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Abstract 
We explore the value of soil test, topographical, and remote sensing information for 
guiding variable rate fertilizer applications in corn.  Results suggest combining 
topographical and remote sensing information is more valuable than conventional soil 
tests.  Considered separately, topographical and remote sensing information is not always 
as valuable as soil tests. 
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Introduction 

Information intensive management, also known as precision agriculture or site-specific 

farming, promises farmers the opportunity to treat each hillside, valley, and plateau with 

the individual care necessary to coax the most out of every acre of land.  This has led 

many to conclude that the expansion of information intensive management is inevitable.  

But for others, early evidence on the profitability of precision agriculture is 

disappointing.  There is good reason for this disappointment.  Most studies on the 

profitability of information intensive management focus on the value of using soil test 

information to guide variable rate fertilizer applications (e.g. Swinton and Lowenberg-

DeBoer, 1998; Babcock and Pautsch, 1998; Watkins, Lu, and Huang, 1998; English, 

Mahajanashetti, and Roberts, 1999; Pautsch, Babcock, and Breidt, 1999; and Thrikawala, 

et al., 1999).  Soil sampling and testing is currently a rather laborious and expensive task, 

while applying excess nitrogen to ensure crop needs are adequately met is relatively 

cheap.  It is not surprising that the results for the profitability of variable rate fertilizer 

applications have been mixed.  Before variable rate fertilizer applications are consistently 

more profitable, the cost of acquiring the information necessary for guiding those 

applications must decrease or more valuable sources of information must be identified. 

As technology improves, the cost of soil sampling may indeed decrease, making 

variable rate fertilizer applications more economical.  But a question that remains is 

whether soil sampling and testing is the only or even the most valuable source of 

information for guiding fertility recommendations.  The purpose of this paper is to 

evaluate the economic potential of using other sources of information.  Specifically, we 

compare the value of using various combinations of topographical, remote sensing, and 
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soil test information for guiding variable rate nitrogen applications on corn.  The 

topographical information that is used includes the slope, relative elevation, aspect, 

profile curvature, and plan curvature.  Remote sensing information consists of digitized 

aerial photographs.  Soil test information reflects the typical soil nitrate test used for 

variable rate recommendations. 

We find that topographical and remote sensing data can provide information that 

is as valuable as soil testing.  In some cases, it provides even more valuable information. 

Individually, remote sensing information appears to be the most valuable.  However, a 

combination of remote sensing and topographical information provides the most value 

overall.  The cost of remotely sensed information continues to rapidly decline, as does the 

cost of obtaining topographical information thanks to the introduction of laser 

technologies.  With greater value and more rapidly declining costs, it would seem prudent 

for future research to pay more attention to characterizing the value of information other 

than soil nitrate tests. 

Conceptual Framework 

Consider a cornfield that is divided into K units.  Within a unit, corn response to nitrogen 

is homogeneous because of common soil, topographical, climatic, and other 

characteristics.  However, there are potentially substantial differences in these 

characteristics between units.  The site specific corn yield in the kth unit is yk = f(N;βk) 

where N is the amount of nitrogen applied and βk is a vector of parameters that capture 

the site specific characteristics that determine the difference in yield and yield response to 

nitrogen between different units. 
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 If the price of corn is p, the price of nitrogen is r, and all other production costs 

are normalized to 0, the profit for variable rate nitrogen applications is 

( )
1

;
K

k k k
k

pf N rNπ β
=

= −  ∑ .  The optimum site specific nitrogen rate, Nk* is implicitly 

defined as fN(Nk*;βk) = r/p where functional subscripts denote partial derivatives.  

Substituting back into the profit function yields the maximum profit attainable with 

perfect information: ( )
1

* *; *
K

k k k
k

pf N rNπ β
=

= −  ∑ .  In general, this profit is not 

attainable because information about βk is not perfect. 

