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Comparison of Alternative Methods for Estimating
Household Trip Rates of Cross-Classification Cells
With Inadequate Data

by Judith L. Mwakalonge and Daniel A. Badoe

This paper investigates the forecast performance of a traditional cross-classification model and
alternative models that seek to address the shortcomings of traditional cross-classification analysis,
specifically when it has cells with inadequate data. The study uses five cross-sectional datasets
collected in the San Francisco Bay Area in 1965, 1981, 1990, 1996, and 2000. Alternative models,
estimated with travel data collected in the base year, were assessed for their ability to replicate the
number of trips made by households in each cell of a cross-classification matrix and at the traffic
zone level, respectively, in each of the five years. The results showed that the traditional cross-
classification analysis (CCA) model, notwithstanding having a few unreliable cells provided more
consistent predictions of travel than any of the alternative methods. They also show that it is better
to synthesize trip rates for only those cells of the cross-classification matrix with inadequate data
rather than to adjust the entire trip-rate matrix as is currently the practice.

INTRODUCTION

The four-step Urban Transportation Modeling System (UTMS) continues to be the method adopted
by the majority of metropolitan planning organizations for simulating traffic volumes using the links
of urban transportation networks (TRB 2007). This paper focuses on trip generation, the first step
of the four-step UTMS. Given the sequential nature of UTMS, improved forecast accuracy at the
trip generation stage is important to reducing errors in the forecasts emanating from the final step
of the process.

A number of methods for accomplishing trip generation are documented in the travel demand
modeling literature. These include multiple linear regression (Cotrus et al. 2003, Ewing et al. 1996),
cross-classification analysis (Walker and Peng 1991, Rengaraju and Satyakumar 1995), discrete
choice models (Zhao 2000), fuzzy logic models, and artificial neural networks (Huisken 2000).
However, of these methods, cross-classification analysis (CCA) is the most widely used in practice
(Rengaraju and Satyakumar 1994).

Cross-classification analysis involves the use of trip rates (i.e., trips per person or trips per
household) to compute regional travel demand. Recognizing the heterogeneity in regional populations,
the approach first divides the population into relatively homogeneous groups or categories based on
two or three household attributes. Thereafter, a trip rate is calculated for each relatively homogeneous
group. The technique is non-parametric in that it does not assume any probabilistic distributional
relationship between the dependent and explanatory variables. Furthermore, the method makes use
of the raw data obtained from a household travel behavior survey directly, and its simplicity has
made it attractive to practitioners (Rengaraju and Satyakumar 1994). The method, however, has its
shortcomings.

First, given the typical size of travel survey samples that most planning agencies have available
for travel demand model development, cross classifying the sample into a large number of relatively
homogeneous categories leaves some cells with few or no observations for the computation of trip
rates. These problematic cells typically exist at the extreme ends of the cross-classification matrix.
As an example, the proportion of households in an urban area with a single person and owning three
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or more vehicles is likely to be very small. A simply drawn random sample of households from the
regional population may include few or no households with such characteristics. Therefore, cross
classifying the travel data could result in such a cell being empty, making it impossible to estimate
directly a trip rate for it.

Second, the estimated trip rates of the cross-classification matrix suffer from differential
reliability resulting from the differences in the numbers of households in each cell for trip-rate
computation. Trip rate is the expected number of trips a household makes per day. This difference
in reliability could result in counterintuitive trip-rate progressions in the trip-rate matrix. These two
shortcomings among others documented in the literature have spurred researchers to investigate
new techniques for improving upon the basic model. Examples of these studies include those by
Rengaraju and Satyakumar (1994), Kikuchi and Rhee (2003), and Stopher and McDonald (1983).
The most known of these methods, proposed by Stopher and McDonald (1983), makes use of multiple
classification analysis (MCA). However, its implementation also raises concerns. First, it modifies
all the trip rates obtained using the CCA procedure, notwithstanding several cells in the matrix
having adequate data for computation of reliable trip rates. Second, sometimes implementation of
the MCA procedure results in the computed trip rate for some of the cells of the classification matrix
having a negative sign, which is not meaningful. The analyst addresses the resultant negative trip-
rates problem by assigning a zero trip rate to such a cell (Ortuzar and Willumsen 2001). Assigning
zeros to cells that either had values earlier or were empty in CCA is unrealistic.

Kikuchi and Rhee (2003) applied a fuzzy optimization method to synthesize missing cell values
and adjust cell values with abnormal behavior when compared to neighboring cells. However, the
fuzzy optimization method, like the MCA, changes the cell values of the entire classification matrix
instead of the cells with inadequate data. Additionally, the fuzzy optimization technique requires
knowledge of a programming language and is therefore not readily accessible to transportation
planners, which limits its use by practitioners.

Thus, while these attempts to remedy the weaknesses of CCA are recognized, the problem of
adjusting the trip rates that are derived from the observed sample persists. Additionally, it appears
that no study has investigated both the short-term and long-term forecast performance of the methods
proposed to remedy the shortcomings of CCA. Guevara and Thomas (2007) recommended not using
the MCA method proposed by Stopher and McDonald (1983). However, their recommendation
was based in part on analysis done using a single origin-destination survey data. Further, they
conducted their model evaluation using forecasted land use scenarios and not observed land use and
travel characteristics. The above discussion motivates an investigation into alternative methods or
modifying existing methods for synthesizing trip rates for cross-classification cells with no data that
do not require the modification of trip-rate values for cells with adequate data.

