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Predicting Block Time: An Application 
of Quantile Regression
by Tony Diana

Airlines	face	three	types	of	delay	that	make	it	difficult	to	build	robust	schedules	and	to	support	block	
time	predictability.	Block	time	is	the	time	elapsed	from	gate	departure	to	gate	arrival	and	refers	to	
the	time	when	blocks	are	off	the	wheels	at	the	departure	airport	to	the	time	they	are	back	on	at	the	
destination	airport.	These	delays	can	be	induced	(i.e.,	ground	delays),	propagated,	or	stochastic.	
With	capacity	constrained	at	major	airports	and	regulators	facing	greater	public	pressure	to	allevi-
ate	congestion	and	tarmac	delays,	aviation	practitioners	have	renewed	their	interest	in	the	predict-
ability	of	block	time.	This	study	presents	a	methodology	based	on	the	case	study	of	the	Seattle/Ta-
coma	International	(SEA)	and	Oakland	International	airport	(OAK)	city	pair	to	determine	the	pre-
dictability	of	block	time.	The	methodology	based	on	quantile	regression	models	is	appropriate	for	
a	skewed	distribution	where	analysts	are	interested	in	the	impact	of	selected	operational	variables	
on	the	conditional	mean	of	block	times	at	given	percentiles.	Quantile	regression	provides	a	measure	
of	on-time	performance	based	on	the	percentile	results	that	show	the	most	significance	and	best	fit.	

InTRODUCTIOn

Block time refers to the time that an aircraft spends from gate departure to gate arrival. Pilots 
are usually paid on the basis of “lock time or better,” meaning the greater of scheduled or actual 
gate-to-gate time. Actual block time depends on external factors such as available airport capacity, 
ground surface congestion, en route delays, weather events, air traffic control delays, and airline 
operational issues, among others. To minimize the impact of these unanticipated conditions, airlines 
have some incentive to pad their schedules so as to make on-time performance look better. The 
padding is all the more important as U.S. airlines schedule for good weather condition (visual 
meteorological conditions) compared with European airlines that take into account reduced capacity 
(instrument meteorological conditions) and whose traffic at large hubs is slot-constrained. Airlines 
often use on-time performance as an important marketing argument to attract passengers. Both on-
time performance and the causes of delay are published monthly by the Bureau of Transportation 
Statistics1 (BTS) in the Airline Service Performance Quality (ASQP) report. Therefore, scheduled 
block time is often construed as a measure of passenger experience. 

This article proposes a methodology to determine the predictability of block time based on 
the case study of the Seattle-Oakland city pair. The proposed methodology relies on quantile 
regression to determine how some selected operational variables are likely to affect actual block 
times at different percentiles. This is of importance to aviation practitioners and, especially, airline 
schedulers who have often resorted to schedule padding to make up for ground and en route delays. 

Predictability is all the more difficult to achieve as airlines often face three types of delay. 
First, delays can be induced: The Federal Aviation Administration (FAA) can initiate a ground 
delay program in case of adverse weather conditions or heavy traffic volume on the ground or en 
route. These delays are reported by air carriers as National Airspace System (NAS) delay when 
non-extreme weather conditions or airspace/airport conditions prevent on-time operations. Second, 
delays can be propagated; in a sequence of legs operated by the same tail-numbered aircraft, a 
flight may accumulate delays that cannot be recovered by the end of an itinerary. These delays are 
usually reported as late arriving aircraft delays. Finally, delays can be stochastic because they are 
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the results of random events such as equipment breakdown or crew problems (air carrier-related 
delays), security, or an extreme weather event.

Predictability represents an important key performance indicator in the aviation industry for 
several reasons. 
•	 For the International Civil Aviation Organization (ICAO), predictability refers to the “ability of 

the airspace users and ATM [Air Traffic Management] service providers to provide consistent 
and dependable levels of performance.” 2 Air Traffic Management (ATM) services can be public 
agencies such as the FAA or a private non-share capital corporation, such as NavCanada. The 
fundamental mission of ATM is to ensure flight safety by enforcing separation between aircraft.

•	 One of the goals of the U.S. Next Generation of Air Transportation System (NextGen) is to 
foster the transition from an air traffic control to more of an air traffic managed system where 
pilots have more flexibility to select their routes, utilize performance-based navigation (PBN), 
and make decisions based on automated information sharing. Performance-based navigation 
refers to either required navigation performance (RNP) when navigation entails on-board 
performance monitoring and alerting or area navigation (RNAV) when there are no requirements 
for monitoring and alerting. PBN procedures enable aircraft to fly more efficient arrival and 
departure trajectories not previously available due to the constraints of ground-based navigation 
aids such VHF omnidirectional radio range.3 PBN makes it possible for aircraft to operate 
at airports that are difficult to access because of surrounding terrain or airspace congestion. 
Presently, it is very difficult to assess the impact of NextGen-related technologies on flight 
performance because surveillance data do not account for the difference between the use of 
required navigational performance and instrument landing systems (ILS) when flight tracks for 
both types of procedure overlay, for instance. Surveillance data are generated by radar such as 
the Traffic Flow Management System data.

