to 2011

State/Year 2006 2007 2008 2009 2010 2011
Alabama 355 36.1 33.5¢ 32.6 33.7 335
(33.7,37.6) (34.2,38.1) (34.7,38.7) (31.8,35.7) (30.1, 34.0) (31.1,35.1)
Arizona 382 37.9% 35.0% 33.1 32.0 31.7
(36.7, 39.0) (38.0, 40.4) (37.3,39.7) (33.2,35.6) (30.4,32.8) (29.3,31.7)
Arkansas 20.6 21.1 20.5 20.3 20.4 20.1
(19.1,22.4) (19.1,22.4) (19.6,22.8) (19.0, 22.3) (18.7,21.9) (18.7,21.9)
Alaska 19.1 18.0F 15.4+ 13.6F 15.0 14.2
(17.9,21.6) (18.2,22.0) (17.3,21.1) (14.7, 18.5) (12.1,15.9) (12.2, 16.0)
California 234 238 222% 217 215 207
(221, 245) (226, 250) (230, 254) (212,237) (202, 226) (198, 223)
Colorado 30.7 31.5 30.1% 29.3 29.8 28.8
(29.2,32.3) (30.1, 33.2) (30.8, 34.0) (29.3, 32.5) (27.9,31.1) (28.1,31.2)
Connecticut 17.6% 17.6 16.7 16.4 16.1 15.8
(18.1,20.0) (17.0, 18.9) (16.6, 18.6) (15.7,17.6) (15.1,17.0) (14.7,15.7)
Delaware 5.1 52 5.0 4.8 4.4 4.2
(4.7,5.6) (4.8,5.6) (4.9,5.7) (4.6,5.4) (44,52) (4.0, 4.8)
District of Columbia 1.23 1.22 1.07 1.12 1.10 1.22
(1.15, 1.56) (0.94, 1.35) (0.90, 1.32) (0.77, 1.18) (0.82, 1.24) (0.83, 1.25)
Florida 116 115 105F 99 105F 105
(111, 124) (113, 127) (111, 125) (99, 113) (89, 103) (95, 109)
Georgia 68.3 67.0 61.2F 65.47 66.7 65.0
(68.2, 74.4) (66.8, 73.0) (64.4,70.7) (56.7, 62.9) (61.2,67.4) (63.9,70.1)
Hawaii 13.0 14.0 9.71% 9.44 9.65% 10.23%
(12.5, 14.6) (12.5, 14.6) (13.6, 15.7) (7.93,10.0) (7.14,9.28) (7.81,9.95)
Idaho 9.30 9.63 8.787% 8.68 9.47% 9.13
(8.17,9.31) (8.92,10.06)  (9.36,10.51)  (8.22,9.36) (7.94,9.08)  (8.97,10.12)
Illinois 73.3t1 73.7 69.8 68.3 67.6 66.8
(75.3,87.9) (68.9, 81.5) (67.9, 80.5) (62.1,74.7) (60.2, 72.8) (60.0, 72.6)
Indiana 46.4 455 42.3% 40.8 429 429
(42.2,49.0) (43.0, 49.9) (42.4,24.2) (39.0, 45.8) (36.7,43.5) (38.2,45.1)
Iowa 21.8 22.3 21.5 21.1 21.5 21.7
(20.5,23.4) (21.0,23.9) (21.4,24.3) (20.1, 23.0) (19.4,22.2) (20.0, 22.9)
Kansas 19.0 19.5 19.0 19.7 19.6 19.0
(16.5,19.8) (17.1,20.4) (17.8,21.1) (17.6,20.9) (18.2,21.4) (18.1,21.4)
Kentucky 334 349 32.1F 32.6 33.2 32.6
(32.1, 36.3) (31.8,36.0) (33.1,37.2) (30.7, 34.8) (30.4, 34.5) (30.9, 35.0)
Louisiana 55.0 50.8 47.9 47.2 50.17 50.2
(46.6, 54.8) (49.5,57.7) (46.8, 55.0) (43.4,51.6) (41.8,50.0) (44.3, 52.5)
Maine 9.41 9.06 8.20F 8.57 8.51 8.38
(8,67, 10.3) (8.80, 10.4) (8.49,10.1) (7.59, 9.25) (7.59, 9.52) (7.56,9.22)
Maryland 42.2 42.8 40.3 39.6 40.1 39.3
(39.0,45.1) (39.6, 45.6) (40.3, 46.4) (36.4,42.5) (35.6,41.6) (36.8, 42.8)
Massachusetts 33.07 33.5 334 30.7+ 30.8 30.9
(33.3,36.3) (31.6, 34.5) (32.1,35.1) (32.0, 34.9) (28.4,31.3) (28.4,31.4)
Michigan 55.7 55.3 51.3F 49.9 49.8 48.6
(52.1,59.1) (52.0, 59.0) (51.6, 58.6) (45.6, 52.6) (44.5,51.4) (45.3, 52.3)
Minnesota 36.1 36.5 34.6 322 32.7 323
(34.9,39.4) (34.3, 38.8) (34.4,39.0) (32.2,36.7) (29.1, 33.6) (29.5, 34.0)