Specific objectives of the paper are, first, to develop trip generation models using CCA and
MCA, respectively, and to compare how the models perform in the prediction of travel in the base
year. The second objective is to compare the performance of both CCA and MCA models in short-
term and long-term forecast applications. The third is to present alternative methods for addressing
the shortcomings of CCA and to compare the forecast performance of these alternative methods
against the models developed using CCA and MCA, respectively.

The rest of the paper is organized as follows. In the second section, the theory underlying the
existing and proposed methods for estimating a trip rate for a cross-classification cell with no data are
presented. The third section presents the descriptive analysis of the travel data used in the research.
The fourth section presents the model estimation results and results from applying the alternative
methods in predicting travel. Finally, the last section presents a summary and conclusions drawn
from the study.
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ALTERNATIVE MODELS FOR SYNTHESIZING TRIP RATES FOR
CROSS-CLASSIFICATION CELLS WITH NO DATA

This section presents a brief description of the theory underlying the alternative models investigated
in this study. The existing models considered in this study include CCA and MCA models. The
current practice is to employ the MCA technique that modifies the whole cross-classification trip-
rate matrix. However, MCA can also be used to estimate trip rates for empty cells and unreliable
cells. Therefore, this study makes use of MCA models and techniques employed in estimating
missing values to compute trip rates for empty and less reliable cells. The techniques for estimating
missing values investigated in this research are Multiple Imputation (MI) and K-Nearest Neighbor
(KNN). The theory of each of these methods is discussed in turn below.

Cross-Classification Analysis

Asdiscussed in the introduction, CCA involves the computation of trip rates typically at the household
level. However, recognizing the heterogeneity in travel behavior that exists among households in
an urban region, households are grouped according to two or more characteristics that are strongly
associated with trip-making behavior. Households belonging to each defined group are therefore
assumed relatively similar in trip-making behavior. The model’s basic assumption is that household
trip rates remain stable over time for defined household stratifications. It should be noted that the
model could be developed for each trip purpose. However, in this research, we consider trips made
across all trip purposes by a household and two-household attributes for defining groups of similar
travel behavior. The household trip rate for each defined group is calculated as:

H,, P
&) 2 Vo
R
mn
Where
m,n = values of two-household attributes used in defining homogeneous groups (cells)
Yn = trip rate for cell of cross-classification matrix with household attribute values mn
y,}ﬁm = trips made by household / in cell mn
H = total number of households in cell mn

mn

Multiple Classification Analysis

MCA is similar to multiple regression analysis with dummy variables. The approach is applicable
where the dependent variable is quantitative and the explanatory variables are categorical,
represented by dummy variables. Therefore, MCA with one categorical variable is equivalent to
one-way Analysis of Variance (ANOVA), similarly MCA with two categorical variables correspond
to two-way ANOVA (Retherford and Choe 1993). Stopher and McDonald (1983), as a remedy to the
shortcomings of CCA, were the first to apply the technique in trip generation analysis. Thereafter,
several researchers (Ortuzar and Willumsen 2001, Wardman and Preston 2001, Abdel-Aal 2004)
applied the method. However, none of the mentioned studies used MCA to estimate trip rates for
empty and/or unreliable cells only. Rather, they employed it to modify the whole trip-rate matrix.
The general mathematical form of the MCA model is expressed as:

@) YV =Gty + By + &y,
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Where

Ymn = the trip rate for a cell in a cross-classification matrix with household attribute values mn
G, = the grand mean of trips made by the households in the dataset

o = the column-effect for column m of a cross-classification matrix

B, = the row-effect for row n of a cross-classification matrix

& = error term

For comparison purposes, this study reviews and investigates three MCA models designated
as MCA1, MCA2, and MCA3. The first, MCA1, takes the following form (Guevara and Thomas
2007).

(3) ymn:Gl—l+am+ﬂn { gnm:f\y

Where
H
Z h
(4) g, i
“ H
Y vh

meM
N,M = the respective number of classes for the two stratification variables
n, m = the values of two household attributes used in defining homogeneous groups (cells)
H = the total number of households
Y = the trips made by household /
G = the grand mean of trips made by the households in the dataset

=

= column effect for column m of a cross-classification matrix
=row effect for row n of a cross-classification matrix
= error term

3

=R

mn

The second MCA model, MCA2, takes the same mathematical form as the first one except the
row and column effects are calculated as weighted means, which therefore takes into consideration
the unequal number of observations in the cells of the cross-classification matrix (Stopher and
McDonald 1983, Guevara and Thomas 2007).

(1) am =[ Zwmn)_’mn/ zwan_Gy

neN neN

(3) ﬂn_[ Zwan_’mn/ Zwmn]_G,u

meM meM
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Where

w = weighting factor for cell mn

Vo = trip rate for a cell in a cross-classification matrix with household attribute values mn
G, = overall mean that is average number of trips per household

B, = row effect for row n of a cross-classification matrix

o = column effect for column m of a cross-classification matrix

m

The third, MCA3, is from an MCA regression of household trips on all classification variables.
However, the model is slightly different from ordinary least squares in that when calculating the
marginal effect of an explanatory variable, the other explanatory variables are held constant at their
mean values in the entire sample (Retherford and Choe 1993). The model’s mathematical form is

Q) Yy =a+ 2B, X, + Ta,X,
neN meM

Then the trip rates for the categories of variable X are calculated as:

(10) Yy =a+ Tf, X, + Ta, X,
neN

meM
Where
X ,X  =1ifthe nth or m™ element of X is observed, and equals a zero otherwise.
Vin = trip rate for a cell in a cross-classification matrix with household attribute values mn
B, = row effect for row n of a cross-classification matrix
o = column effect for column m of a cross-classification matrix

m

n and m are initial classes that are considered as reference classes, hence a constant « to be estimated
is added.