Let Nk’ for k = 1,..,K be the actual rate of nitrogen currently applied to each unit in 

the field such that actual profits equal ( )
1

' '; '
K

k k k
k

pf N rNπ β
=

= −  ∑ .  For many farmers, 

Nk’ = N’ for k = 1,..,K.  That is, most farmers currently use uniform application rates.  

Note that π* - π’ represents the cost of incomplete information to the farmer. 

 Suppose a farmer can collect site-specific information, which can be used to 

approximate βk ≈ β(Ik) where Ik represents a set of site specific information for unit k.  A 

farmer can approximate the optimal rate of nitrogen for each unit by solving fN(Nk;β(Ik)) 

= r/p.  Let Nk’’ be the farmers approximation of the optimal rate of nitrogen on unit k, 

such that profits are ( )
1

'' ''; ''
K

k k k
k

pf N rNπ β
=

= −  ∑ .  The value of the information Ik for k 

= 1,..,K is π’’ - π’.  If this value exceeds the cost of obtaining the information, then the 

farmer can increase profitability by collecting the information and adjusting nitrogen 

rates appropriately.  Note that 100(π’’ - π’)/(π* - π’) reflects the percentage of the 

potential value of information captured by Ik for k = 1,..,K. 
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 The majority of research evaluating the profitability of variable rate nitrogen 

application focuses on assessing the value of soil nitrate test information.  The results of 

this research have been mixed because soil test information is relatively expensive to 

obtain and sampling must be repeated annually.  Alternatively, Fiez et al. found that 

factors such as topography have a significant affect on yield response to nitrogen.  We are 

aware of no studies that have explored the value of sources of information other than soil 

nitrate tests for guiding variable rate fertilizer applications. 

Empirical Methods 

We implement the conceptual model by estimating and comparing π*, π’, and π’’ using 

field level data collected from a field in Southern Minnesota.  Various combinations of 

soil nitrate test, topographical, and remote sensing information are used to estimate π’’.  

The University of Minnesota extension recommendation for a uniform nitrogen 

application rate is used to estimate π’ assuming the farmers yield goal is equal to the 

average yield plus one standard deviation. 

Field Data 

The field data was collected in Hanska, Minnesota in 1995.  The section of a field used 

for the experiment was 164.2 meters in width and 274 meters in length.  The field was 

first divided into six approximately 27 meter wide blocks that ran the length of the field.  

Each block was further divided into six approximately 4.6 meter wide strips that also ran 

the length of the field.  One of six different nitrogen treatment rates (0, 60, 90, 120, 150 

and 180 lbs/acre) was applied to each strip in a block in random order, such that each 

treatment was repeated six times, once in each block.  Strips were divided lengthwise into 

17 segments of approximately 16 meters in length. 
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 During the season various measurements were taken from the field.  In addition to 

customary nitrate tests, a battery of other soil tests were conducted using an irregular grid 

of 4.56 to 30.4 meters.  The field was surveyed to construct a digital elevation map, 

which was then used to estimate aspect, elevation, slope, profile curvature, and plan 

curvature.  An aerial photograph of the bare soil was also taken and digitized to construct 

a photo index. 

 For the purpose of analysis, sub-blocks were defined as consisting of the 

treatment strips in a block and segment.  Thus, each sub-block was approximately 16 

meters long and 27 meters wide.  Strips within a sub-block were assumed to be 

homogenous except for different nitrogen treatments.  With the exception of yield, all 

measurements were interpolated to the resolution of a sub-block using geographic 

information software.  For each sub-block, there were six yield observations, one for each 

treatment.  In total, there were 102 sub-blocks in the field and 612 yield observations.  

Complete details of the experimental design are reported in Dikici (2000). 