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State/Year 2006 2007 2008 2009 2010 2011
Mississippi 26.8 26.6 25.6 25.0 252 24.6
(23.8,26.9) (25.4,28.5) (25.4,28.5) (24.1,27.2) (23.2,26.2) (23.4,26.5)
Missouri 422 42.8 40.3 39.6 40.1 39.3
(39.0,45.1) (39.6, 45.6) (40.3,46.4) (36.4,42.5) (35.6,41.6) (36.8,42.8)
Montana 8.5 9.0 8.3F 7.9% 8.1 8.2
(7.5,9.0) (7.9,9.4) (8.4,9.9) (8.0,9.5) (7.5,9.0) (7.4, 8.9)
Nebraska 12.4 12.6 12.3 12.5 14.6 14.1
(11.3,13.4) (11.5,13.6) (11.7, 13.8) (11.2,13.3) (11.4, 13.6) (14.8,17.0)
Nevada 18.0 18.2 16.3t 14.8% 13.9 13.3
(16.8, 18.0) (18.1,19.3) (18.4,19.6) (15.9,17.1) (13.6, 14.8) (12.4,13.6)
New Hampshire 7.2 7.4 7.2 7.2 7.2 7.0
(6.8,7.8) (6.6, 7.6) (6.9,7.8) (6.7,7.7) (6.6,7.6) (6.6, 7.6)
New Jersey 68.8 72.6 73.5 62.27 63.7 65.9
(65.7,73.4) (66.5, 74.2) (69.9, 77.6) (71.5,79.2) (61.1, 68.8) (58.9, 66.6)
New Mexico 16.0 15.5 14.2% 14.0 13.6 14.1
(14.0, 16.9) (14.5,17.4) (14.3,17.1) (13.0, 15.8) (12.3,15.2) (11.9, 14.7)
New York 74.8 74.6 74.3 72.3 72.3 66.9
(69.4, 82.4) (69.6, 82.7) (69.2,82.2) (68.6, 81.6) (66.5,79.5) (65.7,78.7)
North Carolina 53.1 54.9 53.47 48.9+ 49.2% 47.7
(53.0,56.9) (51.2,55.1) (54.1,58.1) (50.8, 54.8) (43.7,47.6) (46.2,50.1)
North Dakota 6.2 7.1% 6.3t 6.0t 6.9t 8.0
(5.8,7.0) (5.7,6.9) (6.4,7.6) (6.1,7.2) (5.6, 6.8) (6.2,7.3)
Ohio 72.1 72.9 69.0F 64.5 65.9% 65.2
(67.6,75.7) (68.6, 76.6) (69.5,77.6) (63.2,71.2) (57.0, 65.0) (60.9, 69.0)
Oklahoma 31.7 325 323 31.0 322 31.9
(28.0, 33.0) (29.2,34.2) (30.3,35.3) (30.3,35.3) (28.9,33.9) (29.6, 34.6)
Oregon 239 24.5 22.7% 22.9 22.1 21.2
(22.4,25.2) (23.0,25.8) (23.7,26.4) (21.1,23.8) (21.1,23.9) (20.3,23.0)
Pennsylvania 72.4 72.2 67.4% 66.4 66.07 64.4
(70.1, 78.2) (68.3,76.4) (67.9, 76.0) (59.5, 67.6) (60.7, 68.8) (61.4,69.5)
Rhode Island 4.4 43 4.1 4.2 4.2 4.0
(4.0,4.5) (4.1,4.6) (4.1,4.6) (3.8,4.3) (39,44 (3.9,4.4)
South Carolina 32.0 322 30.6% 31.2 31.2 30.8
(30.2,33.7) (31.1, 34.6) (31.3,34.8) (29.7,33.2) (29.7,33.2) (29.6,33.1)
South Dakota 6.1 6.4 6.0 6.2 6.5 6.5
(5.6, 6.6) (5.6,6.7) (5.9,7.0) (5.5,6.6) (5.7,6.8) (6.1,7.1)
Tennessee 45.8 46.2 42.9% 41.5 43.1% 43.1
(43.8,48.4) (44.0, 48.6) (44.3,48.9) (39.9, 44.5) (37.9,42.5) (40.1, 44.8)
Texas 202 205 197 190+ 194 195
(186, 206) (194, 214) (198, 218) (190, 210) (179, 199) (182,201)
Utah 18.5% 18.5 17.0% 16.4 16.3 17.4
(16.2,17.9) (18.3,20.0) (18.3,20.0) (16.2,17.9) (15.1, 16.8) (15.1, 16.8)
Vermont 38 3.8 35 3.6 35 3.4
(3.7,4.1) (3.7,4.1) (3.6,4.0) (3.2,3.6) (3.3,3.7) (3.2,3.6)
Virginia 56.9 57.2 52.7 50.8 50.4 48.3
(55.4,60.1) (56.3, 61.0) (56.0, 60.7) (49.7, 54.3) (46.7,51.4) (46.6,51.2)
Washington 44.8 47.8 429 42.1 41.2 41.1
(40.3, 46.7) (41.8,48.1) (45.1,51.5) (41.0,47.3) (38.9,45.2) (37.5,43.8)
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Table 3 (continued)

