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The Distribution Function of Airport Taxi-Out 
Times and Selected Applications

by Thuan V. Truong

Except in adverse weather conditions, congestion at large airport hubs appears to be predictable. 
This paper attempts to translate this predictability into a distribution of taxi-out times, a key 
component of airport congestion. When scheduled flights are chosen to define the dataset, taxi-out 
times follow a uniform distribution. This is not only the simplest distribution that inferences can be 
based on, but also a distribution that can be estimated by simple linear regression leading to very 
accurate forecasts. But above all, it is an invertible distribution function that can help solve a large 
class of stochastic optimization problems.

INTRODUCTION

Flight delay has been and continues to be one of the most critical problems not only for airports 
but also for the society as a whole. To reduce flight delay, there are just two logical solutions, either 
to add capacity to airports or to use airport capacity more efficiently. The first option, with all its 
actual societal constraints, is not a viable one. The alternative would be to make airport operations 
more efficient, one airport at a time without forgetting, however, the cascading effect of delays from 
airport to airport. 

A large percentage of flight delays occurs on the ground. As the number of flights is expected 
to increase over the next few years, and as airport ground operations are highly connected, flight 
delay is and will be one of the most important and critical problems not only for airport management 
(ground movement), but also for airlines (fuel costs), for passengers (cost of lost time), and other 
stakeholders (emissions). Thus, flight delay affects not only the National Airspace System (NAS), 
but also society as a whole. As an airplane arrives at and departs from an airport, it passes through 
several potential choke points that may include runways, taxiways, ramps, and gates. Given the 
possible sequences of runway events, careful Runway Operations Planning (ROP) is required if 
runway utilization is to be optimized (Anagnostakis 2002). But flight delay may also be caused by 
inclement weather. During inclement weather, airport capacity is reduced due to increased aircraft 
separations, a condition known as Instrument Meteorological Conditions (IMC). The Detailed Policy 
Assessment Tool (DPAT) shows how reduced capacity due to IMC causes local flight delay and 
models the propagation of delay throughout a system of airports and sectors (Schaefer 2001). When 
an inbound airplane is unable to pull into its assigned gate, the flight and its crew and passengers 
experience delays (Shortle 2009). In addition, flights that would have departed on time can still be 
delayed in arrival. They are held at the gate of the origin airport due to delays experienced at the 
destination airport.

Among all the delays listed above, historical data indicate that taxi-out times contribute over 
60% of the total (Balakrishna 2008). Thus minimizing taxi-out delay is important. And to minimize 
taxi-out delay, it is necessary to accurately predict it. The primary contribution of this paper is a 
novel and inexpensive methodology for taxi-out prediction by building its probability distribution.

LITERATURE REVIEW 

The solution to the airport delay problem seems to depend on (1) a more efficient coordination of 
airport operations (Atkin et al. 2010) and (2) a reduction of taxi-out times (Cooper et al. 2001). 
In the last 10 years, research to find an accurate estimation of taxi-out time in the presence of 
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uncertainty has been very active. The first work that should be mentioned is the model developed 
at the Volpe Center (ETMS 2000) called the Enhanced Traffic Management System (ETMS). The 
model estimates the taxi-out time defined as the ground transit time between the pushback time 
scheduled or updated by airlines and the takeoff time when the aircraft is captured by the radar 
tracking system. It produces a running average of taxi-out time over the previous 14 days. Two main 
factors that are known to cause delays, weather and runway configurations, are, however, not taken 
into consideration.

A queuing model (Idris et al. 2002) was introduced to estimate the taxi-out time at Logan 
Airport. Considered as the most important factor that may cause delay, the takeoff queue size was 
defined as the number of takeoffs that take place between the aircraft pushback time and its takeoff 
time. As compared with the ETMS over the 14-day running average, the queuing model improves 
the mean absolute error by approximately 20%. 

A stochastic dynamic programming approach (SDPA) using reinforcement learning (RL) is 
presented by Ganesan and Sherry (2007), Balakrishna et al. (2008), Balakrishna et al. (2009), and 
Balakrishna et al. (2010). The approach was to predict taxi-out times and was tested on FAA data 
on different airports, including Detroit Metropolitan Wayne County Airport, Washington Reagan 
National Airport, Kennedy International Airport, and Tampa International Airport. The weather and 
other departure-related uncertainties are taken into account. One more common feature of these 
papers is that predictions are done 15 minutes before gate departure. The predicted average taxi-
out times in 15-minute intervals of the day are compared with the actual averages observed at the 
airports. The main result is that approximately 80% of the taxi-out times were predicted with a mean 
square error (MSE) of less than three minutes. The predicted standard deviation is also less than 
three minutes in a given day.

