Optimally Locating Biorefineries: A GIS-Based Mixed Integer Linear Programming Approach

Yuanchang Xie*, Ph.D.
Assistant Professor
James E. Clyburn University Transportation Center
South Carolina State University
Orangeburg, SC 29117
Tel: (803) 536-8321
Fax: (803) 516-4693
E-mail: yxie@scsu.edu

Kaiguang Zhao, Ph.D.
Post-Doc Research Fellow
Spatial Science Lab
Texas A&M University
College Station, TX 77843
E-mail: zhaokg@tamu.edu

Shaun Hemingway
Graduate Research Assistant
South Carolina State University
Orangeburg, SC 29117
Email: shaunhemingway@hotmail.com

* Corresponding author

Paper submitted for consideration of presentation at the 51st Transportation Research Forum

Word count: 5,035 + 2 Tables + 5 Figures = 6,785 Words

Submission Date
October 1, 2009
Optimally Locating Biorefineries: A GIS-Based Mixed Integer Linear Programming Approach

Yuanchang Xie, Kaiguang Zhao, and Shaun Hemingway

ABSTRACT

Biofuels have recently attracted enormous attention from researchers in various disciplines. Most existing studies are focused on the biofuel production process to reduce production cost and improve efficiency. Although the cost of transporting bulky and unrefined biomass feedstock is also very significant compared to the total cost for producing biofuels, much less attention has been given to research on reducing the biomass transportation cost. This study is aimed to develop a GIS-based decision support tool for finding the best biorefinery locations to minimize the biomass transportation cost. The developed GIS tool first obtains reliable biomass distribution data from remote sensing images. Based on the biomass distribution data and other information such as transportation network, a mixed integer linear programming model is developed and integrated into the GIS tool to find the optimal locations of biorefineries. The developed GIS tool is applied to a case study in South Carolina using switchgrass as the biomass feedstock. The GIS-based framework established in the study not only provides a practical tool to inform decision-making but also serves as a versatile prototype to guide future research endeavors in biorefinery location selection and biomass transportation cost analysis.

KEY WORDS
GIS, Mixed Integer Linear Model, Facility Location, Remote Sensing, ArcObjects, Optimization
1. INTRODUCTION

Diverse and affordable energy is critical for America’s future. To reduce the dependence on foreign oil and also mitigate the environmental impacts (e.g., climate change, pollution) of using fossil fuel, a significant amount of research has recently been devoted to methods on producing biofuels. Less attention has been given to the cost associated with transporting bulky biomass feedstock to biorefinery plants. The biomass transportation cost however is very significant compared to the biofuel production cost. For this reason, a majority of existing biorefinery plants in the United States are located in the Midwest where corn and soybean supplies are abundant.

With the soaring and unstable gasoline price and the increasing environmental concern, many other states in the U.S. are now seeking the opportunity to use biomass feedstocks such as switchgrass for producing biofuels. Also, under the Energy Independence and Security Act of 2007, the U.S. Environmental Protection Agency (EPA) has developed a Renewable Fuel Standard program (RFS) to ensure that gasoline in the U.S. contains a minimum percentage of renewable fuel. The latest RFS (1) “will increase the volume of renewable fuel required to be blended into gasoline from 9 billion gallons in 2008 to 36 billion gallons by 2022.” Therefore, there is an immediately demand for biomass transportation cost analysis model to help optimally locate the new biorefineries. In this study, a GIS-based decision support system is developed for this purpose. A mixed integer linear programming (MILP) model is integrated into the system. Given the distribution of biomass feedstocks, transportation network, and candidate plant locations, the GIS tool and the MILP model will be able to help identify the best locations for biorefineries.

2. LITERATURE REVIEW

Only few pioneer studies have attempted to develop models for optimally locating biorefineries. Graham et al. (2) developed a GIS tool that takes raster data as input. The authors used a brutal search to find the best biorefinery locations. In their study, a 1km x 1km resolution cropland map was used as one of the input data. The entire study area was also separated into 1km x 1km pixels, and each pixel was a candidate location for biorefineries. Each of the candidate locations and the cropland pixels was connected to the road network by a shortest straight line between the pixel and the road network. The unit transportation costs from candidate biorefineries to any pixels in the cropland map were calculated and sorted in ascending order. Based on the yield of each pixel and the demand of each candidate biorefinery, the first n pixels (in the cropland map satisfying the demand of the candidate biorefinery) were selected and the total transportation cost for the candidate biorefinery was calculated. A similar strategy was used by Ravula (3). The difference was that Ravula only considered a single-biorefinery scenario and straight line distances was used in lieu of actual distances along road network. For multi-biorefinery scenarios, Graham et al. (2) assumed that energy crop resources in one pixel can only be assigned to one biorefinery. Based on this assumption, a sequential method was used. Starting from the first biorefinery, once its best location has been identified and cropland pixels have been assigned to it, those cropland pixels were removed from further consideration. The next best biorefinery location was then determined following the same procedure using the remaining cropland pixels. This process was repeated until the last biorefinery location was determined. Two key issues were not appropriately addressed by Graham et al. (2). First, for a large study area, the entire area can be separated into hundreds of thousands of 1km x 1km pixels. For instance, the state of Texas can be divided into 696,241 1km x 1km pixels. Such a huge number of pixels require
tremendous computation time for finding the shortest distances and the lowest transportation cost for each candidate biorefinery. Second, the procedure used in Graham et al. (2) cannot guarantee to find the optimal locations in multi-biorefinery scenarios.