•	 According to Rapajic (2009), “cutting five minutes off average of 50% of schedules thanks to 
higher predictability would be worth some €1,000 million per annum, through savings or better 
use of airlines and airport resources.” Unpredictability imposes considerable costs on airlines in 
the forms of lost revenues, customer dissatisfaction, and potential loss of market share.
Recently, much discussion has revolved around the validity of using airlines’ schedules as a 

measure of on-time performance and the variance of block delay as an indicator of predictability. 
Both airlines’ limited control over the three types of delay and airport congestion make it difficult to 
build robust schedules. In this discussion, the predictable block time is located at the percentile where 
the sign and magnitude of the pseudo coefficient of determination (a measure of goodness of fit) is 
the highest with all the explanatory variables significant at a given confidence level. Ordinary Least 
Square (OLS) regression models enable analysts to evaluate the percentage of variation in actual 
block time explained by changes in selected operational variables. However, quantile regression is 
more robust to outliers than the traditional OLS regression because the latter does not focus on the 
conditional mean. The attributes of quantile regression will be addressed later in the discussion.

This article presents a different perspective on the study of predictability with the intent of 
helping aviation practitioners achieve the following objectives:
•	 To assess the impact of selected independent variables at different locations of the distribution 

of block delays in order to anticipate block time based on selected operational variables.
•	 To derive more predictable block times based on the impact of operational independent variables 

at various percentiles.
•	 To test a model without any assumption about the distribution of errors and homoscedasticity.
After a brief background, the discussion will proceed with the methodology, an explanation of the 
outcomes, and, eventually some final comments.
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BACKGROUND

There has been much discussion recently about the impact of schedule buffers and their reliability 
as a tool to measure airline or even the National Airspace System (NAS) performance. Constructing 
robust schedules is important for an airline because they support profitability. Lohatepanont and 
Barnhart (2004) focused on fleet assignment to determine where and when flights should be offered 
and what type of equipment should be used to maximize profits.

Wu (2005) highlighted the difference between the real operating delays, the inherent delays 
(from simulation) and the zero-delay scenario. The reliability is also affected by delay propagation 
when an aircraft accumulates delays over a series of legs that cannot be recovered at the end of 
the total trip. Wu (2005) recommended that airlines integrate buffers in their schedule in a way 
that strengthens reliability. This article provides a methodology that evaluates the effect of selected 
operational variables on block time in order to support more reliable schedules.

Lan et al. (2006) proposed two methodologies to minimize passenger disruptions and achieve 
robust scheduling based on aircraft routing and retiming flight departure times. The purpose of their 
research was to identify ways to minimize passenger disruption and minimize delay propagation 
through mixed integer programming. The disadvantage of such methodology is that it does not 
take into consideration the impact of key operational variables on block time that includes ground 
movement operations and flight time. 

Robust airline scheduling is the outcome of four sequential tasks, including schedule generation, 
fleet assignment, aircraft routing, and crew pairing/rostering (Wu 2010, Abdelghany and Abdelghany 
2009). Fleet assignment models (FAM) are often used to determine how demand for air travel is 
met by available fleet (see Abara 1989 and Hane et al. 1995). Moreover, the fleet assignment models 
present two challenges: complexity and size of the problem that the FAM can handle. 

Rapajic (2009) identified network structure and fleet composition as sources of flight 
irregularities. Wu (2010) provided an excellent exposition of issues related to delay management, 
operating process optimization, and schedule disruption management. Wu (2010) explained that 
“airline schedule planning is deeply rooted in economic principles and market forces, some of which 
are imposed and constrained by the operating environment of the [airline] industry.” He presented 
a schedule optimization model to improve the robustness of airline scheduling. However, such a 
model does not consider how selective operational variables are likely to impact scheduling.  

Morrisset and Odoni (2011) compared runway system capacity, air traffic delay, scheduling 
practices, and flight schedule reliability at 34 major airports in Europe and the United States from 
2007 to 2008. The authors explained that European airports limit air traffic delay through slot 
controls. The other difference is that declared capacity (therefore, the number of available slots) is 
based mainly on operations under instrument meteorological conditions. In Europe, slot refers to 
a time window when a flight is scheduled to depart. By not placing restrictions on the number of 
operations, schedule reliability in the United States is all the more dependent on weather conditions 
as European airports.

