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by Daniel Findley, Charles Zegeer, Carl Sundstrom, Joseph Hummer, and William Rasdorf

This paper evaluates the Highway Safety Manual (HSM) crash prediction model using data on two-
lane rural horizontal curves in North Carolina. An analysis of the local conditions calibration factor 
for the HSM predictive model in North Carolina found that a large number of sites (approximately 
300) are required to meet HSM recommendations. The results showed that annual average daily 
traffic, curve radius, and curve length were the most important factors in determining crash 
prediction accuracy, but that average or default values may be used for other parameters with less 
risk to accuracy.

INTRODUCTION

Horizontal curves are relatively risky portions of the highway system in the United States and 
elsewhere.  Collisions on two-lane curves have been found to be more than twice as likely to result in 
a fatality as all two-lane roadway segments (Hummer et al. 2010). Fortunately, curves are also places 
where highway agencies have many options and opportunities for making safety improvements.  
Agencies can add signs, markings, beacons, guardrails, and/or superelevation (cross-slope of the 
roadway), or can widen, straighten, and flatten sideslopes, just to name some common and proven 
examples of potential improvements.  This paper focuses on the analysis of two-lane rural horizontal 
curves.

Typically, the analysis of a horizontal curve or a set of curves for safety purposes by a highway 
agency is based on field visits and the judgments of experienced personnel.  Many agencies seem 
to rely on a drive-through by an engineer or a technician and a small set of countermeasures that 
seem to have proven themselves through the years.  Analytical tools have existed for a number 
of years, such as the 1991 FHWA curve crash prediction model (Zegeer et al. 1991).  That study 
developed a model to predict the number of curve crashes based on such geometric factors as degree 
of curve (amount of curvature of an arc), length of curve, roadway width, roadside hazard rating, 
superelevation on the curve, and presence or absence of spiral transitions to the curve (i.e., a smooth 
transition from the straight tangent to the curve) as well as traffic volume (ADT). While this model 
predicted curve crashes well for these mostly geometric variables, it did not incorporate the effects 
of traffic control devices such as signs, markings, flashing lights, rumble strips, lighting, and other 
variables.  Also, the model that was developed by Zegeer et al. (1991) was based exclusively on 
data from a single state (Washington), even though it is recognized that there are state-to-state 
differences in crash reporting thresholds, climate, terrain, driver characteristics, and other factors 
that can affect crash frequencies and rates for a given set of roadway conditions. 

Therefore, there has been a need for a model or tool to allow agencies to predict the crash 
potential of horizontal curves within a state or jurisdiction based on a wide variety of geometric, 
traffic, and other site-specific features, and for that model to be validated for the state where it is 
to be applied.  There have also been barriers to widespread implementation of past curve crash 
models and tools due to the large number of competing highway safety objectives, real or perceived 
difficulties in collecting the necessary data, and possibly the need to calibrate the model for local 
conditions, among other reasons. 

Applying the Highway Safety Manual 
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The publication of the Highway Safety Manual (HSM) offers a chance to overcome this impasse 
and get a crash model in use in the field (AASHTO 2010).  The HSM contains a crash prediction 
model for horizontal curves and estimates of crash modification factors (CMFs) for popular curve 
countermeasures. A CMF is defined as the expected change in crashes that results from a given 
safety treatment.  For example, if a countermeasure is expected to reduce crashes by 20%, the CMF 
is expressed as 1.00 - 0.20 = 0.80.  The model and CMFs have been approved by a committee of 
leading safety researchers and practitioners, and this provides credibility to the tools it provides.  
The HSM also contains detailed instructions for applying the model and CMFs to the usual steps in 
a safety program, including evaluating installed countermeasures. Despite the promise of the HSM 
and the fact that draft versions circulated widely for several years before publication, it is yet to be 
widely applied in curve safety studies. Perceived or real difficulties in calibrating the HSM models 
and collecting needed data may be contributing to this slower-than-expected adoption process.

The objectives of this paper are to provide highway agencies with practical advice on how to 
use the new HSM to analyze horizontal curves to supplement the usual methods that identify curves 
with abnormally high crash experience.  This paper answers the following questions:  Can agencies 
use the new HSM to identify and analyze horizontal curves in need of safety improvements?  If so, 
how should an agency calibrate the HSM curve crash prediction model to fit local conditions?  If an 
HSM analysis is possible, how much effort should the agency expect to make?  Is an HSM analysis 
possible without a field visit?  If so, what accuracy can be expected?  What steps should agencies 
take to make the HSM analysis more efficient so that they can utilize the results and apply them 
to improve curves in a more cost-effective manner? Satisfying these objectives should shorten the 
learning curve for agencies in using the HSM curve crash prediction procedure and reduce the risk 
agencies and professionals assume in using this new tool.