State/Year 2006 2007 2008 2009 2010 2011
West Virginia 12.5 124 11.0+ 113 11.6 11.2
(11.6,13.6)  (11.6,13.6)  (11.5,13.5) (9.8, 11.9) (9.9,12.0) (104, 12.5)
Wisconsin 30.8 31.1 30.1 29.5 30.3 29.1
(289,31.9)  (29.5,32.6)  (29.8,32.9)  (28.3,31.3)  (27.4,304)  (28.8,31.9)
Wyoming 8.6 8.8 8.6 8.3 8.4 77
(7.5,9.3) (7.8,9.6) (8.1,9.9) (7.9,9.7) (7.5,9.3) (7.5,0.3)
U.S. Total 2028 2045 1929+ 1867 1891+ 1862

(1962, 2106)

(1990, 2133)

(1998, 2141)

(1807, 1950)

(1731, 1874)

(1801, 1944)

Note: T indicates that actual CO, emissions are not within the 95% forecast confidence interval. Actual CO,
emissions are out of the parentheses, and 95% forecast confidence intervals are in the parentheses.

CONCLUSIONS

The increase in CO, emissions in the world has adversely affected sustainable development for
human life and the Earth’s ecosystems, resulting in global warming and climate change; therefore,
the recent decrease in CO, emissions from the U.S. transportation sector and its long-term decreasing
trend found in this study are meaningful for the world’s efforts to reduce CO, emissions. This
study found that the decreases in CO, emissions in most states are not temporary, but rather will
continuously occur for the next decade. By 2021, the U.S. is projected to emit CO, of 1664 MMT
from the transportation sector, a reduction of 198 MMT compared with 2011. This reduced amount
in 2021 will account for almost all the CO, emissions from California in 2011, which emitted the
most CO, emissions in the nation.