Econometric Model 

Let i = 1,..,17 denote the segment, j = 1,..,6 denote the block, and t = 1,..,6 denote the 

treatment for a sub-block.  Since yields exhibited diminishing returns to nitrogen 

applications in many sub-blocks, a quadratic yield function was used to characterize 

yields and yield response to nitrogen: 

(1)  20 1 2
ijt ij ij t ij t ijty N Nβ β β ε= + + +  

where yijt is the observed yield in segment i and block j for treatment t; βij
0, βij

1, and βij
2 

are the sub-block specific constant, linear, and quadratic response coefficients for 

segment i and block j; Nt is the nitrogen application rate for treatment t; and εijt is random 
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error.  Note that the coefficients βij
0, βij

1, and βij
2 in equation (1) capture all the site 

specific information in the sub-block for segment i and block j.  While the estimation of 

equation (1) does not provide the true yield response function for each sub-block it will 

provide our best quadratic approximation. 

 To estimate the value of information we assume 

(2)  ij ij ijIλ λ λβ α ν= +   for λ = 0, 1, 2 

where Iij is a vector of sub-block specific information, αλ is a parameter vector, and νij
λ is 

a random error.  Substituting equation (2) into equation (1) yields 

(3)  
2 20 1 2 0 1 2

20 1 2

ijt ij ij t ij t ij ij t ij t ijt

ij ij t ij t ijt

y I I N I N N N

I I N I N

α α α ν ν ν ε

α α α ξ

= + + + + + +

= + + +
. 

Equation (3) is a classic random coefficients model that decomposes the error in 

estimation into natural variation in yield response to nitrogen (εijt) and the approximation 

error from incomplete information (νij
0 + νij

1Nt + νij
2Nt

2). 

Estimation 

 Ordinary least square (OLS) estimation of equation (1) is possible, but spatial 

correlation in the natural variation of yields across the field is likely to be important.  To 

account for potential spatial correlation, we assume 

(4)  ( ) 0ijtE ε = , 

(5)  ( )2 2
ijtE ε σ= , 

(6)  ( )
( ) ( ) ( )

( )

3

' ' ' ' ' '

' ' '3

' ' '

' ' '

3 , ,
for ,

2 2

0 for ,

ijt i j t ijt i j t

ijt i j t

ijt i j t

ijt i j t

h h
c h a

a aE

h a

ε ε ε ε
ε ε

ε ε

ε ε

  
  − ≤  =   

>
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where i ≠ i’, j ≠ j’, or t ≠ t’; ( )' ' ',ijt i j th ε ε  is the Euclidean distance between yield 

observations; and c, a, and σ2 are parameters to be estimated.  Equations (4), (5), and (6) 

are standard assumptions for the spherical model of spatial correlation that has been used 

in the soil science literature (for a review, see McBratney and Webster, 1986) and 

economics literature on variable rate fertilizer applications (e.g. Babcock and Pautsch, 

1998, and Pautsch, Babcock, and Breidt, 1999). 

 OLS can also be used to estimate equation (3), but the error in approximation will 

be heteroscedastic and as before, the natural variation in yields is likely to be spatially 

correlated.  Therefore, we estimate equation (3) assuming E(νij
λ) = 0, and E(νij

λ 2) = σλ
2 

for λ = 0, 1, 2; νij
0, νij

1, νij
2, and εijt are independent for all i, j, and t; and equations (4), 

(5), and (6) characterize natural variation in yields. 

 Estimation is conducted in 3 steps.  First, OLS estimates are obtained for equation 

(1).  The residuals of this regression are then used to estimate c and σ2 given a using 

OLS.  To estimate a, a grid search is performed over the relevant range to identify the 

OLS model with the minimum mean squared error.  The nitrogen response coefficients 

for equation (1) are then reestimated using Generalized Least Squares (GLS) and the 

estimates for c, σ2, and a.  Second, the GLS coefficient estimates from equation (1) are 

used to estimate equation (2) with OLS.  Estimates of σλ
2 are obtained from the residuals 

of these OLS estimations.  Finally, equation (3) is estimated using GLS and our estimates 

of c, σ2, a, σ0
2, σ1

2, and σ2
2. 