 
LITERATURE REVIEW 

Due to the recent release of the HSM, only a few studies have been completed on calibrating its 
crash prediction models.  This literature review consists of relevant studies that have evaluated the 
HSM application for two-lane and rural roads, the variance in crash modeling, and the calibration 
of HSM models. Sun et al. (2006) evaluated the applicability of the HSM safety prediction model 
to states from which crash data were not used in the original model development. The prediction 
model evaluated in this study was that for two-lane rural roads in the draft HSM. Data from state 
routes in Louisiana were used. Due to data limitations, the authors did not follow the recommended 
HSM procedure for calibrating the predictive model. However, the research team was able to create 
a database with important highway variables, including average daily traffic (ADT), segment length, 
lane width, shoulder width and type, and driveway density. Since the average predicted values were 
smaller than the observed values, a calibration parameter was calculated as a function of ADT. 
The results of this analysis were presented for two sets of road sections: the first consisted of 26 
randomly selected sections, and the second, 16 sections ranked in the top 30 in the state for crash 
frequencies over three years. The analysis indicated that the HSM model successfully predicted 
crash frequencies, but the level of effort required to obtain the data necessary to calibrate the model 
was a challenge. 

Martinelli et al. (2009) calibrated the HSM crash prediction model for the Italian Provence of 
Arezzo using 1,300 kilometers of rural two-lane highways. A comparison of observed crashes and 
results from four models with different calibration procedures showed they strongly overestimated 
crashes. Additionally, it was found that the models overestimated crashes at low crash locations and 
underestimated crashes at high crash locations. The authors concluded that calibration of the model 
is absolutely necessary to avoid over prediction in the base model.  They also note that a primary 
issue with calibration exists because the high segmentation of the HSM procedures leads to low or 
zero crash segments, which are not predicted accurately by the HSM.
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The accuracy of models using baseline data is also of interest for this paper. A recent study by 
Lord et al. (2010) compared crash prediction models for rural four-lane highways in Texas. Two full 
models with several covariates and the product of baseline models and accident modification factors 
(AMFs) were compared using predicted mean values and variances. The results of this analysis 
showed that the full models have much smaller variances than the product of baseline models and 
AMFs. This finding led the authors to conclude that when a study’s objective includes variance as 
part of the decision-making process, a full model should be used.

Further details on which elements are critical to the outcome of a crash prediction model are 
also of interest in determining which elements will have the least effect if they remain as default 
settings. A study by Nowakowska (2010) developed logistic models for crash severity based on road 
characteristics of rural highways in Poland. This study found that shoulder presence and type, area 
type, sidewalk presence, and interactions had a statistically significant influence on crash severity. 
Easa et al. (2009) evaluated crash prediction models for three-dimensional alignments of rural two-
lane highways in Washington State. They found that the most significant predictors of crashes were 
degree of curvature, roadway width, access density, grades, section length, and average annual daily 
traffic (AADT). 

Xie et al. (2011) applied the HSM procedures to roadway segments in Oregon for the purpose of 
calibrating the model for local conditions. They included randomly selected roadway segments and 
found a two-lane roadway calibration factor of 0.74 across 75 sites with 394 reported collisions and 
533 HSM predicted collisions.  The authors presented a methodology for sites that did not meet the 
recommended 100 collisions per year among 30 to 50 locations. To overcome the under-represented 
collision locations, the authors applied sample size estimation procedures based on average Oregon 
crash history for that type of site to modify the expected total yearly collisions. Another study also 
examined the calibration of the HSM as well as the development of new models (Banihashemi 
2011) and found that a calibrated HSM model performs as well as the newly developed models, and 
it is the preferred safety model.  Banihashemi (2011) also predicted a total of 150 collisions per year 
for the sites employed in the calibration process.

METHODOLOGY

Data Collection	

The collection of different data needed for calibrating one HSM model is described below for each 
of the selected curve sample sites in North Carolina.  The selected samples of curves were all on 
two-lane rural roads.  The researchers asked NCDOT to select 50 curve sites, with no more than five 
of the curves on any given roadway for the calibration effort.  Field investigation forms developed 
by the researchers were distributed to NCDOT personnel who were assigned the task of collecting 
the necessary data on 21 variables for each curve. The procedure for measuring curve radius and the 
superelevation of the curve is described in Findley and Foyle (2009).  In this validation effort, each 
selected curve must be isolated from other curves by tangent segments on both ends.  Then relevant 
variables were collected for each curve along with similar data for the adjoining tangent sections on 
both ends of the curve.  Table 1 lists the 21 variables on which data were collected for this study and 
provides a brief description of the data collection process for some variables.