 
METHODOLOGY

The Sample and the Assumptions

The sample includes daily data for the months of June to August in 2000, 2004, 2010, and 2011 for 
the Seattle/Tacoma International (SEA)-Oakland International (OAK) city pair. The summer season 
is usually characterized by low ceiling and visibility that determine instrument meteorological 
conditions and weather events such as thunderstorms—all likely to skew the distribution of block 
times. 
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Figure 2:  Histograms of Block Time
 (Counts of Flights by Average Minutes of Block Time, June-August 2010)
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Figure 1:  Histograms of Block Time
 (Counts of Flights by Average Minutes of Block Time, June-August 2011)
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Figures 1 to 4 show the shape of the distribution for each summer and provides some key 
statistics. The skewness coefficients are 0.11, -0.44, 0.37, and 0.19 respectively for summer 2011, 
2010, 2004, and 2000. A negative skew indicates that the left tail is longer. While the standard 
deviation is appropriate to measure the spread of a symmetric distribution, interquartile ranges 
are more indicative of spread changes in skewed distributions. The Jarque-Bera statistic indicates 
whether the data are from a normal distribution. A normal distribution has an expected skewness 
and kurtosis of zero. A small probability value implies the rejection of the null hypothesis (H0: the 
distribution is normal).
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Figure 5 compares the boxplots of actual block times in minutes for the four summers under 
investigation. The boxplot shows the spread of the distribution, the selected quantile values, the 
position of the mean and median block times, and the presence of outliers that make it important 
to consider a regression model at different quantiles. The boxplots reveal an increase in the actual 
block times between summer 2004 and 2011. Summer 2010 features the largest range as well as 
the lowest block times at the 5th percentile among the four samples. It is also characterized by the 
highest proportion of operations in instrument meteorological conditions compared with the other 
three samples (Table 1). 

Secondly, summer is part of the high travel season when demand is usually at its peak. This, 
in turn, is likely to increase airport and en route congestion and subsequently impact block time. 
Finally, the years were selected to account for the following conditions: (1) pre- and post-September 
11, 2001, traffic, (2) lower traffic demand resulting from the 2008-2009 economic recession, and 

Figure 4:  Histograms of Block Time 
 (Counts of Flights by Average Minutes of Block Time, June-August 2000)
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Figure 3:  Histograms of Block Time
 (Counts of Flights by Average Minutes of Block Time, June-August 2004)

0

2

4

6

8

10

12

14

16

110 112 114 116 118 120 122 124 126 128 130

Series: ACTBLKTM
Sample  1 92
Observations  92

Mean       119.1140
Median   118.9950
Maximum  130.7500
Minimum  110.7900
Std. Dev.   4.077607
Skewness   0.374295
Kurtosis   3.144438

Jarque-Bera  2.228124
Probability  0.328223



Quantile Regression

44

(3) the introduction of the Green Skies over Seattle after 2010. It is an airline industry-wide 
initiative (i.e. airline, airport, aircraft manufacturer and FAA) designed to maximize performance-
based navigation through the use of satellite navigation in order to ensure more direct and optimized 
landing approaches.

In Table 1, although the number of flights decreased between 2000 and 2011 and the average 
minutes of expected departure clearance times (EDCT) were higher in 2011 than in 2000, the 
percentage of on-time gate departures and arrivals and other key delay indicators such as taxi-out 
delay (a measure of ground congestion) improved in 2011. It is interesting to point out that the 
percentage of flights in IMC did not change significantly at OAK among the four selected summers. 
IMC operations were, however, much higher in 2010 and 2011 than in 2000 at SEA, which may 
explain the existence of average minutes of EDCT in 2010 and 2011.

The sample does not include a variable that measures performance-based navigation. The 
available surveillance data such as Traffic Flow Management System (TFMS) do not capture whether 
a pilot had requested a required navigation performance procedure, whether air traffic control had 
granted the request, and whether the procedure had actually been implemented. Surveillance data 
refer to information generated by radars. Moreover, it is presently difficult to differentiate flown 
performance-based navigation procedures from instrument landing system (ILS) approaches in the 
case of flight track overlay. 

Secondly, the availability of Q-routes makes it possible for RNAV/RNP capable aircraft to 
reduce mileage, to minimize conflicts between routes (especially in a congested airspace such as 
the San-Francisco/Oakland area), and to maximize high-altitude airspace. The Q-routes are en route 
high altitude RNAV airways identified by a Q number. For instance, the great circle route between 
OAK and SEA is 584 nautical miles. The Q5 between the two airports is 523 nautical miles. Q-routes 
are designed to reduce flight distance and travel time between a city pair. They are available for use 
by RNAV/RNP capable aircraft between 18,000 feet MSL (mean sea level) and FL 450 inclusive 
(flight level 45,000 feet). Q-routes help minimize mileage and reduce conflicts between routes. 