A major finding from the empirical results is that while CO, emissions by most of the U.S. states
for the next 10 years will show a downward pattern, 10 states are projected to show an increasing
tendency of transportation CO, emissions. One possible hypothesis to explain this difference across
states is probably related to whether a state has a GHG emissions reduction plan in place or not.
Looking at these 10 states, eight of them have not actually completed any climate change action plan
within their boundaries, compared with most of the other states trying to address GHG emissions.
This could imply much more importance needs to be placed on environmental policies for CO,
emissions reduction in the transportation sector, not only at national but at state level, too. One
caveat, nevertheless, is that from this finding, the policymakers should really aim at those areas
where the policy might be warranted, i.e., by the Lucas Critique,’ if a policy changes, the outcomes
of sample forecasts will be wrong.

This study has a limitation based on the data used. The CO, emissions data from 1960 to 1989
for each state and the U.S. were estimated from motor gasoline consumption data to find the best
possible approximation; if original data during the period were available from the EPA, we could
have estimated more accurate results for our CO, emissions forecasts from the U.S. transportation
sector.
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Table 4: Parameter Estimates, a Measure of Accuracy, and Goodness of Fit for Projections of
CO,; Emissions by State, the District of Columbia, and the U.S. for 2012-2021

State Smoothed Level Smoothed Trend Smoothing Weight | RMSE | R?

Alabama 33.59 -0.12 0.56 #** 1.06 0.97
Arizona 31.80 -0.63 0.83 ##* 0.77 0.99
Arkansas 20.28 -0.13 0.51 #** 0.78 0.95
Alaska 14.64 -0.50 0.53 *** 1.13 0.93
California 211.74 -5.31 0.59 ##* 6.43 0.97
Colorado 29.27 -0.37 0.57 #** 0.84 0.98
Connecticut 16.05 -0.35 0.58 *** 0.51 0.94
Delaware 4.46 -0.21 0.51 *** 0.20 0.94
District of Columbia 1.17 0.02 0.57 #*x* 0.10 0.94
Florida 105.33 -0.33 0.56 #** 3.47 0.98
Georgia 65.41 -0.04 0.52 ##* 1.99 0.98
Hawaii 10.10 -0.19 0.55 #** 0.90 0.87
Idaho 9.15 0.04 0.5] ##* 0.34 0.96
Illinois 67.44 -1.06 0.62 *** 3.25 0.85
Indiana 42.84 -0.22 0.48 *** 1.72 0.91
Iowa 21.69 0.16 0.71 *** 0.71 0.91
Kansas 19.31 0.004 0.44 ##%* 0.80 0.84
Kentucky 32.88 -0.12 0.47 *** 1.04 0.96
Louisiana 49.85 -0.20 0.43 ##* 2.20 0.95
Maine 8.50 -0.08 0.43 #%#* 0.41 0.91
Maryland 29.78 -0.87 0.70 *** 1.50 0.98
Massachusetts 31.04 -0.38 0.61 *** 0.85 0.96
Michigan 49.05 -1.00 0.73 ##** 1.76 0.94
Minnesota 32.63 -0.59 0.58 #** 1.13 0.96
Mississippi 24.97 -0.32 0.55 #** 0.78 0.97
Missouri 39.60 -0.44 0.70 #** 1.50 0.94
Montana 8.23 -0.004 0.41%** 0.39 0.89
Nebraska 14.05 0.44 0.63 #** 0.62 0.91
Nevada 13.48 -0.69 0.87 ##* 0.49 0.98
New Hampshire 7.15 -0.07 0.59 0.23 0.98
New Jersey 65.91 -0.57 0.42 ##* 2.63 0.93
New Mexico 14.13 -0.21 0.45 *** 0.71 0.93
New York 70.25 -1.59 0.48 ##* 3.21 0.80
North Carolina 48.29 -1.25 0.71 *** 1.26 0.98
North Dakota 7.10 0.26 0.36 *** 0.38 0.84
Ohio 65.38 -0.55 0.77 ##* 2.03 0.94
Oklahoma 31.91 0.08 0.47 *** 1.23 0.93
Oregon 21.61 -0.72 0.66 *** 0.72 0.96
Pennsylvania 64.78 -1.30 0.83 ##* 2.08 0.93
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Table 4 (continued)

State Smoothed Level Smoothed Trend Smoothing Weight | RMSE | R?