Multiple Imputations (MI)

Ml is a three-step approach that employs regression analysis to impute missing values (Rubin 1976).
The first step is to estimate a model using observations with complete data and, thereafter, use
the estimated model to fill in the missing values. The second step is to estimate a model using a
complete data set with both observed and imputed values. For this case, the analyst substitutes
predicted values for the missing values to create imputed datasets. The procedure is repeated until
the analyst has the desired number of imputed datasets. Usually, three to ten imputed datasets are
desirable (Wayman 2003). Finally, the estimates from steps one and two are combined to account for
the uncertainty regarding the imputation. In mathematical form, the joint distribution is a function
of the marginal and conditional distribution and it is represented as (Horton and Kleinman 2007):

(1) f(¥,,X,) = f(rm, v | X,,B)P(X,)

Where

Yebs = observed dependent variable (trip rates)

ymiss = missing dependent variable

X, = vector of explanatory variables (two household attributes used in defining homogeneous

groups (cells))
= vector of parameters
f(yhmfss, v | Xh,ﬁ) = Conditional probability distribution
P(X,) = Marginal probability distribution
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The final imputed estimate is the combined estimate that follows Rubin’s procedure (Rubin
1976), which is a simple average of individual estimates from the observed and imputed datasets.
Mathematically this is,

K
(12) "=/ 5

i=1
Hmn h
(13) Vmn = Z Ymn! Hmn
h=l1

Where
K= number of imputed full datasets
All other variables are as defined earlier.

K-Nearest Neighbor (KNN)

KNN is a technique for estimating unobserved data based on the characteristics and values of the
observed nearest data. KNN technique has been widely applied in medical research and geosciences
(Muhammad et al. 2004) but less so in transportation. The simplicity of the KNN method motivated
its application in estimating empty cells in the trip-rate matrix. Selection of nearest cells is
determined based on similarity in characteristics between the filled nearest cells and the empty cell.
For example, a missing trip rate for a single-person household with four or more vehicles may have
similar characteristics to a single-person household with three vehicles, since both households have
surplus vehicle supply. Therefore, a missing cell value is computed by weighting the predetermined
nearest cell values as follows,

Vimn = Zwmn Vmn! Zwmn
(14) neN neN
meM meM

(15) Wmn = Omn /O'rznn

Where
‘O'rznn = variance estimate for the mn™ nearest cell
0 = number of observations in the mn™ nearest cell

mn

All other variables are as defined earlier.
DATA

The research uses five cross-sectional datasets collected in different years (1965, 1981, 1990, 1996,
and 2000) in the San Francisco Bay area. The 1965 dataset has information on more than 20,000
households, while the 1981 dataset has information on more than 7,000 households. The 1990 dataset
has information on more than 9,000 households, while the 1996 dataset is the smallest sample with
information on a little more than 3,600 households. Finally, the 2000 dataset has information on
more than 15,000 households. The analysis presented below uses the sample data and unlinked trips.
Information on linked trips and the trip-linking procedure are in MTC (2003). The five datasets are
comparable since the region has remained relatively stable in terms of geographic area. However,
the survey instrument changed from home interview to telephone interview (1981 onward), and
trip recall to activity diary (1996 and 2000 are activity-based surveys). In the context of how the
alternative modeling methods are to be assessed in this study, the differences in instruments are
unlikely to pose any problems.
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Trip Rate Distribution

With the exception of 1981, Figure 1 shows that the household trip rate in the Bay Area remained
relatively stable. There is a noticeable decrease in household trip rates in 1965 compared with 1981.
Purvis (1994) reported that other major cities, namely Dallas and Denver, exhibited the same pattern
in trip-making behavior and noted this decrease in trip rate. However, at the individual level, there is
a progressive increase in trip rate from 1965 to 1996, and thereafter it remained stable.

Figure 1: Household and Person Trip Rate by Survey Year
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Household Size

Household size affects travel demand; on average, the larger a household, the greater its activity
needs and the number of trips made. Figure 2(a) shows household size distribution across the
analysis years. Generally, there is an increase in single person households and a decrease in four or
more person households from 1965 to 2000. Although the trip rate increases with household size, it
increases at different rates over the analysis years across different household groups. For example,
there is a dramatic increase in travel demand from 1981 to 1990 for households with three to four
persons. This increase is partly explained by a more than 10% increase in the working age group
(age 36 to 55), a small trip-rate increase of 0.43 trips for single-person households and an increase
of 1.30 trips for two-person households. All else being equal, travel behavior was stable from 1965
to 1981 and from 1996 to 2000 as shown in Figure 2 (b).