Note: The black dot represents the mean

Figure 5: Boxplots of Actual Block Time (June - August, in Minutes) 
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Table 1: Performance Metrics for the SEA-OAK City Pair

 SEA-
OAK Flight

Count 

% On-Time
Gate

Departures

% On-Time
Airport

Departures

% On-Time
Gate

Arrivals

Arrivals
With

EDCT*
2000 1,411 76.26 67.54 77.18 0
2004 1,473 73.52 68.30 79.16 0
2010 1,147 91.63 85.27 92.85 1

2011 1,196 93.73 90.64 94.90 1

SEA-OAK
 

Average
EDCT
Where

EDCT>0

Gate
Departure

Delay
(min)

Taxi
Out

Delay
(min)

Average
Taxi
Out

Time (min)

Airport
Departure

Delay
(min)

2000 0 9.07 4.48 14.29 12.83
2004 0 11.03 3.49 12.80 13.84
2010 94 4.48 3.01 13.34 6.97

2011 104 3.83 2.79 13.03 5.92

SEA-OAK 
 

Airborne
Delay
(min) 

Taxi
In

Delay
(min)

Block
Delay
(min)

Gate
Arrival
Delay
(min)

Percent
IMC**

SEA

Percent
IMC**
OAK

2000 4.33 0.95 2.61 9.23 10.58 29.49
2004 6.93 1.22 1.44 9.26 8.33 29.71
2010 5.05 0.50 1.67 3.76 30.29 29.86
2011 3.92 0.70 1.90 3.24 22.83 29.78

* In the event of a ground delay, airlines are issued an expected departure clearance time (EDCT). 
 Flights held by FAA at the departure airport due to problems at the arrival airport.  

   EDCT hold delay is computed by comparing EDCT wheels-off time to the flight plan’s wheels-off time.
**  Instrument Meteorological Conditions
Performance is compared with the last flight plan filed before take-off.
Source: FAA, Aviation System Performance Metrics

Thirdly, block time as a measure of gate-to-gate performance is sensitive to delays on the ground 
and en route. To account for this, airborne delay represents a surrogate for en route congestion, while 
increases in taxi times imply surface movement congestion.  

Sources and Definition of the Variables

The sources for the variables are ARINC’s4 Out-Off-On-In times and the FAA’s Traffic Flow 
Management System (TFMS). The directional city pair data originated from the “En Route” and 
“Individual Flights” sections of FAA’s Aviation System Performance Metrics data warehouse.5 

The choice of variables reflects operational and statistical considerations. On the one hand, 
some model variables represent core factors in airport congestion (taxi times) and en route 
performance (airborne delays). On the other hand, the model with the highest values for the Akaike 
Information Criterion (AIC)6 and Bayesian Information Criterion (BIC)7 was selected in order to 
prevent overfitting and to reduce the number of explanatory variables. 
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The dependent (response variable) and independent variables (also called covariates in the 
literature on quantile regression) are defined as follows:
•	 Actual Block Time (ACTBLKTM) is the dependent variable. It refers to the time from actual 

gate departure to actual gate arrival. 
•	 Block Buffer (BLKBUFFER) represents the difference between planned and optimal block 

time.8 The latter is the sum of unimpeded taxi-out times and filed estimated time en route. 
Block buffer is the additional minutes included in planned block time in order to take into 
account potential induced, propagated, and stochastic delays. According to Cook (2007), the 
block buffer is “the additional time built into the schedule specifically to absorb delay whilst the 
aircraft is on the ground and to allow recovery between the rotations of aircraft.” Donohue et 
al. (2001) explained that “to obtain their desired on-time performance, airlines will add padding 
into a schedule to reflect an amount above average block times to allow for delay and seasonally 
experienced variations in block times.” 

•	 Departure Delay (DEPDEL) corresponds to difference between the actual and planned gate 
departure time at the departure airport in a city pair.

•	 Arrival Delay (ARRDEL) refers to the difference between the actual and planned gate arrival 
time at the arrival airport in a city pair. 

•	 Airborne Delay (AIRBNDEL) accounts for the total minutes of airborne delay. It is the 
difference between the actual airborne times (landing minus take-off times) minus the filed 
estimated time en route. 

•	 Taxi-Out Time (TXOUTTM) refers to the duration in minutes from gate departure to wheels-
off times. 
The dependent variables except block buffer represent some key flight operations likely to 

impact block time adversely as they increase. As taxi time increases, take-off is delayed; the airport 
may experience congestion, and block times may increase.