Rhode Island 4.11 -0.08 0.56 *** 0.12 0.93
South Carolina 31.04 -0.07 0.49 #** 0.90 0.98
South Dakota 6.49 0.09 0.54 *** 0.26 0.89
Tennessee 43.03 0.005 0.64 *** 1.28 0.97
Texas 195.03 -0.34 0.53 #** 522 0.98
Utah 17.13 0.22 0.62 *** 0.59 0.97
Vermont 3.47 -0.08 0.61 *** 0.11 0.97
Virginia 48.99 -1.64 0.73 #** 1.38 0.98
Washington 41.78 -0.67 0.48 *** 1.76 0.96
West Virginia 11.43 -0.14 0.50 *** 0.54 0.89
Wisconsin 29.47 -0.43 0.68 *** 0.78 0.97
Wyoming 8.14 -0.17 0.49 *** 0.44 0.90
U.S. Total 1869 -19.81 0.75 #** 41.10 0.98

Note: *** indicate significance at the 1% level. The smoothed level and trend are not related to the hypothesis

tests. The smoothed level and trend and smoothing weight use a unit of MMT CO..

76




JTRF Volume 53 No. 3, Fall 2014

Table 5: Forecasted Values of CO, Emissions from the Transportation Sector by State, the
District of Columbia, and the U.S. from 2012 to 2021 (Unit: MMT)

State/Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Alabama 334 332 33.1 33.0 329 32.8 32.6 325 324 323
Arizona 31.0 304 29.8 29.1 28.5 27.9 27.2 26.6 26.0 253
Arkansas 20.0 19.9 19.8 19.6 19.5 19.4 19.2 19.1 18.9 18.8
Alaska 13.7 13.2 12.7 12.2 11.7 11.2 10.7 10.2 9.7 9.2
California 202.8 1975 1922 1869 1815 1762 1709 1656 1603  155.0
Colorado 28.6 28.2 27.9 27.5 27.1 26.7 26.4 26.0 25.6 252
Connecticut 15.4 15.1 14.7 14.4 14.0 13.7 13.3 12.9 12.6 12.2
Delaware 4.0 3.8 3.6 34 3.2 3.0 2.8 2.6 23 2.1
District of Columbia 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4
Florida 1047 1044 1040 103.7 1034 103.0 1027 1024 102.1 101.7
Georgia 65.3 65.2 65.2 65.2 65.1 65.1 65.0 65.0 64.9 64.9
Hawaii 9.7 9.5 9.3 9.1 8.9 8.8 8.6 8.4 8.2 8.0
Idaho 9.2 9.2 9.3 9.3 9.4 9.4 9.5 9.5 9.5 9.6
Illinois 65.7 64.6 63.6 62.5 614 60.4 59.3 58.3 57.2 56.1
Indiana 423 42.1 41.9 41.7 41.5 41.2 41.0 40.8 40.6 40.3
Towa 21.9 22.0 222 22.4 22.5 22.7 22.9 23.0 232 234
Kansas 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3
Kentucky 32.6 324 323 322 32.0 31.9 31.8 31.7 31.5 314
Louisiana 493 49.1 48.9 48.7 48.5 483 48.1 479 47.7 475
Maine 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4
Maryland 28.4 27.5 26.6 25.7 24.9 24.0 23.1 222 214 20.5
Massachusetts 304 30.0 29.6 29.2 28.8 28.4 28.1 27.7 27.3 26.9
Michigan 47.6 46.6 45.6 44.6 43.6 42.6 41.6 40.6 39.6 38.6
Minnesota 31.6 31.0 30.4 29.8 29.2 28.6 28.0 27.4 26.8 26.2
Mississippi 243 24.0 23.7 234 23.1 22.7 224 22.1 21.8 214
Missouri 38.9 38.5 38.0 37.6 37.1 36.7 36.3 35.8 354 34.9
Montana 8.2 8.2 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.1
Nebraska 14.7 15.1 15.6 16.0 16.5 16.9 17.3 17.8 18.2 18.7
Nevada 12.6 11.9 11.3 10.6 9.9 9.2 8.5 7.8 7.1 6.4
New Hampshire 7.0 6.9 6.8 6.8 6.7 6.6 6.5 6.5 6.4 6.3
New Jersey 64.5 63.9 63.3 62.8 62.2 61.6 61.0 60.5 59.9 59.3
New Mexico 13.6 13.4 13.2 13.0 12.8 12.6 124 12.1 11.9 11.7
New York 66.7 65.1 63.5 61.9 60.3 58.7 57.1 55.5 53.9 52.3
North Carolina 46.5 452 44.0 42.7 41.4 40.2 38.9 37.7 36.4 35.2
North Dakota 7.8 8.0 8.3 8.6 8.8 9.1 9.4 9.6 9.9 10.1
Ohio 64.6 64.1 63.5 63.0 62.4 61.8 61.3 60.7 60.2 59.6
Oklahoma 32.0 32.1 322 323 324 32.5 32.6 32.7 32.8 32.9
Oregon 20.5 19.8 19.0 18.3 17.6 16.9 16.2 15.4 14.7 14.0
Pennsylvania 63.2 61.9 60.6 59.3 58.0 56.7 55.4 54.1 52.8 51.5
Rhode Island 3.9 3.8 3.7 3.6 3.6 3.5 3.4 33 32 3.1
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Table 5 (continued)
State/Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
South Carolina 30.8 30.8 30.7 30.6 30.5 30.5 30.4 30.3 30.2 30.2
South Dakota 6.6 6.7 6.8 6.9 7.0 7.1 72 7.3 7.4 7.5
Tennessee 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
Texas 194.3 194.0 193.6 1933 193.0 192.6 192.3 191.9 191.6 191.2
Utah 17.4 17.7 17.9 18.1 18.4 18.6 18.8 19.0 19.3 19.5
Vermont 33 32 3.1 3.0 29 2.8 2.8 2.7 2.6 2.5
Virginia 46.7 45.0 434 41.7 40.1 385 36.8 352 335 319
Washington 40.3 39.7 39.0 383 37.6 37.0 36.3 35.6 35.0 343
West Virginia 11.1 10.9 10.8 10.6 10.5 10.3 10.2 10.0 9.9 9.7
Wisconsin 28.8 28.4 27.9 27.5 27.0 26.6 26.2 25.7 253 249
Wyoming 7.7 7.6 7.4 7.2 7.0 6.9 6.7 6.5 6.3 6.1
U.S. Total 1843 1823 1803 1783 1763 1744 1724 1704 1684 1664