Vehicle Ownership

People purchase vehicles with the aim of increasing their mobility and activity participation. On
average, the greater the number of vehicles owned by a household, the greater the number of trips
they are likely to make by vehicle. As observed, the percentage of households with no vehicle
was higher in 1981 than in 1965. With the exception of the 1990 household trip rates, there is a
consistent, although minor increase in trip rate for zero-vehicle households from 1965 to 2000, and
a stable trip rate for households with one or more vehicles. Households with three or more vehicles
had a much higher trip rate in 1990 than in any of the other years. Figure 3 is a graphical summary
of these details.
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Figure 2: (a) Household Size Distribution by Survey Year
(b) Trip Rate by Household Size for Each Survey Year
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Variable Selection

The 1965 dataset has eight potential explanatory variables. The objective was to select two or three
that could capture most of the variation in household trips. In accomplishing this objective, the
study uses analysis of variance procedure (ANOVA), and the results are in Appendix A. At the
5% level of significance, the results show that house tenure (own or rent) and dwelling type, with
respective probabilities of 0.2942 and 0.2556, were not statistically significant. Variables that were
statistically significant are household size, number of household members with drivers licenses
and household income, the number of motorcycles owned by a household and vehicles owned by
a household. Appendix A shows that the number of households with drivers licenses correlates
moderately with the number of vehicles owned by a household. Consequently, the analysis uses the
number of vehicles owned by a household and household size as the stratification variables.

EMPIRICAL TEST
Test Procedure
The assessment of the performance of the alternative methods for developing a cross-classification

model for trip generation involved five steps. In the first step, the study estimates the CCA model
and the three MCA models with the 1965 data using the household as the modeling unit. The
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Figure 3: (a) Vehicle Ownership Distribution by Survey Year
(b) Trip Rate by Vehicle Ownership for Each Survey Year
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second step uses each of the four models to predict travel collectively made by households in each
classification cell and by households in each traffic analysis zone in 1965, respectively. The latter
assessment of model performance at the traffic zone level is important because trip distribution, a
step in the four-step UTMS, requires as input trip productions and trip attractions at the traffic
zone level. In the third step, the study uses the four models in step one to predict household travel
in each cross-classification cell in 1981, 1990, 1996, and 2000, respectively. In the fourth step, each
of the methods proposed for synthesizing trip rates for cross-classification cells with little or no data
was applied to predict the trip rate for only those cells of the traditional cross-classification matrix
considered unreliable. The household trip rates from the traditional CCA were preserved for the
cells with enough observations. Finally, the fifth step uses the cross-classification matrices from the
fourth step to predict household travel in all the years for which data were available.

RESULTS AND DISCUSSION
Estimated Models

The results of the model estimation in the first step are in Table 1. They show that each cell has a
different number of observations. For example, for single-person households, the sample size for
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those with no vehicle is 1,062, whereas for those with four or more vehicles it is 11. Given that the
reliability of the trip rate for each cell is a function of the number of observations in the cell, it is
apparent that there are differences in cell reliability in the CCA model due to each cell having a
different number of observations.

In the descriptive analysis presented earlier, there was a monotonically increasing relationship
between trip rate and household size (Figure 2b). A similar relationship was observed between
trip rate and vehicle ownership (Figure 3b). However, this increasing trend is not consistently
observed when one examines how trip rates that are conditional on a specific household size vary
with vehicle ownership or how trip rates that are conditional on a specific vehicle ownership level
vary with household size in the CCA matrix. As an example, Figure 2b shows that for a household
size of one (single-person household), trip-rate increases with increasing vehicle ownership until a
household vehicle ownership level of three when it drops, and then increases thereafter for those
single person households that have four or more vehicles. A similar observation in Figure 3b regards
the relationship between trip rate and household vehicle ownership for two-person households.

As expected, Table 1 shows a counterintuitive progression in trip rates in the less reliable
cells (e.g., single-person household with three vehicles). To address this problem, the practice is to
employ MCA; and the results of doing so for the different methods are in Table 1. MCA?2 yielded
a trip rate for single-person households with no vehicle that has a negative sign. Since a negative
trip rate is unrealistic, the practice is to set it to zero (Ortuzar and Willumsen 2001). However, for
illustration, Table 1 preserves this negative-valued trip rate although in the forecasting analysis done
later it is set to zero. MCA1 and MCA3 yielded household trip rates with trends that are consistent
with expectation; that is, higher household trip rates for higher values of vehicle ownership and
household size, respectively.

Prediction of Travel at the Household and Traffic Zone Level In 1965

Travel demand models need to provide accurate predictions to guide decisionmakers in infrastructure
investment decisions. Therefore, the four models were applied in turn to predict travel in the base
year at the disaggregate household level, and their performance was judged based on the coefficient
of determination (R?) and the percent mean absolute error (PMAE) calculated as,

obs

pred _ 0bs
(16) PMAE=| [”’"’””"]*100 /(N * M)

meM Ymn

neN
Where
y,%fd = predicted number of trips made by households in cell mn
y%’f = observed number of trips made by households in cell mn

N, M = the respective number of classes for the two stratification variables

Table 2 shows an assessment of the accuracy of each of the four models in predicting the trips
made by each household in 1965. Of the three MCA models, MCA1 has the smallest PMAE while
MCAZ2 has the largest error value. Contributing to the high PMAE value of MCA2 was its complete
failure to predict any trips made by single person households with no vehicles. (Column three of row
four in Table 1 has a negative trip rate that is set to zero in forecasting). Also shown in columns two
and three are the results of regressing the observed number of daily trips made by the households in
each cross-classification cell against the number of daily trips to be made by the households in each
cross-classification cell predicted by each model (CCA, MCA1, MCA2, or MCA3). They indicate
that for CCA, MCA1, and MCA3, the estimated slope coefficients are almost one while the slope
coefficient of MCA2 is about 0.92. Based on the coefficients of determination, MCA1, MCA2,
and MCA3 explain the variation in household trips in the 1965 data very well; MCA1 and MCA3
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Table 1: Estimated CCA and MCA Models Using 1965 Data