 Seven different specifications of equation (3) are estimated.  The first includes 

only nitrate test values as the source of information.  The second includes only 

topography: dummy variables for Northeast, Southeast, and Southwest aspects, elevation, 
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plan curvature, plan profile, and slope.  The third includes only a photo index ranging 

from 1.0 (very dark soils) to 0.0 (very light soils).  The fourth includes soil test and 

topography.  The fifth includes soil tests and the photo index.  The sixth includes 

topography, the photo index, and the multiplicative interaction between topographic 

variables and the photo index. The seventh includes soil tests, topography, the photo 

index, and the multiplicative interaction between topographic variables and the photo 

index.  The multiplicative interaction between topography and the photo index was used 

because the reason for dark soils in valleys is typically different from the reason for dark 

soils on hilltops and hillsides.  

Results 

 Table 1 summarizes the coefficient for estimates for c, σ2, and a.  Tables 2-8 

summarize the coefficient estimates for each of the seven specifications for equation (3).  

Several interesting observations are immediately apparent from a review of the 

coefficient estimates.  The first observation is that soil test information seems to provide 

only limited information on base yields (intercept) and yield response (linear and 

quadratic) to nitrogen.  What explanatory power soil nitrate test information provides is 

typically diminished by the inclusion of topography and remote sensing information.  

Second, remote sensing information has relatively good explanatory power for both base 

yields and yield response to nitrogen.  Topographical information by itself seems to be 

useful for explaining base yields, but seems to offer little explanatory power for yield 

response to nitrogen.  However, when topographical information is combined and 

interacted with remote sensing information, topography is more useful for explaining 

yield response to nitrogen. 
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 In general, these results suggest that topographical and remote sensing 

information may be more valuable than on soil nitrate information.  To better understand 

this result, it is useful to consider what each of these sources of information is telling us.  

Soil test information is primarily telling us how much nitrogen is already in the soil.  It 

does not really tell us how well corn will be able to use that nitrogen or any additional 

nitrogen.  Alternatively, topographical and remote sensing information captures more 

characteristics of the field that may influence the ability of corn to utilize nitrogen.  For 

example, dark soils in depressions may suffer from poor drainage, which restricts the 

corn’s ability to utilize nitrogen.  High organic matter is a more likely explanation of 

darker soils on hilltops or hillsides, which will have a different affect on corn response to 

nitrogen. 

 Table 9 reports estimated profits when using alternative sources of information to 

guide nitrogen applications.  These profits do not include the cost of obtaining the 

information.  It also reports the average nitrogen application rate and the average of 

excess and deficient applications when compared to the optimal application rates for the 

sub-block specific estimates of nitrogen response from equation (1).  The value of 

information relative to using University of Minnesota extension recommendations for a 

uniform application is reported.  The percentage of the potential value of information 

captured when compared to optimal nitrogen rates for the sub-block specific estimates of 

nitrogen response from equation (1). 

 With University of Minnesota recommendations, if a farmer used average yields 

plus one standard deviation, the average nitrogen application would equal about 150 

lbs/acre and gross profits would be about $260 an acre.  Switching to a variable rate 



 10

based on soil nitrate tests would increase profits by $2.60 and acre, reduce the amount of 

nitrogen applied by almost 25 lbs. an acre.  While this certainly represents an 

improvement, the farmer captures only about 25 percent of the potential value of 

information. 

 Using either topographical or remote sensing information increases profits 

substantially more than using soil tests, though slightly more nitrogen is applied on 

average.  The value of topographical information is almost a $1 per acre more than soil 

test information, while the value of remote sensing is more than twice that of soil tests.  

Combining soil test and topographical or topographical and remote sensing information 

increases the value of information, but not by much.  Alternatively, soil tests and remote 

sensing information combined is less valuable than just using remote sensing 

information.  Overall, 60 percent of the value of the potential value of information is 

captured using remote sensing, while 62 percent is captured by augmenting remote 

sensing information with topographical information or soil test and topographical 

information. 