HSM Predictive Method Calibration

The HSM predictive method is used to estimate crash frequency, severity, and types of crashes on 
a highway with known characteristics. To improve the accuracy of the model, the HSM predictive 
methods were developed such that they can be calibrated and adjusted based on local conditions. 
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Table 1: Field Data Collection Elements

Feature Value
1. Posted Speed Limit (mph):

2.
Lane Width (feet):
(Measure from center of the lane-line of the roadway to center of edgeline, 
round to the nearest foot)

3. Inside Shoulder Width (feet):
(Measure from center of edgeline to edge of shoulder, round to the nearest foot)

4. Inside Shoulder Type:
(Paved, Gravel, Turf, or Composite)

5. Outside Shoulder Width (feet):
(Measure from center of edgeline to edge of shoulder, round to the nearest foot)

6. Outside Shoulder Type:
(Paved, Gravel, Turf, or Composite)

7.

Length of Section (feet):
(Measure from beginning of the curve to the end of the curve along the 
edgeline, in feet, measure tangents from end of curve to within 100’ of the 
nearest intersection or next curve)

8.
Radius of Horizontal Curve (feet):
(Determine the radius using the attached Field Investigation Procedure and 
completed Field Investigation Form below)

9. Roadside Hazard Rating (1-7):
(See the attached photos for examples)

10.
Inside Lane Superelevation (%):
(Determine the superelevation using the attached Field Investigation 
Procedure and completed Field Investigation Form below)

11.
Outside Lane Superelevation (%):
(Determine superelevation using the attached Field Investigation Procedure 
and completed Field Investigation Form below)

12. Grade (%):
(Determine the grade using the digital level to find the steepest grade)

13.
Number of Driveways:
(Record the total number of driveways along the length of the roadway from 
beginning to end of segment on both sides)

14. Presence of Raised Pavement Markers (Yes/No):
15. Presence of Passing Lanes* (Yes/No):
16. Presence of Roadway Lighting* (Yes/No):
17. Presence of Centerline Rumble Strips* (Yes/No):
18. Presence of Two-Way Left-Turn Lanes* (Yes/No):
19. Presence of Shoulder Rumble Strips (Yes/No):
20. Presence of Skid Treatments (overlay) (Yes/No): 
21. Presence of Skid Treatments (groove pavement) (Yes/No):
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Examples of local conditions that may differ from the given predictive model include climate, 
geographic conditions, driver characteristics, and crash reporting thresholds. 

The HSM predictive method for rural two-lane, two-way highways was applied in this 
evaluation to North Carolina highways.  Other roadway types are available for analysis within the 
HSM through similar, but different methods which are specific to the characteristics that influence 
safety on those roadways.  This application followed the steps provided in the HSM to estimate the 
expected average crash frequency of curve segments. The HSM predictive model contains 18 steps 
starting with defining the segment and period of study to evaluating the results. The focus of this 
paper is on Step Nine, which selects and applies safety performance functions (SPF); Step Ten, which 
applies CMFs to the segments; and Step 11, which involves applying a local calibration factor. These 
steps are applied after the roadway segments have been identified and the data collection, including 
crash history and geometric conditions, is complete. Each step must be completed separately for all 
identified segments to develop a SPF, CMF, and a calibration factor, which are then used to predict 
crashes for each segment.

Step nine: Select and Apply SPF

This step develops the SPF for each selected roadway segment. The SPFs are used to determine 
predicted crash frequency with HSM base conditions. The SPF is adjusted to local conditions using 
the calibration factor in Step 11.  For each segment, the SPF is found using the following equation 
in the HSM:

(1)  

Where:
Nspfrs  = predicted total crash frequency for roadway segment base conditions (spfrs refers to the 
    SPF for the roadway segment)
AADT  = average annual daily traffic volume (vehicles per day)
L  = length of roadway segment (miles) or length of curve

The HCM also provides default distributions for crash severity and collision type which are 
based on data for Washington State. These distributions may also be updated using local data for 
improved accuracy.