Household Number of Vehicles
Size Model 0 1 2 3 4+ Total
CCA 2.201 3.644 4.756 3.941 5.000 3.084
MCA1 1.091 3.108 4.567 5.290 5.486 3.908
MCA2 -1.675 1.827 4.757 6.586 7.314 3.084
MCA3 2.028 3.710 5.182 6.404 6.571 4376
1 No. of obs. in cell 1062 1367 82 17 11 2539
CCA 3.658 5417 6.216 7.161 6.889 5.603
MCALI 3.051 5.068 6.527 7.250 7.445 5.868
MCA2 0.844 4.346 7.276 9.105 9.833 5.603
MCA3 3.446 5.128 6.601 7.823 7.989 5.794
2 No. of obs. in cell 556 3016 2081 193 54 5900
CCA 5.406 7.240 8.159 8.940 8.978 7.773
MCA1 4.927 6.944 8.403 9.126 9.322 7.744
MCA2 3.014 6.516 9.446 11.275 12.003 7.773
MCA3 5.181 6.863 8.335 9.558 9.724 7.529
3 No. of obs. in cell 175 1543 1575 448 89 3830
CCA 6.774 9.111 10.999 11.797 12.046 10.362
MCALI 7.328 9.345 10.804 11.527 11.723 10.145
MCA2 5.603 9.105 12.034 13.864 14.592 10.362
MCA3 7.613 9.295 10.768 11.99 12.156 9.961
4 No. of obs. in cell 106 1283 1818 424 130 3761
CCA 9.173 11.883 14.46 16.367 16.270 13.769
MCAI 10.813 12.830 14.289 15.012 15.208 13.630
MCA2 9.010 12.512 15.441 17.271 17.999 13.769
MCA3 10.981 12.663 14.135 15.358 15.524 13.329
5+ No. of obs. in cell 139 1444 2137 523 211 4454
CCA 3.587 7.089 10.018 11.848 12.576 8.346
MCA1 5.442 7.459 8.918 9.641 9.837 8.259
MCA2 3.587 7.089 10.018 11.848 12.576 8.346
MCA3 5.998 7.680 9.153 10.375 10.541 8.346
Total No. of obs. in cell 2038 8653 7693 1605 495 20484

Note: CCA-Cross Classification Analysis; MCA 1-Multiple Classification Analysis Model 1;
MCA2-Multiple Classification Analysis Model 2; MCA3-Multiple Classification Analysis Model 3.

explain more than 99% of the variation in household trips in the 1965 dataset, while MCA2 explains
about 97.64% of the variation.

In the conventional four-step UTMS modeling approach, regardless of the unit employed in trip
generation, the predicted trips by households are aggregated to traffic zone levels for input into the
trip distribution or modal choice step. Consistent with this procedure, the study combines the trips
predicted for households by each of the four models to traffic zone levels. Afterwards, the observed
zonal trips were regressed against the predicted zonal trip productions yielded by each of the four
models. A summary of the results are in the bottom half of Table 2. Based on the coefficient of
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determination (R?) CCA, MCA1, and MCA3 explain over 96% of the variance in the observed trips
at the traffic zone level while MCA2 explains slightly over 95% of this variance. Using the mean
absolute error measure (PMAE), the CCA model yields the lowest error measure of 12.373. The
MCA models, which were supposed to address the shortcomings of CCA, yield zonal predictions
of trips that have greater error compared with the CCA model. The results from regressing the
observed zonal trips against the predicted zonal trips using the four models are presented in columns
two and three of the bottom half of Table 2.

Table 2: Performance of 1965 CCA and MCA Models in Predicting Trips
at Household and Traffic Zone Levels in 1965

Household Level

Model Intercept Slope R2 PMAE
CCA 0.00 1.0000 1.0000 0.000
MCALI 140.68 0.9939 0.9957 9.264
Standard Error 140.00 0.0136

t-value 1.00 73.0700

MCA2 466.63 0.9222 0.9764 26.887
Standard Error 323 0.0299

t-value 1.44 30.8400

MCA3 -61.52 1.0090 0.9972 9.605
Standard Error 114.00 0.0111

t-value -0.54 90.6100

Traffic Zone Level

Model Intercept Slope R2 PMAE
CCA -15.97 1.0266 0.9661 12.373
Standard Error 8.39 0.0115

t-value -1.90 89.5900

MCALl -10.07 1.0318 0.9633 12.895
Standard Error 8.68 0.0120

t-value -1.16 86.0600

MCA2 8.04 0.9968 0.9556 14.730
Standard Error 9.38 0.0128

t-value 0.86 77.9100

MCA3 -16.80 1.0280 0.9654 12.758
Standard Error 8.48 0.0116

t-value -1.98 88.7100

Note: CCA-Cross-Classification Analysis; MCA1-Multiple Classification Analysis Model 1;
MCA2-Multiple Classification Analysis Model 2; MCA3-Multiple Classification Analysis Model 3.
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Forecast Performance of Alternative Models

The models estimated in the first step were then used to forecast travel in the years for which
data were available. The time lag between 1965 and 1981, 1990, 1996, and 2000 provided for
an assessment of the medium- to long-term forecast performance of these models. The results
of the analyses are in Table 3. The regression results of the observed number of daily trips made
by households in each cross-classification cell against the corresponding number of daily trips
predicted by the models (CCA, MCA1, MCA2, or MCA3) for each cross-classification cell are in
columns three to nine of this table. Examining the 1981 results, with the exception of MCAZ2 all
the models explained in excess of 98% of the variation in the observed trips made by households.
Values of the percent mean absolute error measure in column 10 of Table 3 for all the models were
smallest for 1981 compared with those in any of the other years. Focusing on 1981, CCA had the
smallest percent mean absolute error measure value of 11.69% as shown in the tenth column of the
second row of Table 3.