On the other hand, Airport Surface Detection Equipment, Model X (ASDE-X) seems to be the 
most ambitious hardware/software combination to build an adaptive taxi-out prediction model based 
on a historical traffic flow database generated by the system itself (Srivastava 2011). It provides 
high resolution coverage of aircraft surface movement. It has two prediction models. One treats 
aircraft movement from gate to runway while the other models aircraft time to get to the runway 
queue. These two models are evaluated using data from Kennedy International Airport during the 
summer 2010. Finally, while many existing decision-support tools in air traffic management belong 
to the class of deterministic approaches to problem solving (Tu 2006), the Next Generation Air 
Transportation System (NGATS), the guide to the aviation industry in the next quarter century, 
explicitly recommends the use of information-driven intelligent decision-support systems for its 
approach to capacity management planning. The Federal Aviation Administration (FAA) plans to 
deploy data communications in phases, starting with automated clearances for takeoffs (Brewin 
2010). Thus, the search for the probability distribution function of taxi-out time as an important 
factor of delay is not only interesting in its own right, but also looks very timely for the research in 
the aviation field (Tu et al. 2008). 

The taxi-out time estimation proposed in this paper is data-driven. Because of its data-driven 
character, it takes into account all possible factors that should be considered to affect taxi-out times. 
Its contribution is two-fold: (a) A novel view on the data structure of the taxi-out times leading 
to a very simple distribution function that allows accurate forecasts, (b) A distribution function 
that can also be “inversed.” It is important in problems dealing with quantiles. The q-quantile of a 
distribution F is defined as Prob(X ≤ F-1(q)) = q where the generalized inverse function F-1 defined as 

(1)	 F-1(q) = inf {x ε R; F(x) ≥ R}, 0<q<1

It is also very important for an entire class of stochastic optimization problems. An explicit example 
can be found in Truong (2011). It is known in the literature as the New Vendor Model. On a daily 
basis, the vendor is facing an uncertain demand x whose cumulative distribution function is supposed 
to be F(x). Given the market, defined by a number of parameters such as selling price, a buying 
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price, and salvage cost, according to the expected profit maximization principle, the daily optimal 
demand Q* is defined as: Prob(Q*)=F(a) where a is a given constant. In most real world situations, 
the distribution F is either unknown or very complex. Then, the alternative is either an iterative 
approximation technique or simulation. However, if it happens that the distribution F is known and 
can be “inversed”, then a closed form of the solution is: Q*=F-1(a). In such a case, the distribution 
function of the random variable proves to be important.

The paper consists of three sections. In the first section, the distribution of the taxi-out time is 
derived from linear regression. In the second section where the distribution of taxi-out time is used 
in selected applications, a discussion of the assumptions underlying the linear regression model is 
presented. Concluding remarks are presented in the last section. 

 
THE DERIVATION OF THE DISTRIBUTION FUNCTION
OF THE TAXI-OUT VARIABLE

The methodology is inspired by an effort to minimize the uncertainty that surrounds airport taxi-out 
times. One of the ways to reach this objective would be to follow airline scheduled flights. Among 
the dozen of columns in a typical scheduled flight’s timetable such as the departure airport, the 
departure time, and the arrival airport, this study is most interested in the column usually called 
“frequency,” which indicates how often a particular flight is scheduled in a week. Flights are 
scheduled once a week or maybe more often.  They can be considered as just one flight repeated on 
those scheduled days, leaving the gate at the same indicated times, taking off at the same indicated 
times, and arriving at the destination at the same indicated times. However, to add a more realistic 
note to the schedule, unavoidable uncertainty should be added to the picture. It does suggest that 
in the search for the probability distribution of the airport taxi-out time considered as a random 
variable, the structure of the data–this is same day(s) of the week at the same hours on those days–
should be taken into consideration. The actual day or hour will be made clear in the case-by-case 
approach presented below. 

The study will be based on six cases whose data originate from the 2007 FAA  Aviation System 
Performance Metrics (ASPM), all from the John F. Kennedy Airport. Local time is divided into 24 
slots from 0 to 23. Cases are chosen to show that 1) from a given airport and for a given local time, 
departure taxi-out times are uniformly distributed, 2) this property of the departure taxi-out times 
still holds when taxi-out times get extreme, 3) from a given airport, for a given local time, and for all 
the departures, the same day of the week, departure taxi-out times are identically and independently 
distributed (iids). 