Step Ten: Apply the Appropriate CMFs to SPF to Account for the Difference in Base and 
Site-Specific Conditions

After an SPF is found for base conditions in each segment, it is multiplied by the appropriate CMFs 
to adjust the estimated crash frequency to site specific conditions. For example, if the road segment 
does not have a shoulder, the SPF estimate is adjusted by a CMF of 1.50 to show an increase 
in predicted crashes.1 The HSM identifies 12 appropriate CMFs for horizontal curves. The most 
common CMFs used to adjust for local conditions on the curves are: lane width, shoulder width 
and type, length, radius, and presence or absence of spiral transition, superelevation, grade, and 
driveway density.

The Federal Highway Administration (FHWA) has established a CMF Clearinghouse for 
CMFs.2 These CMFs are multiplicative factors used to estimate the change in the number of 
crashes after a given countermeasure is implemented under specific conditions. Included in this 
Clearinghouse are the horizontal CMFs that have been developed.  Of the 2,546 CMFs from 150 
studies that are included in the Clearinghouse (as of March 2011), 221 CMFs and 18 studies relate 
to horizontal curves. However, due to the base conditions in this HSM analysis, only the CMFs 
presented in Section 10.7 of the HSM can be used with the SPFs developed in the previous step.  The 
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development process for CMFs are presented in Part D of the HSM, but the focus of improvements 
is toward future editions of the HSM, not for inclusion of additional CMFs by the user.

Step Eleven: Apply a Calibration Factor to the Result of Step 10

Once the estimated crash frequency for each segment is found and adjusted for site-specific 
conditions, it is multiplied by an appropriate calibration factor developed for local conditions. The 
calibration factor is used to adjust the results of the HSM predictive model to local conditions and it 
is calculated as the ratio of total observed crash frequency to total expected average crash frequency 
during the same period. For example, for one group of curves in this analysis, the reported collisions 
per year is 8.8 and the predicted number of collisions from the HSM procedure is 6.6, resulting in 
a calibration factor of 8.8/6.6 or 1.33. In this analysis, several calibration factors were developed, 
including an overall factor for all segments, a non-random selection curve segment factor, and a 
random selection curve segment factor. The results of this analysis are presented in the next section.

ANALYSIS

Calibration Factor Analysis

The calibration factor is a critical component of the HSM procedure to adjust the standardized 
factors presented in the manual to account for local conditions (e.g., crash reporting thresholds, 
climate and geographic features, and driver factors for a given state).  This paper focuses on 
calculating a calibration factor for two-lane rural road segments, including curved segments, tangent 
segments, and composite segments (including all curves and tangents).  The HSM recommends 
that the calibration factors should be calculated every two or three years for those who wish to 
implement the procedures in the manual regularly.  Additionally, the manual specifies a desirable 
minimum sample size of 30 to 50 sites that experience a total of at least 100 collisions per year.   This 
analysis included 51 sites that experienced 85 collisions per year on average, over a five-year period 
(Table 2).  However, these 51 sites include 26 curve segments that have abnormally high collision 
histories or have previously been identified as hazardous locations.  The other 25 sites were selected 
randomly by NCDOT personnel by arbitrarily choosing a curve site while on other assignments. 

Table 2: HSM Calibration Factors Calculated

Sample Type
(Sample Size) Roadway Type

Calibration 
Factor

Reported 
Collisions 
(Collisions 
per Year)

Predicted 
Collisions 
(Collisions 
per Year)

All Segments (51)
Curve 2.82* 35.4 12.5
Tangent 1.12 49.4 44.0
Composite 1.50* 84.8 56.5

Random Selection 
(25)

Curve 1.33 8.8 6.6
Tangent 1.00 20.4 20.4
Composite 1.08 29.2 27.0

Non-random 
Selection (26)

Curve 4.5* 26.6 5.9
Tangent 1.23 29.0 23.6
Composite 1.88* 55.6 29.5

*Denotes a statistical difference from a calibration factor of 1.00 at the 95% confidence level.