Quantile Regression

Quantile regression is a type of regression that makes it possible to study the relationship between an 
independent and dependent variables at different percentiles of the dependent variable distribution. 
This is all the more important as the distribution is skewed. Quantile regression features several 
advantages compared with the traditional ordinary-least-square (OLS) regression in assessing the 
influence of selected operational factors on the variations of block time at various locations of its 
distribution:
•	 Quantile regression specifies the conditional quantile function. It permits the analysis of the full 

conditional distributional properties of block delays as opposed to OLS regression models that 
focus on the mean.

•	 It defines functional relations between variables for all portions of a probability distribution. 
Quantile regression can improve the predictive relationship between block times and selected 
variables by focusing on quantiles instead of the mean. As Hao and Naiman (2007) pointed 
out, “While the linear regression model specifies the changes in the conditional mean of the 
dependent variable associated with a change in the covariates, the quantile regression model 
specifies changes in the conditional quantile.”

•	 It determines the effect of explanatory variables on the central or non-central location, scale, 
and shape of the distribution of block times.

•	 It is distribution-free, which allows the study of extreme quantiles. Outliers influence the length 
of the right tail and make average block time irrelevant as a standard for identifying the best-
possible block time. A single rate of change characterized by the slope of the OLS regression 
line cannot be representative of the relationship between an independent variable and the entire 
distribution of block time. In the quantile regression, the estimates represent the rates of change 
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conditional on adjusting for the effects of the other model variables at a specified percentile. 
Therefore, the skewed distribution of block times calls for a more robust regression method that 
takes into account outliers or the lack of sufficient data at a particular percentile (especially at 
the extremes of the distribution) and generates different slopes for different quantiles. 

OUTCOMES AnD IMPLICATIOnS

The estimates as well as the key regression outputs at the 5th, 25th, median, 75th, and 95th percentile 
are summarized in Table 2. The 50th quantile estimates can be used to track changes in the location 
of the median from the lowest to highest observed values of block times. According to Hao and 
Naiman (2007), the 5th and 95th percentiles “can be used to assess how a covariate predicts the 
conditional off-central locations as well as shape shifts of the response.” The shape shift refers to a 
movement of the mean (location on the X-axis) due to the presence of outliers. Based on the graphs 
in Appendix 1, the coefficient estimates show a positive relationship between the quantile value 
and the estimated coefficients at higher percentiles for scheduled block times, taxi out times, and 
airborne delay.   

If we take the example of the 50th percentile in summer 2011, the quantile regression model for 
at τ = 0.50 (50th percentile) is as follows:

(1) Block Timeτ = 0.50 = -0.9105*XBLKBUFFER + 0.8888*XSCHEDBLKTM  - 0.3090*XDEPDEL 

+ 0.2702*XARRDEL + 1.1015*XAIRBNDEL + 1.1372*XTXOUTTM
  +  ε     

In equation (1), 1.1372 represents the change in the median of block time between SEA and 
OAK corresponding to a one minute change in taxi-out time at SEA. Since the p value is zero, we 
reject the null hypothesis, at a 95% confidence level, that taxi-out times at SEA have no effect on the 
median block time between SEA and OAK in summer 2011. The pseudo coefficient of determination 
is a goodness-of-fit measure.9

Overall, summer 2011 is the only period when all the independent variables have a significant 
effect on block times at all the considered percentiles. Remarkably, block buffer, scheduled block 
time, departure, arrival and airborne delays, as well as taxi-out times are significant at the 95th 
percentile, at a 95% confidence level, in summer 2011, 2010, 2004, and 2000. This suggests that 
the difference between actual and planned departure and arrival times are more likely to have 
an incidence on the conditional mean of block times at the highest percentile as a result of taxi-
out delays and surface area movement congestion. Moreover, the magnitude of block buffer and 
departure delays have a negative impact on the conditional mean of block time for all samples at all 
selected percentiles. This calls for airline schedulers to understand the reasons for the gap between 
planned and actual block time and for airport analysts to evaluate the times and conditions when 
departure operations are delayed. 