The first case is the base case and is picked at random. It consists of all the departures on Janu-
ary 29 at 7:00 am. The case would be logically labeled JFK_2007_0129_07. However, the prefix 
JFK_2007 is common to all cases. Therefore, it will be dropped. The case is now labeled 0129_07. A 
week later, the same scheduled flight will be all the 7:00 am departures on February 5 and therefore, 
will be labeled 0205_07. Compared with the base, both the day of the week and the time of the day 
remain unchanged. Flights may differ from the two precedent (same) scheduled flights either by the 
day of the week or by the time of the day, or by both. The two following flights will be considered: 
0129_08 (different time of the day) and 0206_07 (different day of the week). And finally, two more 
cases will be introduced to show what happens to the highest taxi-out times from the database. Their 
derivation will be presented later.

A word of caution is in order. First, the paper is about the JFK airport though a large number 
of preliminary runs show that the results can easily extended to other large airports such as those 
in Atlanta, Boston, Los Angeles, and Chicago (O’Hare). Next, since the paper is about a limited 
number of cases that are, in themselves, limited to some days of the week and some hours of the 
day, it may lead one  to think that only part of the database is used. However, the methodology can 
be used for any day of the week at any time of the day so that the database is completely used. 
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THE METHODOLOGY

The simplest probability distribution function (pdf) is often defined as:

		  | 1/(b-a)	 a ≤ b
(2)	f(x) = 	 |
		  | 0	 elsewhere

The standard form of this pdf corresponds to a=0 and b=1. 
The methodology consists of the following steps: (1) the empirical pdf is derived from the 

data. Graphically, it appears to be a segment of a horizontal line. This is the mark of the uniform 
distribution, (2) then, the empirical cumulative distribution function (cdf) is derived as a segment 
of a straight line, (3) a theoretical uniform distribution is proposed uniquely by linear regression, 
and finally, (4) the hypothesis (H0 ) is tested to determine whether the two empirical and theoretical 
cumulative distribution functions are the same by using the vertical distance between points on the 
two functions, also called the Kolmogorov and Smirnov (KS) distance.

THE DATA

In Table 1, the dataset is labeled 0129_0700. As indicated by column “Nobs,” there are 14 rows of 
data, but there are 18 observations as indicated by the sum of all frequencies. Most taxi-out times 
happen just once, but the 26-min taxi-out happens three times and the two 43- and 45-min taxi-outs 
happen twice each. The sum of frequencies of all the taxi-out times in the data set is always larger 
than the number of observations.  Points on the empirical distribution are computed as the ratio 
of the particular taxi-out time over the total of all frequencies and reported in column “Percent.” 
Observation 1 is 1/18=0.556. Observation 6 is 3/18=0.1667. Numbers in the column “Cum. Percent” 
(cumulative percent) are the cumulative percentages. They are points of the empirical cumulative 
distribution function.

Table 1: Data Table JFK_0129_0700
	 Taxi-Out Times (in minutes)

Nobs Taxi-Out Frequency Percent
Cumulative

Percent
1 16 1 0.0556 0.0556
2 17 1 0.0556 0.1111
3 20 1 0.0556 0.1667
4 22 1 0.0556 0.2222
5 25 1 0.0556 0.2778
6 26 3 0.1667 0.4444
7 30 1 0.0556 0.5000
8 33 1 0.0556 0.5556
9 35 1 0.0556 0.6111

10 38 1 0.0556 0.6667
11 41 1 0.0556 0.7222
12 43 2 0.1111 0.8333
13 45 2 0.1111 0.9444
14 46 1 0.0556 1.0000

Total 437 18
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THE DISTRIBUTION FUNCTION

The empirical probability distribution function (pdf) is shown in Figure 1. All the data points are 
on the same horizontal line (y=.06) except 3: Nobs 6, 12, and 13. Therefore, strictlyspeaking, the 
distribution is not uniform. It should be determined whether from a statistical point of view, it is 
acceptable to consider it as a uniform distribution. It is, however, much easier to use the cumulative 
distribution function to show that point.

Both the empirical and the theoretical cumulative distribution functions are shown in Figure 2. 
In the xy plane, the empirical cdf is the graph of the cumulative percentage as a function of the taxi-
out time (in minutes) from Table 1. The theoretical cdf is the regression line of that same cumulative 
percentage on the taxi-out time. The quality of the regression can be judged from its own output 
reproduced below:

Figure 1: The Empirical PDF of Taxi-Out Times
		  From JFK_2007_0129_0700

Figure 2: The Empirical and Theoretical CDFs of Taxi-Out Times
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Table 2: The Linear Regression and its Statistics

Note that the adjusted R2 is 0.98.