31

JTRF Volume 51 No. 3, Fall 2012

HSM calibration factors were calculated by first applying the HSM method to calculate the 
predicted number of crashes using site characteristic data like lane width, shoulder width, and 
roadside design. Once these predicted crashes were found, the calibration factor was calculated as 
the ratio of observed to predicted crashes. For example, in this analysis, the observed number of 
curve crashes for all 51 segments was 35.4 and the predicted 12.5, resulting in a calibration factor of 
2.83. The calibration methodology implied by the HSM involves using extended roadway sections 
consisting of numerous tangent and curve sites. However, to examine the differences between 
tangents and curves, this analysis considered curve and tangent sections individually (and combined 
as “composite” sections). The HSM does not specify how calibration segments should be selected 
or if high crash location data should be used for this purpose. But Table 2 shows that the inclusion of 
high crash locations significantly impacts the calibration factor. When considering curved roadway 
segments, the calibration factor varies from 2.83 when including all 51 sites to 1.33 when counting 
only those sites that were randomly selected, and to 4.5 when incorporating only high crash sites.  To 
meet HSM recommendations for collisions, additional sites would be needed in each sample type.  
For instance, if a user decided to develop a two-lane curve calibration factor based on randomly 
selected curves to meet the criterion of 100 total crashes, almost 300 sites would be needed in the 
analysis. Collecting the detailed data needed to calibrate the HSM for 300 curve sites would require 
an appropriate amount of additional labor.

A paired t-test was conducted to examine the importance or need for the calibration factors 
in Table 2. The test compared the reported and predicted collisions among each type of sample.  
The comparison found a difference in reported and predicted collisions in four of the nine samples 
and roadway types, indicating that only four of the calibration factors differed significantly from 
a calibration factor of one. Besides this finding, annual variations could exist when calculating 
calibration factors. Table 3 shows five years of calibration factors from the same data in Table 2. 
The calibration factor chosen in Table 3 for each year used only one year of data, so the samples of 
collisions were small. This table can provide users with an estimate of how much variation could 
exist when calculating annual calibration factors.  

Table 3:	Annual Calibration Factors (All Segments, Random Segments, and Non-Random 
	 Segments)

Sample Type
(Sample Size)

Roadway 
Type

2004
Calibration 

Factor

2005
Calibration 

Factor

2006
Calibration 

Factor

2007
Calibration 

Factor

2008
Calibration 

Factor

Standard 
Deviation

All Segments 
(51)

Curve 2.63 2.07 3.19 3.75 2.47 0.65

Tangent 1.04 1.14 1.11 1.32 1.00 0.12

Composite 1.40 1.34 1.57 1.86 1.33 0.22

Random 
Selection

(25)

Curve 1.36 1.51 1.97 1.06 0.76 0.46

Tangent 0.88 0.98 0.78 1.13 1.22 0.18

Composite 1.00 1.11 1.07 1.11 1.11 0.05

Non-random 
Selection

(26)

Curve 4.05 2.70 4.56 6.75 4.39 1.46

Tangent 1.19 1.27 1.40 1.48 0.80 0.26

Composite 1.76 1.56 2.03 2.54 1.52 0.42

At each site, the field investigation to collect all necessary elements for HSM analysis took 
approximately 30 minutes to complete (not including driving time). Thus, the requirement of 
300 sites to develop a calibration factor for curve sites could be expected to require at least one 
person-month of labor, plus drive time between sites.  However, most of these elements do not 
change much or at all over time. So the data collected intensively for the first HSM calibration or 
application can likely be used for many years. The effort required to collect collision data varies 
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in the way the data are stored and how efficiently they can be retrieved. And that effort may be 
substantial in some agencies. For example, field data collection efforts could vary considerably by 
agency, depending on the desired precision of crash prediction and available data sources within the 
agency.  However, field data collection might not be necessary for some agencies or could require 
similar time commitments as noted in this study. Appendix A to Part C of the HSM defines data 
needs for each element as required or desirable, and provides suggested assumptions for defaults, 
average values, and actual data. Implementing the concepts for data collection presented in the 
HSM, along with utilizing available computer-based techniques (inventories, GIS data, and design 
plans), can significantly reduce or eliminate the need for field data collection, thereby reducing labor 
requirements substantially for the calibration effort.

Sensitivity Analysis

The sensitivity analysis focused on the effect of changing various HSM inputs on the number of 
predicted collisions.  The objective of this analysis was to understand the most critical HSM inputs 
that might lend themselves more readily to default values, thus saving data collection effort.  Several 
HSM inputs were not included in this sensitivity analysis because little or no variation existed 
among the curves in our sample. These included spiral transition, passing lanes, roadway lighting, 
centerline rumble strips, two-way left-turn lanes, and automated speed enforcement.  Table 4 shows 
descriptive statistics about the data.