Conclusions 

Information intensive agriculture promises to improve farm profitability by allowing 

farmers to use inputs more effectively.  One application of information intensive 

management that has been extensively researched is the use of variable rate fertilizer 

applications.  Soil nitrate tests have typically formed the basis for guiding variable rate 

fertilizer applications, but soil nitrate testing has often proven cost prohibitive.  

Therefore, until less expensive soil sampling techniques are developed or more valuable 
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sources of information are identified, the adoption and use of variable rate fertilizer 

applications is likely to be limited for corn and other lower valued commodity crops. 

 The purpose of this paper was to explore the possibility of using other source of 

information to guide variable rate applications.  In particular, we compare the value of 

using various combinations of soil test, topographical, and remote sensing information to 

guide variable rate nitrogen applications.  Our results indicate that both topographical and 

remote sensing information can be more valuable than soil nitrate tests.  A result that 

suggests it may be useful to devote more research to exploring the value of information 

other than soil tests. 

 A word of caution is certainly in order when interpreting these results since they 

are limited to a single site in one year.  More years of data need to be evaluated at more 

locations.  Additionally, the econometric estimates of the yield response function can be 

improved by using feasible generalized least squares or maximum likelihood as opposed 

to generalized least squares.  Finally, future work needs to explore alternative error 

structures for the natural variation in yields and errors in approximation.   
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Table 1: Estimate of natural spatial variation in yields. 

Parameter Estimate 
Coefficient of Spatial Correlation (c) 19.6 

Variance of Yields (σ2) 98.2 
Range of Spatial Correlation in Meter (a) 25.2 
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Table 2: Coefficient estimates for nitrate soil testing. 

 

  
Intercept 

Linear 
Response 

Quadratic 
Response 

Constant 92.76a 0.80a -0.0035a 

 (13.14) (4.81) (3.98) 
Soil Test 1.69c -0.032 0.00025 

 (1.36) (1.10) (1.62) 
σλ

2 424.5 0.099 3.05×10-6 
Observations 612 

a Significant at one percent.  b Significant at five percent. c Significant at ten percent. 
 
 

Table 3: Coefficient estimates for topographic information. 

 

  
Intercept 

Linear 
Response 

Quadratic 
Response 

Constant 77.3a 0.86a -0.0015 
 (7.74) (3.67) (1.21) 

Northeast Aspect 7.6b 0.03 -0.00057 
 (2.13) (0.33) (1.27) 

Southeast Aspect 2.6 -0.0018 -0.00015 
 (0.55) (0.02) (0.25) 

Southwest Aspect 4.2 -0.14 0.00058 
 (0.65) (0.95) (0.72) 

Elevation 4.5b -0.07 0.00001 
 (2.42) (1.51) (0.04) 

Plan Curvature 0.25 0.0028 -0.00003 
 (0.79) (0.38) (0.85) 

Profile Curvature 67.2a -0.48 0.00044 
 (2.75) (0.84) (0.14) 

Slope 0.43 0.023 -0.00018 
 (0.33) (0.76) (1.13) 

σλ
2 345.6 0.099 3.12×10-6 

Observations 612 
a Significant at one percent.  b Significant at five percent. c Significant at ten percent. 
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Table 4: Coefficient estimates for remote sensing information. 

 

  
Intercept 

Linear 
Response 

Quadratic 
Response 

Constant 141.2a 1.09a -0.0075a 

 (8.38) (2.75) (3.59) 
Photo Index -0.55b -0.0068 0.00008a 

 (2.30) (1.20) (2.60) 
σλ

2 274.7 0.097 2.64×10-6 
Observations 612 

a Significant at one percent.  b Significant at five percent. c Significant at ten percent. 
 