For 1990, the models explain slightly more than 91% of the variation in household trips, which
is about 7% less than the explained variation using the 1981 dataset for CCA, MCA1, and MCA3
models. Additionally, the error measures for CCA, MCAI, and MCA3 in 1990 is approximately
double their corresponding values in 1981, while that for the MCA2 model declines. The CCA model
performs better than the MCA models for the 1990 application. The three models, CCA, MCA1, and
MCA3, explain trip variation at the household level in excess of 96% using the household trip data
in 1996. MCA2, on the other hand, explains 85% of the variation in the trip data, which is about 11%
less than that for the other three models. In terms of the error measure, the CCA model ranks first — it
has the lowest percent average error, followed by MCA1 and then MCA3. The MCA2 model yields
the highest percent average error and therefore ranks fourth.

The application of the models to generate long-term forecasts for 2000 yielded results similar
to those obtained for 1990 and 1996. In terms of explaining trip variation at the household level,
all the models performed well by explaining more than 96% of the total variation in the trips made
by households. In general, the CCA model yields travel forecasts with lower error values compared
with error values obtained with forecasts by the MCA models in all the applications.

Prediction of Household Trip Rates for Cross-Classification Cell with Inadequate Data

As discussed earlier, a challenge in the use of CCA is the possibility of having a number of cells
of the cross-classification matrix having few or no observations. The primary concern under such
circumstances should be with the problematic cells only; that is, those with little or no data and
not the entire trip-rate matrix. However, current planning practice calls for modifying the entire
household trip-rate matrix obtained by CCA (Ortuzar and Willumsen 2001) rather than just the
problematic cells. This study applies the same MCA models to estimate a household trip rate for
each of the problematic cells only, while preserving the household trip rates obtained from ordinary
CCA for the remaining cells. In addition to the MCA models, two other techniques for estimating
missing cell values, namely KNN and MI, are employed for predicting household trip rates for
only those empty and/or unreliable cells, and after the forecast performance of all these models are
assessed. It is noted that no study was found in the literature that employed MI or KNN to synthesize
household trip rates for cross-classification cells with inadequate data.

From the ordinary cross-classification analysis results using the 1965 data presented in Table
1, each cell of the cross-classification matrix had observations. However, based on the threshold
number of observations required for statistical reliability reported in Ortuzar and Willumsen (2001)
the number of observations for three of the cells was low. The defining characteristics of these cells
are: (1) single-person households owning three vehicles, (2) single-person households owning four
or more vehicles, and (3) two-person households owning four or more vehicles. Therefore, the three
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Table 3: Performance of 1965 Models in Predicting Trips by Households in Each Cross-
Classification Cell in Years 1981, 1990, 1996, and 2000

Intercept Slope
Standard t- Standard t-

Year | Model | Coefficient Error value | Coefficient Error value R? PMAE
CCA 39.89 37 1.09 1.0188 0.0138 73.84 1 0.9960 | 11.69
MCA1 112.47 78 1.43 1.0156 0.0304 33.37 | 0.9800 | 15.98
MCA2 365.71 181 2.02 0.8775 0.0668 13.14 | 0.8820 | 33.18

1981 | MCA3 21.98 52 0.42 1.0247 0.0200 51.3 | 0.9910 | 16.00
CCA 18.15 265 0.07 1.2393 0.0719 17.24 | 0.9280 | 27.12
MCALI 240.30 287 0.83 1.2377 0.0811 15.26 | 0.9100 | 30.14
MCA2 287.76 268 1.07 1.0909 0.0670 16.27 | 0.9200 | 32.40

1990 | MCA3 42.40 249 0.17 1.2059 0.0659 18.31 | 0.9360 | 31.17
CCA 32.93 53 0.62 1.3164 0.0385 34.23 | 0.9807 | 27.62
MCALI 58.80 68 0.86 1.3191 0.0503 26.21 | 0.9676 | 29.87
MCA2 145.59 145 1.00 1.1724 0.1015 11.55 | 0.8529 | 34.54

1996 | MCA3 46.13 70 0.66 1.2681 0.0490 25.88 | 0.9668 | 28.96
CCA 173.75 221 0.79 1.2776 0.0337 37.95 | 0.9840 | 28.76
MCALI 354.12 247 1.43 1.2588 0.0377 33.39 | 0.9800 | 31.47
MCA2 467.17 334 1.40 1.1201 0.0460 24.36 | 0.9630 | 31.91

2000 | MCA3 285.78 281 1.02 1.2229 1.2229 29.41 | 09740 | 31.45

Note: CCA-Cross Classification Analysis; MCA1-Multiple Classification Analysis Model 1;
MCA2-Multiple Classification Analysis Model 2; MCA3-Multiple Classification Analysis Model 3.

MCA models, and KNN and MI in turn, were used to synthesize household trip rates for just these
three cells that would otherwise have unreliable household trip rates. The remaining cells of the
matrix retained their household trip rates obtained from the ordinary cross-classification analysis
(CCA). The estimated household trip rates for these cells obtained by the CCA, MCA, KNN, and
MI are in Table 4. For each of the three cells, the estimated household trip rate by MCA1, MCA2,
MCA3, KNN, or MI exceeds the corresponding household trip rate obtained by CCA. Further,
replacing the household trip rates obtained by CCA for the three problematic cells with those yielded
by any of the models results in the expected increasing relationship between household trip rates and
increasing household size or increasing vehicle ownership respectively.