Table 4: Input Values for HSM (Minimum, Maximum, and Average)

HSM Input Factor Minimum 
Value

Maximum 
Value

Mean 
Value

AADT 240 21,000 3,885
Lane Width (feet) 9 12 10.4
Inside Shoulder Width (feet) 3 12 7.4
Outside Shoulder Width (feet) 3 12 8.0
Length of Horizontal Curve (feet) 200 1,550 579
Radius of Horizontal Curve (feet) 202 6,011 1,360
Super elevation (feet/feet) 0.010 0.102 0.056
Grade (%) 0.0 5.1 1.3
Driveway Density (driveways/mile) 0.0 54.6 9.6
Roadside Hazard Rating (1-7) 3.0 6.0 3.8

Utilizing the field data resulted in a predicted collision rate of 12.5 collisions per year for the 
set of 51 curves. Table 5 shows the HSM outputs from the sensitivity analysis. The table emphasizes 
the importance of collecting and using individualized data for AADT, curve radius, and curve length 
of the segment. The AADT had a range of 62.6 predicted collisions per year between using the 
minimum value and using the maximum value. There was also a 0.9 collisions per year (or 7%) 
difference between the predicted collisions using the averages of the inputs and actual field values.  
Radius had a range of 18.9 predicted collisions per year between using the minimum and maximum 
values. There was also a 0.8 collisions per year (or 7%) difference between the predicted collisions 
using the average input and actual field values.  Length had a range of 19.5 predicted collisions per 
year between using the minimum value and maximum values, and there was a 0.5 collisions per 
year (or 4%) difference between predicted collisions using the averages of the inputs and actual 
field values.  
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Table 5: Output Values from HSM (Predicted Collisions Per Year)

HSM Input

HSM Predicted Collisions per Year for Set of 51 Curves

Using 
Minimum 
Value from 

Table 1

Using 
Maximum 
Value from 

Table 1

Difference 
Between Using 

Maximum 
Value and 
Minimum 

Value

Using Mean 
Value from 

Table 1

Difference 
Between 

Using Mean 
Value and 

Actual Field 
Measured 

Values
AADT 0.8 63.4 62.6 13.4 0.9

Lane Width 14.7 11.5 3.2 13.4 0.9

Inside Shoulder Width 13.4 12.3 1.1 12.5 0.0

Outside Shoulder Width 13.4 12.3 1.1 12.2 0.3

Length of Curve 6.6 26.1 19.5 12.1 0.5

Radius of Curve 28.4 9.5 18.9 11.7 0.8

Superelevation 14.1 11.7 2.4 12.5 0.0

Grade 12.3 13.5 1.3 12.6 0.1

Driveway Density 11.5 21.5 10.0 12.4 0.1

Roadside Hazard Rating 11.9 14.6 2.6 12.6 0.0

The number of predicted crashes on curves for various traffic and geometric conditions using 
the HSM base model (not the calibrated North Carolina model) is in Table 6. Specifically, the 
variables that had the most effect on the number of crashes on curves (as measured by the difference 
between the minimum and maximum values) are AADT, curve radius, and length of curve. In Table 
6, the predicted crashes on curves for five-year periods are based on the crash-prediction model for 
AADT’s of 500, 1,000, 2,000, 5,000, 10,000, and 20,000.  This table has a range of curve radius 
from 250 feet to 5,000 feet, and a range of curve lengths from 250 to 1,500 feet. For example, for 
a curve on a road with an AADT of 1,000, a 500-foot radius, and length of 750 feet, the expected 
number of curve crashes per five years would be approximately 0.54 (i.e., one curve crash every 10 
years), as shown in Table 6. The calculations in Table 6 assume average NC conditions for the other 
variables included in the prediction model for crashes on curves. Specifically, it assumes a lane width 
of 10.4 feet, inside shoulder width of 7.4 feet, outside shoulder width of eight feet, superelevation of 
0.056, grade of 1.3 %, 9.6 driveways per mile, average roadside hazard rating of four (on a seven-
point scale), speed limit of 55 mph, no transition spiral, no passing lane, no roadway lighting, no 
centerline rumble strips, no two-way left-turn lane, and no automated speed enforcement.

Calibration Factor Validation

Calibration is a critical task to adjust a broad model for local analysis.  In the case of the HSM, the 
calibration provides a multiplicative factor to adjust the predicted model to account for differences 
that are not determined by physical roadway elements, such as driver population, reporting threshold, 
and others.  However, the calculation of a calibration factor in a research setting is incomplete 
without validating the model with the predetermined calibration factor.  Therefore, an additional set 
of curve geometric and collision data was acquired to validate the previously calculated calibration 
factor.
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This validation effort included two two-lane roads—NC42 and NC96—which are predominantly 
rural and run through central and eastern North Carolina.  Horizontal curve data collection for this 
effort used GIS techniques (Rasdorf et al. 2012). The analysis included all the curved sections of 
each route except where a higher order route (i.e., a US route) ran concurrently with the NC route.  
The entire route of NC42 is 223 miles long; the analysis sections included 168 miles of this route 
and 246 curves.  The entire route of NC96 is 107 miles long; the analysis sections included 95 miles 
of it and 174 curves.  None of the calibration sites was included in the validation data set.