THE KOLMOGOROV-SMIRNOV (KS) DISTANCE AND HYPOTHESIS TESTING

Let X1, X2,…Xn be a sample from a  (cumulative) distribution function  F and let F*n be the 
corresponding empirical distribution, the statistic

(3)	 Dn= supx| F*n (x) - F(x)|

is called the (two-sided) KS statistic (or distance).
To test the hypothesis that H0: F*n(x) = F(x) for all x at a given confidence level α, the KS rejects 

H0 if Dn > Dα
n where Dα

n is the critical value of the test for a given confidence level α and the number 
of observations n. 

The theoretical distribution function F(x) is the appropriate segment of the regression line going 
through points from the sample. The KS distance Dn is the absolute value of “Residual” from the 
regression. The 0.05 is the most often used level of significance. And the critical values of the test 
are given in most textbooks in probability theory or mathematical statistics. For the number of 
observations in the example below, critical values are in the (.361, .454) range (Rohatgi 1976). Since 
the largest absolute value in the column “Residuals” in the “Output Statistics” section is .0882, at 
the 5% confidence level, the null hypothesis that the two distributions, empirical and theoretical, are 
the same is accepted.
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From Table 2, the equation of the regression line is:

(4)	 prob = -0.40607 + 0.02928*taxi_out

This is the theoretical cdf. The equation of the theoretical pdf can be derived by differentiating the 
preceding equation with respect to the variable taxi-out. This is y = 0.02928. This value .02928 is 
smaller than .06 observed in Figure 1. It reflects the counter-balancing effects of points that are not 
on that line.

THE CASE OF EXTREME TAXI-OUT TIMES

We now turn to the case of very high taxi-out times to see how they behave when severe congestion 
begins to set in at the airport. Right from the onset, one may notice that the conditions that create 
congestion, bad weather for example, can rarely repeat themselves exactly a week later at the 
same time to satisfy the dual condition of same day of the week at the same time of the day for 
the corresponding cdfs to be identically distributed. Therefore, the nature of the distribution of 
individual random variables will be tested thinking they are independently distributed, but certainly 
not identically distributed. From the entire 2007 ASPM database, the highest taxi-out time is 435 
min. The day it happened, February 14, 2007, and the local hour slot (07:00) have two observations 
only, not enough to derive any meaningful statistics. The next taxi-out value of interest is 367 min. 
The corresponding day and local hour slot should be labeled 0608_20. The usual probability and 
cumulative distributions will not be presented. However, the residuals from the run to fit the linear 
regression line to the dataset presented in Table 3 below, clearly show that, even when the taxi-out 
times get extreme, they are still uniformly distributed.

Table 3: Linear Regression of Extreme Taxi-Out Times

FLIGHTS NOT LINKED TO THE CORE

Using the same methodology, it can be shown that 1) scheduled flights that differ by the day of the 
week, 2) scheduled flights that differ by the local time slot of the day and, 3) scheduled flights that 
differ by both the day of the week and the time slot of the day, cannot have identical cdfs. 
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WHEN THE DATA DO NOT MEET THE ASSUMPTIONS OF THE LINEAR 
REGRESSION MODEL

It is important to note that everything previously discussed is absolutely independent of any 
assumptions about the data: we have just fit a straight line to the data. But very often, the line derived 
from the data is used to make inferences. A practical rule is that whenever linear regression is used, 
the implicit assumptions underlying the regression should be thoroughly checked. Originally, there 
are four of them: (1) the response variables are independent, (2) they are normally distributed, 
(3) they all have the same variance σ2, (4) the true relationship between their mean and the explanatory 
variables is linear. However, practically, for the same goal, it is often easier to examine the so-called 
standardized residuals. To do so, rewrite the regression equation:

(5)	 Yi=β0+β1xi,1+β2xi,2+…+εi	 	

as:	 εi= Yi - β0 - β1xi,1 - β2xi,2 -…

the above four assumptions are now equivalent to the following four assumptions on the random 
errors εi: (1) the random errors are independent, (2) they are normally distributed, (3) they have 
constant variance σ2, (4) they have zero mean. Good econometrics textbooks routinely address 
violation of any of these assumptions. Thus, checks should be performed for each of the linear 
regressions used in this paper. They will not be presented here. They will, however, be provided 
upon request. 