The results imply that arrival and departure delays have a significant impact on block times at 
the 95th percentile for all years and at all the percentiles in 2011. Arrival and departure delay imply 
that an aircraft departed or arrived later than the time filed by the pilot in the last flight plan before 
take-off. This may be due to ground stops when traffic volume or weather requires departures to be 
delayed. While the average minutes of EDCT were zero in 2000 and 2004, they increased from 94 in 
2010 to 104 in 2011 (Table 1). However, the magnitude of the sparsity value is important to evaluate 
the relevance of the impact of the independent variables on block time. Sparsity refers to the density 
of data at a given percentile level.  A low value indicates that there are many observations near the 
quantile. For instance, there were few observations around the 5th percentile (12.64) in summer 2011 
than at the other percentiles: The sparsity values were 2.40, 2.27, 2.69, and 4.88 respectively for the 
25th, 50th, 75th, and 95th percentiles. 
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Table 2 shows that 95% of the distribution of block times between SEA and OAK was below 
129.14 minutes in the June-to-August time period based across the samples. While the standard 
distribution is appropriate to measure the spread of a symmetric distribution, interquartile ranges 
are more indicative of spread changes in skewed distributions. One benefit of quantile regression 
is that it facilitates the evaluation of scale and magnitude changes across samples and percentiles. 

In a comparison of summer 2000 with summer 2011, there has been an increase of 2.21 minutes 
in block times at the 95th percentile. The SEA-OAK city pair has been mainly operated by Southwest 
Airlines (SWA) and Alaska Airlines (ASA) with a fleet of Boeing 737s. It was not possible to 
separate the types of aircraft in the ASPM block en route city pair data that were used for this study. 
However, based on scheduled data in the Official Airline Guide (OAG) and Innovata, the total 
number of ASA operations declined to 356 in summer 2011 from 693 in summer 2000, while 91 
flights were operated by Horizon’s Bombardier Q400 (capable of RNAV/RNP-capable ) on behalf 
of ASA. Nevertheless, ASA operated larger capacity aircraft such as the dash 400, 800, and 900 
series, while SWA utilized a combination of dash 300, 500, and 700 aircraft. 

The reason for the increase in block time may be attributed to airlines’ corporate policy to 
slow down aircraft speed in order to save on fuel costs and not to large differences in aircraft 
type (turboprop versus jet aircraft). Based on schedule data, Horizon’s Q400’s represented a small 
proportion of the overall traffic between SEA and OAK. Weather conditions characterized by the 
percentage of operations in instrument meteorological conditions (IMC) did not vary substantially at 
OAK: It was, respectively, 29.78, 29.86, 29.71, and 29.49% in summer 2011, 2010, 2004, and 2000. 
At SEA, the percentages were, respectively, 22.83, 30.29, 8.33, and 10.58% during the same time 
periods (Table 1). Finally, although the use of RNAV/RNP may lengthen the path to the runway, it 
plays an instrumental role in de-conflicting approaches and departures at neighboring airports, thus 
minimizing their mutual impact on block times. 

COnCLUSIOn

Predictability is a key performance area identified by the International Civil Aviation Organization. 
Moreover, it is a cornerstone of the Next Generation of Air Transport System (NextGen) initiatives 
in the U.S. to ensure the transition from an air traffic controlled to a more air traffic managed 
environment. As air transportation regulators are under public pressure to crack down on tarmac 
and other types of delays, it has become imperative for airline schedulers to evaluate models that 
reflect the influence of key operational variables on actual performance. The complexity of the 
air traffic system, the inability of airline schedulers to fully anticipate both airport and en route 
congestion, and the imbalance between travel demand and capacity that results in delay all make it 
more significant for aviation practitioners to assess the impact of operational variables at different 
locations of the distribution of block times.  

Based on the analysis of the SEA-OAK city pair case study, this article showed how quantile 
regression can help aviation practitioners develop more robust schedules. First, it enables aviation 
analysts to consider the impact of explanatory variables at different locations of the distribution of 
block times. Secondly, the significance of the selected variables and the strength of the impact of 
selected independent variables on block times make it possible to assess the probability that gate-
to-gate operations are likely to reach a specific duration. This is made possible by looking at the 
conditional mean in the case of quantile regression as opposed to the mean of the distribution of block 
times in the case of OLS models. Thirdly, quantile regression makes it easier to evaluate the scale and 
magnitude of changes across specific percentiles over a sample.    Finally, quantile regression can 
help analysts study the impact of explanatory variables from different perspectives. In the present 
case, the quantile regression models focused on constraining factors such as airborne, departure, and 
arrival delays on the conditional means of block times, which explains the identification of the 95th 
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Table 2: The Quantile Regression Outputs

    3.4603 

Alpha = .95 2011 2010 2004 2000 
Coefficient Probability Coefficient Probability Coefficient Probability Coefficient Probability 