The HSM analysis of the curves predicted 114 collisions per year, while the curves experience 
174 reported collisions per year, giving a calibration factor of 1.5267. Applying the suggested 

Table 6: Predicted Collisions (over 5 years) for Two-Lane Road Horizontal Curves

250  2  500 5  750  7  1,000 1 1,2501  1,500 1 250 2  500 5  750 7  1,000 1 1,250 1  1,500 1 
250 feet (22.9°) ** 0.30 0.35 ** ** ** ** 0.66 0.76 ** ** **

500 feet (11.5°) 0.15 0.20 0.25 ** ** ** 0.33 0.43 0.54 ** ** ** 
1000 feet (5.7°) 0.10 0.15 0.20 0.24 0.29 0.34 0.22 0.32 0.42 0.53 0.63 0.73 
2000 feet (2.9°) 0.07 0.12 0.17 0.22 0.26 0.31 0.16 0.26 0.37 0.47 0.57 0.68 
3000 feet (1.9°) 0.07 0.11 0.16 0.21 0.26 0.30 0.14 0.24 0.35 0.45 0.55 0.66 
4000 feet (1.4°) 0.06 0.11 0.16 0.20 0.25 0.30 0.13 0.23 0.34 0.44 0.54 0.65 
5000 feet (1.1°) ** 0.11 0.15 0.20 0.25 0.30 ** 0.23 0.33 0.44 0.54 0.64 

250  2  500 5  750  7  1,000 1 1,2501  1,500 1 250  2  500  5  750  7  1,000 1  1,250 1  1,500 1 
250 feet (22.9°) ** 1.52 1.76 ** ** ** ** 3.80 4.40 ** ** **
500 feet (11.5°) 0.76 1.00 1.24 ** ** ** 1.90 2.50 3.10 ** ** **

1000 feet (5.7°) 0.50 0.74 0.98 1.22 1.46 1.69 1.25 1.85 2.44 3.04 3.64 4.24
2000 feet (2.9°) 0.37 0.61 0.85 1.09 1.32 1.56 0.92 1.52 2.12 2.71 3.31 3.91
3000 feet (1.9°) 0.33 0.56 0.80 1.04 1.28 1.52 0.81 1.41 2.01 2.61 3.20 3.80
4000 feet (1.4°) 0.30 0.54 0.78 1.02 1.26 1.50 0.76 1.36 1.95 2.55 3.15 3.75
5000 feet (1.1°) ** 0.53 0.77 1.01 1.25 1.49 ** 1.32 1.92 2.52 3.12 3.71

250 2  500 5  750  7  1,000 1 1,2501  1,500 1 250  2  500  5  750  7  1,000 1  1,250 1  1,500 1 
250 feet (22.9°) ** 7.61 8.80 ** ** ** ** 15.22 17.61 ** ** **

500 feet (11.5°) 3.80 5.00 6.19 ** ** ** 7.61 10.00 12.39 ** ** **

1000 feet (5.7°) 2.50 3.69 4.89 6.08 7.28 8.47 5.00 7.39 9.78 12.16 14.55 16.94
2000 feet (2.9°) 1.85 3.04 4.24 5.43 6.62 7.82 3.69 6.08 8.47 10.86 13.25 15.64
3000 feet (1.9°) 1.63 2.82 4.02 5.21 6.41 7.60 3.26 5.65 8.04 10.42 12.81 15.20
4000 feet (1.4°) 1.52 2.71 3.91 5.10 6.30 7.49 3.04 5.43 7.82 10.21 12.59 14.98
5000 feet (1.1°) ** 2.65 3.84 5.04 6.23 7.43 ** 5.30 7.69 10.08 12.46 14.85

Predicted Collisions for 20,000 vehicles/day

Notes: Assumed values are mean values for lane width (10.5 feet), inside shoulder width (composite -  six  feet), 
outside shoulder width (composite -  eight  feet), superelevation (0.056 ft/ft), grade (1.3%), driveway density (9.6 
driveways/mile), roadside hazard rating (4),speed limit (55 mph), no spiral transition, no passing lanes, no  
roadway lighting, no centerline rumb le strips, no two-way left-turn lanes, and no automated speed enforcement.