Endnotes

1. The EPA defines light-duty vehicles (i.e., passenger cars) as carrying a maximum Gross Vehicle
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Weight Rating of less than 8500 Ibs (The U.S. Energy Information Administration 2014).

These variables are embodied in the trend of the change in CO, emissions. The change of
CO, emissions in the transportation sector are highly related to these factors, so if we use
those variables as explanatory variables with CO, emissions variable in a forecasting model,
then it could result in multicollinearity. Also, DES models only use one variable that we are
trying to forecast. For example, suppose we are interested in forecasting CO, emissions in the
transportation sector. The dependent variable and independent variables using the DES model
will be calculated through the mathematical formula of the DES model from only the one
variable.

CO, emissions per kWh in electricity from coal-fired thermal power stations are reported higher
than in CO, emissions per kWh from various other fuels (Hutton 2013).

CO, emissions are generated by both gasoline consumption and diesel consumption data.
Due to the non-availability of diesel consumption data to the public, this study could only use
gasoline consumption data.

Pseudo out-of-sample forecasting is generally used to test the real-time accuracy of a forecasting
model. The mechanism is as follows: Select a date close to the end of the sample, estimate a
forecasting model with data up to that date, utilize the estimated forecasting model to make a
forecast after the date, and then compare the forecasted values corresponding to the original
data (Stock and Watson 2011).

The Lucas Critique derived from his work on macroeconomic policymaking implies that
evaluation of the effects of economic policy based on the historical data might not be appropriate
(Lucas 1976).
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