 

Table 5: Coefficient estimates for nitrate soil testing and topographic information. 

 

  
Intercept 

Linear 
Response 

Quadratic 
Response 

Constant 82.2a 1.02a -0.0028 
 (5.87) (3.08) (1.63) 

Soil Test -0.39 -0.013 0.00012 
 (0.30) (0.41) (0.72) 

Northeast Aspect 7.1b 0.0013 -0.00040 
 (2.03) (0.02) (0.91) 

Southeast Aspect -1.7 0.037 -0.00012 
 (0.35) (0.32) (0.20) 

Southwest Aspect 7.1 -0.18 0.00070 
 (1.09) (1.17) (0.87) 

Elevation 3.9b -0.081c 0.00011 
 (2.03) (1.78) (0.47) 

Plan Curvature -0.39 0.0055 -0.00003 
 (1.40) (0.84) (0.73) 

Profile Curvature 68.3a -0.53 0.00034 
 (3.24) (1.06) (0.13) 

Slope -0.29 0.032 -0.00019 
 (0.24) (1.13) (1.27) 

σλ
2 333.9 0.098 3.08×10-6 

Observations 612 
a Significant at one percent.  b Significant at five percent. c Significant at ten percent. 
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Table 6: Coefficient estimates for nitrate soil testing and remote sensing information. 

 

  
Intercept 

Linear 
Response 

Quadratic 
Response 

Constant 139.2a 1.10a -0.0076a 

 (8.40) (2.81) (3.67) 
Soil Test 3.43a -0.0239 0.00012 

 (2.66) (0.79) (0.75) 
Photo Index -0.80a -0.0050 0.00007b 

 (3.11) (0.82) (2.15) 
σλ

2 249.1 0.098 2.65×10-6 
Observations 612 

a Significant at one percent.  b Significant at five percent. c Significant at ten percent. 
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Table 7: Coefficient estimates for topographic and remote sensing information. 

 

  
Intercept 

Linear 
Response 

Quadratic 
Response 

Constant 426.4a 2.99a -0.0140a 

 (15.66) (4.66) (4.10) 
Northeast Aspect -25.8a -0.12 -0.00042 

 (2.40) (0.46) (0.31) 
Southeast Aspect 84.4a -1.25a 0.0060a 

 (4.91) (3.06) (2.78) 
Southwest Aspect 130.1a -2.63a 0.01100a 

 (4.66) (3.99) (3.16) 
Elevation -38.0a -0.31c 0.00038 

 (5.54) (1.94) (0.45) 
Plan Curvature -2.06 0.013 -0.00005 

 (1.63) (0.44) (0.31) 
Profile Curvature -54.0 -1.05 0.00323 

 (0.49) (0.41) (0.23) 
Slope -46.14a 0.057 0.00085 

 (9.38) (0.49) (1.39) 
Photo Index -4.5a -0.027a 0.00014a 

 (11.84) (2.96) (2.98) 
Northeast Aspect × Photo Index 0.46a 0.0011 0.00001 

 (2.95) (0.29) (0.33) 
Southeast Aspect × Photo Index -1.3a 0.019a -0.00009a 

 (5.06) (3.12) (2.76) 
Southwest Aspect × Photo Index -1.7a 0.035a -0.00015a 

 (4.23) (3.69) (2.94) 
Elevation × Photo Index 0.52a 0.0031 0.00000 

 (5.30) (1.34) (0.02) 
Plan Curvature × Photo Index 0.029 -0.00009 0.00000 

 (1.52) (0.21) NE 
Profile Curvature × Photo Index 1.66 0.0116 -0.00006 

 (0.98) (0.29) (0.29) 
Slope × Photo Index 0.6a -0.0010 -0.00001 

 (8.58) (0.54) (1.12) 
σλ

2 183.6 0.085 2.41×10-6 
Observations 612 

a Significant at one percent.  b Significant at five percent. c Significant at ten percent. NE 
indicates not estimable.  
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Table 8: Coefficient estimates for nitrate soil test, topographic, and remote sensing 
information. 