5th Percentile 
BLKBUFFER -0.7594 0.0000 -1.0083 0.0000 -0.9693 0.0000 -0.9904 0.0000 
SCHEDBLKTM 0.9263 0.0000 0.9006 0.0000 0.9316 0.0000 0.9051 0.0000 
DEPDEL -0.7318 0.0000 -0.0404 0.3929 -0.0448 0.5115 -0.0616 0.5885 
ARRDEL 0.7623 0.0001 0.0788 0.1598 0.0621 0.4139 -0.0131 0.9229 
AIRBNDEL 0.7751 0.0000 1.0951 0.0000 0.8766 0.0000 1.2568 0.0000 
TXOUTTM 0.5935 0.0127 1.0119 0.0000 0.9374 0.0000 1.0042 0.0000 

Pseudo R-squared 0.7014  0.8893 0.8878  0.8758  
Adjusted R-squared 0.6841 0.8829 0.8813 0.8686 
S.E. of regression 2.4713 1.0580 1.0013 1.3161 
Quantile dependent var 112.8600 107.5600 113.0000 110.9400 
Sparsity 12.6438  3.4399 2.8121  4.0616  

25th Percentile 
BLKBUFFER -0.8525 0.0000 -1.0084 0.0000 -0.9134 0.0000 -0.8522 0.0000 
SCHEDBLKTM 0.8916 0.0000 0.9066 0.0000 0.9253 0.0000 0.9230 0.0000 
DEPDEL -0.4393 0.0000 -0.0439 0.4714 -0.1207 0.1369 -0.1860 0.0400 
ARRDEL 0.3976 0.0000 0.0411 0.6096 0.1134 0.1995 0.1727 0.0665 
AIRBNDEL 1.1222 0.0000 1.0805 0.0000 0.9252 0.0000 0.9989 0.0000 
TXOUTTM 1.0369 0.0000 1.0048 0.0000 0.9607 0.0000 0.8326 0.0000 

Pseudo R-squared 0.7694  0.8952 0.8753  0.8843  
Adjusted R-squared 0.7560 0.8891 0.8680 0.8776 
S.E. of regression 1.2083 0.7264 0.7354 0.7577 
Quantile dependent var 117.7100 115.0000 116.5300 117.2100 
Sparsity 2.4094  1.8315 1.5958  1.8171  

50th Percentile 
BLKBUFFER -0.9105 0.0000 -0.9907 0.0000 -0.9152 0.0000 -0.7903 0.0000 
SCHEDBLKTM 0.8888 0.0000 0.9074 0.0000 0.9383 0.0000 0.9285 0.0000 
DEPDEL -0.3090 0.0275 -0.0187 0.8068 -0.1183 0.1299 -0.2783 0.0260 
ARRDEL 0.2702 0.0398 -0.0170 0.8388 0.1205 0.1602 0.2709 0.0433 
AIRBNDEL 1.1015 0.0000 0.9973 0.0000 0.7753 0.0000 0.9507 0.0000 
TXOUTTM 1.1372 0.0000 1.0547 0.0000 0.9383 0.0000 0.7760 0.0000 

Pseudo R-squared 0.7994  0.8922 0.8631  0.8689  
Adjusted R-squared 0.7877 0.8859 0.8551 0.8613 
S.E. of regression 1.1793 0.6220 0.6015 0.6263 
Quantile dependent var 120.4300 119.0000 118.9300 119.8600 
Sparsity 2.2739  1.4886 1.5010  1.7504  

75th Percentile 
BLKBUFFER -0.8864 0.0000 -0.9900 0.0000 -0.9185 0.0000 -0.7780 0.0000 
SCHEDBLKTM 0.9255 0.0000 0.9140 0.0000 0.9344 0.0000 0.9385 0.0000 
DEPDEL -0.3590 0.0340 -0.0885 0.3238 -0.0900 0.2008 -0.2509 0.0089 
ARRDEL 0.3720 0.0402 0.0561 0.5520 0.1094 0.1546 0.2650 0.0144 
AIRBNDEL 0.9501 0.0000 0.9861 0.0000 0.8565 0.0000 0.8778 0.0000 
TXOUTTM 0.8492 0.0000 1.0249 0.0000 0.9496 0.0000 0.7251 0.0000 

Pseudo R-squared 0.8138  0.8954 0.8548  0.8695  
Adjusted R-squared 0.8030 0.8893 0.8464 0.8619 
S.E. of regression 1.4336 0.7203 0.6748 0.7868 
Quantile dependent var 123.8000 121.9200 121.6000 122.1500 
Sparsity 2.6969  1.6380 1.9727  2.0322  

95th Percentile 
BLKBUFFER -0.8970 0.0000 -0.9377 0.0000 -0.7299 0.0000 -0.6846 0.0000 
SCHEDBLKTM 0.9308 0.0000 0.9097 0.0000 0.9750 0.0000 0.9456 0.0000 
DEPDEL -0.3469 0.0108 -0.2347 0.0023 -0.3725 0.0002 -0.3753 0.0000 
ARRDEL 0.4219 0.0047 0.2056 0.0127 0.3844 0.0001 0.4111 0.0000 
AIRBNDEL 0.6948 0.0000 1.0246 0.0000 0.6003 0.0000 0.7797 0.0000 
TXOUTTM 0.9168 0.0000 1.0483 0.0000 0.5678 0.0000 0.6431 0.0000 