** = Data does not support generation of collisions for this combination of radius and length  
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calibration factor of 1.33 from Table 2 to the HSM prediction gives 152 collisions per year.  This 
is approximately 10% less than the reported collisions. Comparatively, the original prediction 
is approximately 35% less than the reported collisions. A paired t-test of the collision rates for 
each curve and for each of the three data sets (reported collisions, HSM prediction, and calibrated 
HSM prediction) shows that pairing reported collisions and calibrated HSM predicted collisions 
did not result in a statistically significant difference between them (95% confidence at p = 0.05). 
Comparatively, the other two pairings were statistically different.  Differences in the data collection 
methods and randomness of collisions could contribute to the difference between reported collisions 
and the calibrated HSM prediction. Similar differences between predicted and actual crashes on 
horizontal curves could also be due to randomness of collisions. Furthermore, since the difference 
between the actual and HSM predicted curve crashes was not statistically significant, it might be 
reasonable to assume a calibration factor of one.

CONCLUSIONS

The publication of the Highway Safety Manual (HSM) offers agencies an analytical tool to evaluate 
the safety of a horizontal curve or set of curves efficiently and proactively. The HSM provides a 
crash prediction model for horizontal curves that can be applied to identify the highest priority 
locations for safety treatments as well as common and effective countermeasures. The calibration 
of the HSM predictive method was evaluated and tested on horizontal two-lane rural roads in North 
Carolina in this paper. Based on the analysis, it is found that approximately 300 curve sites are 
needed to meet HSM recommendations for the number of collisions in the calibration data set. This 
large number of sites is partly due to the finding that the selection of random segments provides a 
more accurate outcome (in terms of matching the HSM prediction model) than the crash results from 
a high-crash location group as identified by a transportation agency.

One challenge with requiring a large number of sites to develop an accurate model based on local 
conditions is the manpower needed for data collection. For each of these sites, field investigations 
took approximately 30 minutes to complete (not including driving time) for the collection of 
necessary elements for HSM analysis. However, most of the elements on which data were collected 
do not change much or at all over time. So, some data collection may not be needed during each 
calibration.  Also, considerably less manpower may be required by some agencies that have curve 
inventories and/or in-house data sources for some of the needed curve features. To further lessen 
the data collection burden, an analysis of differences in predicted collisions based on field data 
collection and average or default values was performed. It was found that for AADT, curve radius, 
and curve length of the segment, individualized data are necessary for accuracy, but that the other 
data inputs may be assumed with less penalty for the accuracy of overall predicted crash value. It is 
possible for each of these three elements, which are the most sensitive to individual curve data, to be 
collected from existing agency GIS data or roadway inventory databases if available. These findings 
can allow agencies to more efficiently apply and utilize HSM procedures for the cost-effective 
improvement of curves, in some cases without a field visit. 

To properly calibrate the predictive models to HSM standards, the research team found that 
at least for North Carolina conditions, approximately 300 segments are required to meet the HSM 
recommendations for collisions. This number of sites may vary for other local and state situations. 
Additionally, while it will require many sites, randomly selected road segments are recommended 
for this process because they have a low calibration factor. AADT, curve radius, and curve length are 
the most important data in terms of the prediction of curve crashes in the HSM model.  Fortunately, 
as demonstrated elsewhere (Rasdorf et al. 2012), many of these important variables can be collected 
without a field visit, thus saving time and resources. A calibration factor or 1.33 was found to 
be appropriate to apply the HSM prediction method for it to match North Carolina crash values. 
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However, a calibration factor of one could be justified since the differences between the actual and 
HSM predicted number of curve crashes are not statistically significant.

Although some of the analyses performed for specific two-lane rural roads in this paper are not 
applicable to all road types or jurisdictions, several key findings can be applied by traffic engineers 
and researchers conducting similar analyses. First, engineers should consider the impact of site- 
specific or average data on their analysis. If some variables are not highly sensitive to small changes 
in value or if the variable of interest is fairly consistent among the type of roadways under analysis, 
an average value might be sufficient to minimize data collection costs.  Secondly, annual or ongoing 
costs should be considered. Although the initial resource needs for the type of analyses presented 
in this paper is considerable, the costs to update the data in future years will be considerably less.  
Thirdly, site selection is a critical component of this process and randomly selected locations are 
preferred over high crash locations. Finally, with available data through internet-based sources and 
centralized databases, along with average values for non-sensitive elements, it is possible to achieve 
reasonable estimates of collisions on a roadway without a field visit.
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Endnotes 

1.	 See Table 10-9 of the HSM. 

2.	 See www.cmfclearinghouse.org.
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