  
Intercept 

Linear 
Response 

Quadratic 
Response 

Constant 430.8a 3.13 -0.0150 
 (4.93) (1.51) (1.38) 

Soil Test -0.06 -0.0088 0.00007 
 (0.05) (0.32) (0.45) 

Northeast Aspect -25.1 -0.13 -0.00038 
 (0.73) (0.16) (0.09) 

Southeast Aspect 82.7 -1.31 0.00645 
 (1.51) (1.01) (0.94) 

Southwest Aspect 130.6 -2.65 0.01113 
 (1.48) (1.27) (1.01) 

Elevation -38.8c -0.34 0.00059 
 (1.77) (0.66) (0.22) 

Plan Curvature -2.02 0.016 -0.00007 
 (0.50) (0.17) (0.14) 

Profile Curvature -50.4 -1.17 0.00413 
 (0.14) (0.14) (0.09) 

Slope -46.04a 0.056 0.00084 
 (2.94) (0.15) (0.43) 

Photo Index -4.6a -0.028 0.00015 
 (3.77) (0.97) (1.00) 

Northeast Aspect × Photo Index 0.45 0.0012 0.00001 
 (0.91) (0.11) (0.09) 

Southeast Aspect × Photo Index -1.3 0.020 -0.00009 
 (1.56) (1.03) (0.94) 

Southwest Aspect × Photo Index -1.7 0.035 -0.00015 
 (1.34) (1.17) (0.93) 

Elevation × Photo Index 0.53c 0.0035 0.00000 
 (1.69) (0.47) (0.07) 

Plan Curvature × Photo Index 0.028 -0.00013 0.00000 
 (0.47) (0.09) NE 

Profile Curvature × Photo Index 1.60 0.0135 -0.00008 
 (0.30) (0.11) (0.11) 

Slope × Photo Index 0.64a -0.0010 -0.00001 
 (2.69) (0.17) (0.34) 

σλ
2 180.1 0.084 2.37×10-6 

Observations 612 
a Significant at one percent.  b Significant at five percent. c Significant at ten percent. NE 

indicates not estimable.
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Table 9:Value of information, profit, and nitrogen use by sources of information. 
 

 Nitrogen 
Information Set 

Value of 
Information 

Gross 
Profit Total Excess Deficiency 

 $/Acre Lbs./Acre 
University Recommendations  $259.66 149.6 27.1 7.3 

  ($25.04) (0.0)   
Soil Test $2.60 $262.26 125.0 11.3 16.0 

 25% ($29.50) (11.7)   
Topography $3.51 $263.17 128.7 10.7 11.8 

 34% ($29.50) (20.6)   
Remote Sensing $6.08 $265.74 129.4 10.1 10.5 

 60% ($21.89) (25.0)   
Soil Test+Topography $3.67 $263.33 127.7 10.1 12.2 

 36% ($27.38) (18.1)   
Soil Test+Remote Sensing $5.94 $265.60 129.3 10.2 10.6 

 58% ($21.84) (25.2)   
Topography+Remote Sensing $6.36 $266.02 134.5 12.1 7.3 

 62% ($22.11) (25.3)   
Soil Test+Topography+Remote Sensing $6.32 $265.98 134.6 12.2 7.4 

 62% ($22.07) (25.4)   
Perfect Knowledge $10.22 $269.88 129.8 - - 

 100% ($22.20) (32.0)   
Notes:  Standard deviations are indicated in parentheses.  The value of information and gross profit do not include additional cost of 

information acquisition.  The value of information is compared to University of Minnesota recommendations.  The percentage of 
the value of information is relative to the value of perfect information.  Corn price is assumed to be $2.00 per bushel.  The price of 
nitrogen is assumed to be $0.20 per lbs. 

 