In the paper, just one example is presented to illustrate one of the violations, often known 
as the autocorrelation case. The simplest of those cases is called the first order autoregression. 
Analytically, the model Yi as previously defined has its error term defined as:

(6)   εi = ρε i + ui

where ρ is the “first order” auto correlation coefficient, fixed but unknown, and ui are iid N(0,σ2). 
Because negative autocorrelation is rare, the Durbin-Watson test is:

H0: ρ=0 versus H1: ρ > 0:

Reject H0: ρ=0 if d < dL

Do not reject H0 if d > dU

Declare test inconclusive if dL ≤ d ≤ dU

where the critical values dL and dU are given in most textbooks. 
The 0129_08 case is presented below as an application. Only the information needed for the 

decision is presented. Namely, in Table 4, the first section entitled  the “Ordinary Least Squares 
Estimates,” in addition to the MSE and Root MSE that we will refer to in the next section about 
forecast accuracy, the Durbin-Watson statistic (0.5472) indicates that at the usual 5% confidence 
level there is an indication of a positive correlation. The positive correlation is removed in the 
section entitled “Maximum Likelihood Estimates.” The Durbin-Watson statistic (2.5319) suggests 
that the null hypothesis of positive autocorrelation should be rejected. Note that the regression 
equation shifts from cum_pct=0.8385+0.0344*taxi-out to cum_pct =0.3379 +0.003773*taxi-out 
after autocorrelation is corrected. 

To summarize, while the first section is about fitting a straight line to a dataset, an operation 
that does not require any assumption about this set, the second section whose objective is to make 
inferences from the first section results, does require that the data assumptions be satisfied for the 
inferences to be correct. However, two examples will be given to show how important it is to 
correct for any deviation from the assumptions of the linear regression technique.  The first case was 
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partially mentioned in the beginning of this section. If the question was, what is the 99% probability 
taxi-out time, the “uncorrected” assumption answer from the first equation in Table 4 would be: (.99-
0.8385)/0.0344 = 4.4 minutes. But from the second equation: (.99-3379)/0.003773 = 173 minutes.

Table 4: The Autocorrelated Time Series of Taxi-Out Times for 0129_08

This very large difference emphasizes the importance to correct any assumption violations of the 
linear regression model. 

The second point is about forecast accuracy. The most often used measure of accuracy of an 
estimator is called the mean square error (MSE). In the case of a random sample of size n from a 
population, X1, X2,…, Xn  the usual estimator for the mean is the sample average                        

(7)

The sample mean is also a random variable whose expected value of μ (so it is unbiased) and a 
mean square error is defined as

(8) 
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Let us recall from the literature review section that in Balakrisna et al. (2009) and Ganesan and 
Sherry (2007), using stochastic programming with reinforcement learning, taxi-out time differed 
from the average predicted taxi-out time by plus/minus three minutes, the predictions being made 
15 minutes in advance of scheduled push-back time at three different airports, Kennedy, Detroit 
International, and Tampa International Airport. In this paper, the MSE can be found in the regression 
output. The regressions listed in Table 2, Table 3, and Table 4 have their Root MSE 0.04, 0.15, and 
0.00 minute, respectively. Thus, all the Root MSE are less than one minute.

PRELIMINARY CONCLUSIONS AND FUTURE RESEARCH

The paper proposes a way to define the distribution function of airport taxi-out times. It is based 
on a special view of the structure of the data, which are scheduled flights, as one way to reduce the 
uncertainty surrounding taxi-out times. The direct implication of this is that taxi-out times from a 
given airport within the same local time and the same day of the week follow a uniform distribution 
function. This fundamental result can be extended to the hours and days when high congestion hits 
the airport.

Beyond the fact that associating a distribution function to a random variable for a given data 
structure is important for its own merit, the above listed results are most important when it comes 
to forecasting taxi-out times. While recent papers using dynamic programming with reinforcement 
learning estimated an average prediction error for approximately 80% of the flights of less than 
three minutes, no MSE presented in this study is larger than one minute. Forecast accuracy is 
very important in linking the different operations from gate to take-off.  How long can the dual 
condition—same day of the week at the same local time of the day—be extended? The “period” 
issue has not been addressed in the paper. Intuitively, it should be correct as long as the scheduled 
flights remain unchanged.

Much remains to be done in this area.  None of the traditional impacts of excessive taxi-out 
times leading to delays—such as transmission of delays and cost of delays—were considered in 
the study. And the focus on additional sources of stochastic variations in total taxi-out times is not 
considered. Left for future papers include efforts to extend the new approach to the identification of 
distribution functions for total taxi-out times and the demonstration of how to infer likelihoods of 
total times being reached or exceeded for particular airports, airlines, or time slots.
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