Forecast Performance of Household Trip-Rate Matrices Developed

Table 5 presents the values of the measures for evaluating the accuracy of household trip predictions
given by the five alternative models, respectively. The measures are evaluated using the observed
trips and the predicted trips made by households in each cross-classification cell.

Evaluation of the accuracy of predictions of travel in 1965. In the base year (1965), MCA1
had the lowest PMAE value and therefore the best performance in predicting travel based on this
measure. It is followed by MI. MCA2 had the worst performance in predicting travel, reflected
by it having the highest PMAE value. The coefficient of determination is one for all the models,
indicating that each explained all the variation in household trips in the base year.
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Table 4: Predicted Household Trip Rates for Cells of 1965 Trip-Rate Matrix with
Inadequate Data Given by Alternative Models

Model H'=1, V=3 H'=1, V’=4+ | H'=2, V’=4+
Cross Classification Analysis 3.941 5.000 6.889
Multiple Classification Analysis Model 1 5.290 5.486 7.445
Multiple Classification Analysis Model 2 6.586 7.314 9.833
Multiple Classification Analysis Model 3 6.404 6.571 7.989
Multiple Imputation 5.351 6.585 8.912
K-Nearest Neighbor 6.186 7.139 8.344

1. H = Size of the household
2. V= Number of vehicles available to the household

Evaluation of the accuracy of predictions of travel in 1981. Based on the coefficient of
determination, all the models explain in excess of 99% of the variation in household trips in 1981.
CCA yielded the lowest PMAE value of 11.689, indicating it had a travel forecast accuracy superior
to that of the other models. MCA1 had the next lowest PMAE value followed by MI, then KNN,
and then MCA3. MCA2 had the highest PMAE value due to the rather large household trip rate
estimates it gives for the three cells with inadequate data (see Table 4). For each model, the PMAE
value in 1981 is higher than the corresponding value in 1965.

Evaluation of the accuracy of predictions of travel in 1990. The coefficient of determination using
the predictions of household travel by each of the models ranges from 0.924 to 0.928, indicating that
the models are able to explain in excess of 92.4% of the variation in household trips. The values of
PMAE range from 27.117 for CCA to 29.392 for KNN. MCAL has the second lowest PMAE value
(27.260). This indicates that based on this measure (PMAE) the CCA model of household trip rates,
notwithstanding three of the cells having inadequate data, gives more accurate household travel
forecasts than those given by the other models. Immediately following this is MCA1. Again, for
each model, the PMAE value in 1990 is higher than the corresponding value in 1981.

Evaluation of the accuracy of predictions of travel in 1996. The coefficient of determination
evaluated using the predictions of household travel by the six models ranges from 0.975 for MCA2
to 0.981 for CCA. This indicates that the models explain in excess of 97.5% of the variation in
household trips. PMAE is highest for MCA2 (31.972), indicating the worst forecast performance
of household travel based on this measure. CCA has the lowest PMAE value of 27.619, indicating
the best forecast performance of travel based on this measure. Immediately following it is
MCAI1, which has a PMAE value of 28.215. MI, with a PMAE value of 29.453, has the third best
forecast performance of travel. Again, for each model, the PMAE value in 1996 is higher than the
corresponding value in 1990.

Evaluation of the accuracy of predictions of travel in 2000. The coefficient of determination
based on the predictions of household travel by each of the models is 0.983. This indicates that
all the models are able to explain 98.3% of the variation in household trips. KNN has the highest
PMAE value of 32.686, indicating the worst forecast performance of household travel based on this
measure, while CCA with a PMAE value of 28.756 has the best forecast performance of household
travel. MCA1, with a PMAE value of 30.147, has the next best forecast performance of household
travel.
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Table 5: Performance of 1965 Alternative Models in Predicting Trips by Households in
Each Cross-Classification Cell in Years 1965, 1981, 1990, 1996, and 2000

Intercept Slope
Standard t- Standard t-

Year | Model | Coefficient | Error value | Coefficient Error value R? PMAE
MCA1 -4.46 21 -2.14 1.000 0.0002 | 4868 1.000 | 2.287
MCA2 -15.90 9 -1.83 1.001 0.0008 1193 1.000 6.245
MCA3 -8.28 41 -2.19 1.001 0.0004 2742 1.000 | 4.395
KNN -9.78 51 -2.13 1.001 0.0004 2253 1.000 | 4.834

1965 [ MI -9.64 51 -1.79 1.001 0.0005 1919 1.000 3.624
CCA 39.89 37 1.09 1.0188 0.0138 741 0.996| 11.689
MCA1 35.97 36| 0.98 1.020 0.0139 73 0.996 | 13.521
MCA2 25.57 381 0.67 1.023 0.0145 71 0.995| 16.554
MCA3 32.38 371 0.87 1.021 72.690 0.996 15.279
KNN 31.35 371 0.84 1.021 72.470 0.996 15.194

1981 [ MI 31.28 371 0.84 1.021 0.0141 721 0.995 14.208
CCA 18.15 265 0.07 1.2393 0.0719 17| 0.928 27.117
MCA1 1.09 265 0.00 1.242 0.0720 171 0.925 | 27.260
MCA2 -39.36 268 [ -0.15 1.250 0.0727 171 0924 | 29.421
MCA3 -15.43 266 | -0.06 1.245 0.0723 17| 0.925 | 29.126
KNN -19.74 267 | -0.00 1.246 0.0723 171 0925 | 29.392