Pseudo R-squared 0.8430  0.8986 0.8761  0.9103  
Adjusted R-squared 0.8339 0.8927 0.8689 0.9051 
S.E. of regression 1.9295 1.0992 1.2589 1.1371 
Quantile dependent var 129.1400 127.4300 126.0600 126.9300 
Sparsity      3.2418     3.6042 

Not significant at α = .95 

    4.8819
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percentile optimal values as the expected block time given the impact of the explanatory variables 
and the strength of the pseudo R-square. 

The results suggest that the impact of the dependent variables on block time is holding more 
consistently at the higher percentile. As a measure of gate-to-gate performance, block time depends 
on the variability of taxi times. Traffic volume and weather events that can trigger ground delay 
programs make it more difficult for airlines to predict block times. In fact, the average Expected 
Departure Clearance Time (EDCT) for the arrivals having an EDCT delay increased from 94 
to 104 minutes between summer 2010 and 2011. As the percentage of operations in instrument 
meteorological conditions did not vary at OAK, it was more variable at SEA. Moreover, while the 
use of precision approach to OAK has made it possible for RNAV/RNP capable aircraft to avoid 
airspace congestion around San Francisco, it is likely to increase flight time as aircraft must follow 
a specific path into OAK. 

Although the quantile regression models could provide some indication as to the scale and 
magnitude of change, they would have benefited by measuring the impact of technical changes 
introduced by NextGen programs and initiatives between summer 2000 and summer 2011. However, 
the assessment of such changes requires that available surveillance data keep track of the use of 
procedures such as RNAV/RNP, optimal profile descents, among others.

Abbreviations

ARINC  Aeronautical Radio, Inc.
ASA  Alaska Airlines
AIC  Akaike Information Criterion
ASPM  Aviation System Performance Metrics
ASQP  Airline Service Quality Performance
ATM  Air Traffic Management
BIC  Bayesian Information Criterion
BTS  Bureau of Transportation Statistics
ICAO  International Civil Aviation Organization
ILS  Instrument Landing System
IMC  Instrument Meteorological Conditions
EDCT  Expected Departure Clearance Time
FAA  Federal Aviation Administration
FAM  Fleet Assignment Models
FL  Flight Level
MSL  Mean Sea Level
NAS  National Airspace System
NextGen U.S. Generation Air Transportation System
OAG  Official Airline Guide
OLS  Ordinary Least Squares
PBN  Performance-Based Navigation
RNAV  Area Navigation
RNP  Required Navigation Performance
SWA  Southwest Airlines
TFMS  Traffic Flow Management System
VMC  Visual Meteorological Conditions
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APPENDIX 1: QUANTILE PROCESS ESTIMATE GRAPHS (95% CONFIDENCE LEVEL)

The graphs show the 95% confidence intervals around the regression coefficients listed in Table 2 on the Y-axis 
and the different quantiles on the X-axis in the case of the June to August 2000 sample. 
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Endnotes

1. On-time performance and the causes of delay are reported by major carriers in the Airline 
Service Quality Performance report. There are five categories of delay: air carrier, extreme 
weather, National Airspace System, late arriving aircraft, and security. The information is 
available at http://www.bts.gov. 

2. Hof, J. “Development of a Performance Framework in Support of the Operational Concept,” 
ICAO	 Mid	 Region	 Global	 ATM	 Operational	 Concept	 Training	 Seminar, Cairo, Egypt,  
November 28–December 1, (2005): 36.

3. VHF Omni directional radio range (VOR) is a short-range radio navigation system that allows 
an aircraft to determine its position.

4. AIRINC stands for Aeronautical Radio, Inc. (http://www.arinc.com). 

5. The TFMS (formerly ETMS) and ARINC data, as well as the ASPM delay metrics, are available 
at http://aspm.faa.gov.

6. The Akaike Information Criterion is defined as 2k – 2 ln(L) where k is the number of parameters 
and L the maximized value of the likelihood function for the estimated model. 

7. The Bayesian Information Criterion is -2 ln(L) + k*ln(n) where n is the number of observations.

8. Block buffer in this paper is determined by the difference between block time based on the last 
flight plan before takeoff and optimal block time. Therefore, the relationship between block 
buffer and arrival delay is not as strong as if schedules were used as a benchmark.

9. See Koenker and Machado (1999) for further explanations. 
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