1990 | MI -16.78 266 [ -0.06 1.245 0.0722 171 0925 | 27.787
CCA 32.93 531 0.62 1.3164 0.0385 341 0.981 27.619
MCA1 23.17 541 042 1.320 0.0395 331 0979 | 28215
MCA2 4.37 591 0.07 1.325 0.0432 31 0975 | 31.972
MCA3 14.02 56| 0.25 1.323 0.0408 321 0978 | 30.165
KNN 12.39 56| 0.22 1.323 0.0410 321 0977 | 30.679

1996 | MI 15.77 56 0.28 1.322 0.0408 321 0978 | 29.453
CCA 173.75 221 0.79 1.2776 0.0337 381 0.984 | 28.756
MCALI 156.89 2221 0.71 1.279 0.0340 371 0.983 30.147
MCA2 127.22 2271 0.56 1.281 0.0350 36| 0.983 30.852
MCA3 140.90 223 0.63 1.280 0.0342 371 0.983 32.142
KNN 136.78 2241 0.61 1.281 0.0343 371 0.983 32.686

2000 | MI 138.87 2241 0.62 1.280 0.0343 371 0.983 31.326

Note: CCA-Cross-Classification Analysis; MCA1-Multiple Classification Analysis Model 1;
MCA2-Multiple Classification Analysis Model 2; MCA3-Multiple Classification Analysis Model 3.
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SUMMARY AND CONCLUSIONS

This paper investigated the forecast performance of trip generation models based on cross-
classification (CCA) and multiple classification analysis (MCA). In addition, it examined the
replacement of household trip rates in unreliable cross-classification cells with values estimated by
three MCA models and two methods for estimating missing values namely Multiple Imputation (MI)
and K-Nearest Neighborhood (KNN). The results of the study lead to the following conclusions.

First, the methods that call for modifying the entire household trip rate matrix obtained from
ordinary cross-classification analysis give a performance in prediction of household travel that
is worse than that given by the methods that call for synthesizing household trip rates for cells
with inadequate data only while preserving the other household trip rates obtained from ordinary
cross-classification analysis. This result is evident by comparing the upper part of Table 2 to the
upper part of Table 5. Thus, it is concluded that adjusting all the trip rates of a CCA matrix using
MCA, the current industry standard, results in a forecasting model that is inferior to CCA and hence
should be avoided by practitioners. Whenever cells with inadequate data exist in a CCA matrix, the
substitution of the trip rates of these unreliable cells only with trip rates obtained from the MCA
models, the MI method, or KNN results in more accurate forecasts compared with adjusting the trip
rates for all the cells.

Second, even though three of the cells of the ordinary cross-classification matrix had inadequate
data, the model surprisingly and consistently gave the best performance in the prediction of
household travel in both the medium and the long term (see column 10 of Table 3). Thus, the basic
CCA model is robust and practitioners can use it to provide credible forecasts of travel if few of the
cells of the CCA matrix are unreliable. It may also indicate that the recommended minimum number
of observations for a cell can perhaps be reduced and still lead to the development of reliable cross-
classification models. It is for future research to determine the appropriate minimum number of
observations for a cell.

Third, replacing the unreliable household trip rates of an ordinary CCA matrix with household
trip rates estimated using the MCA models, KNN and MI did improve upon the performance of the
cross-classification model compared with adjusting all the trip rates of the CCA matrix. Among these
methods for synthesizing a household trip rate, on average, MCA1 and MI have the lowest error
values (column 10 of Table 5). However, since MCAL is subject to biases (Guevara and Thomas
2007), the MI model may be preferred over MCAT1 even though MCA1 may be a simpler model
compared with the MI model.

Finally, the forecast performance of cross-sectional models declines with time. For example,
the corresponding PMAE values associated with each model increased with the time interval
between the base and application years (see column 10 of Table 5). This certainly is logical because
of the greater changes expected to occur in land use patterns, socio-demographic characteristics and
attitudes of the population, transportation system characteristics, and technology with time elapsed
from the base year. Thus, irrespective of the method used to synthesize household trip rates for
unreliable cells, the further out the application year the greater the inaccuracy of travel forecasts.
The prime limitation of this study is with the single region source of the dataset used. Clearly, to
generalize, the conclusions tests have to be done on data from several other regions.
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APPENDIX A: Results of Analysis of Variance and Correlation Analysis Respectively

Analysis of Variance

Source Partial Sum Degrees of Mean F value P value
of Squares Freedom Square
Model 309730 82 3777 104.73 0.0000
Household Size 127687 18 7094 196.68 0.0000
Number of Motorcycles 623 3 208 5.76 0.0006
Number of Drivers 9537 8 1192 33.05 0.0000
Tenure 346 8 43 1.20 0.2942
Household Income 11669 14 833 23.11 0.0000
Dwell Type 491 11 45 1.24 0.2556
Number of Vehicles 1551 20 77 2.15 0.0021
Residual 682363 18919 36
Total 992093 19001 52
Number of Observations 19002
R-squared 0.3122
Correlation Matrix
Household Number of Number of | Number of | Household
Size Motorcycles Drivers Vehicles Income

Household Size 1
Number of Motorcycles 0.0466 1
Number of Drivers 0.4717 0.0955 1
Number of Vehicles 0.2898 0.0460 0.5294 1
Household Income 0.1426 0.0169 0.2920 0.2805 1
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