Instead of finding the best locations for biorefineries, Dubuc (4) developed a GIS tool to identify the best locations for feedstock farms used for supplying bioenergy crops to power plants. In his study, Dubuc considered a scenario with only one power plant. Given the location of the power plant and the locations of candidate farm locations, the GIS tool was used to identify the best locations for feedstock farms. However, it is unclear if the developed system can be used for multiple power plants. In (4), the locations for the power plant and the candidate feedstock farms were given, and the author did not treat each pixel as a candidate farm and use brutal search to evaluate its transportation cost. Compared to the brutal search in (2), this method makes more sense in many cases because finding the best locations is not a pure mathematical problem. A lot of other issues that cannot be readily quantified also need to be considered in this process.

Celli et al. (5) applied a genetic algorithm to find the best locations for biomass power plants. The authors again discretized the entire study area into small cells. In the genetic algorithm, each chromosome (individual solution) is of length equal to the total number of cells. For a specific chromosome, if one element in it is equal to 1 (or 0), that means the corresponding cell is selected (or not selected) for power plants. For large study areas such as one state, the chromosomes will become extremely long, which will significantly degrade the computation efficiency.

In a recent study conducted by Panichelli and Gnansounou (6), a BIOAL algorithm was developed to find the optimal locations for gasification units (GUs). The authors initially identified (6) nine candidate locations. The BIOAL algorithm was then used to choose two out of them. Therefore, there are a total of 36 combinations. The BIOAL algorithm is basically an enumeration method. The authors evaluated each of the 36 combinations and selected the one that is of the lowest cost. Compared to optimization methods, the BIOAL algorithm is computationally inefficient and cannot guarantee the optimal solution. For instance, the best solution might be choosing three candidate plants instead of two.

The literature review shows that most previous studies did not use an explicit optimization model to jointly determine the best quantities and locations of biorefineries. Almost all existing methods used brutal search or enumeration methods to solve the multi-biorefinery problem. In this study, the optimal biorefinery location problem is formulated as a MILP model. This MILP model assumes that the candidate biorefinery locations, road network, and biomass distribution data are given. As discussed previously, the optimal locations for biorefineries also depend on a number of other issues that are difficult to quantify and model mathematically. Therefore, compared to discretizing the study area into small cells and treating every cell as a candidate biorefinery location, allowing users to specify the biorefinery locations not only makes sense but also save considerable computation time especially when the study area is large. The proposed MILP model is integrated into a GIS framework and a GIS-based tool is developed. The GIS tool is used to manage the road network and biomass resources distribution data. Another important usage of the GIS tool is to generate input data to the MILP model. Given the input data, the MILP model is formulated in a special way such that the optimal quantities and locations of biorefineries can be determined simultaneously.
3. OPTIMIZATION MODEL DEVELOPMENT

3.1. Modeling Single-Biorefinery Problem
If the problem is to find the optimal location of a single biorefinery, then it becomes straightforward to solve and no complicated mathematical models are required. For each pre-selected candidate biorefinery, one just needs to find the shortest paths from it to all biomass feedstock farms. After sorting the farms based on the shortest path values in ascending order, data from the first \(n \) farms that satisfy the subject candidate biorefinery’s demand will be used to calculate its lowest possible transportation cost using Eq. (1). When looking for the best location for a single biorefinery, there is no need to consider the construction and annual operational cost of the biorefinery, as such cost does not vary significantly by location for a given study area.

\[
\sum_{i=1}^{n-1} P_i d_{ij} + \left(T_C - \sum_{i=1}^{n-1} P_i \right) d_{mj} \bigg) u
\]

where
\[P_i = \text{yield of farm } i \text{ (tons)}; \]
\[d_{ij} = \text{weighted distance between farm } i \text{ and candidate biorefinery } j \text{ (miles)}; \]
\[T_C = \text{total amount of feedstock required by biorefinery } j; \text{ and} \]
\[u = \text{unit transportation cost ($/ton-mileage)}. \]

Eq. (1) has two major parts. The first part calculates the transportation cost for the first \(n-1 \) farms, while the second part calculates the transportation cost for the \(n \)th farm separately. The reason for this separation is that in many cases only part of the yield of the \(n \)th farm is supplied to the biorefinery. Also notice that weighted distances between farms and the candidate refinery are used in Eq. (1). This is because on different types of roadways the vehicular operational characteristics are quite different, which results in different costs for the same distance traveled. The use of the weighted distances in Eq. (1) enables the developed tool to model the switchgrass transportation cost more accurately. \(u \) in Eq. (1) can be ignored, as it does not affect the final results.

3.2. Modeling Multi-Biorefinery Problem
For multi-biorefinery scenario, the problem is formulated as a mixed-integer linear programming (MILP) model shown in Eq. (2). The solution to this MILP model will answer how many candidate biorefineries should be selected and how the produced biomass feedstock should be allocated among the selected biorefineries to minimize the total transportation, construction, and operations cost. The multi-biorefinery scenario is essentially a location-allocation problem (7).

\[
\begin{align*}
\text{Min} & \quad \sum_j C_j x_j + u \sum_i \sum_j y_{ij} P_i d_{ij} \\
\text{s.t.} & \quad y_{ij} - x_j \leq 0, \quad \forall j \\
& \quad \sum_i y_{ij} P_i - C_j x_j = 0, \quad \forall j
\end{align*}
\]
\[\sum_{j} y_{ij} \leq 1, \quad \forall i \]
\[\sum_{j} C_j x_j \geq T _C \]
\[x_j = \{0,1\} \]
\[0 \leq y_{ij} \leq 1, \quad \forall i, j \]
\[i = 1,...,M, \quad j = 1,...,N \]

where
\[CC_j = \text{annualized construction and operational cost of candidate biorefinery } j \ ($); \]
\[x_j = 1 \text{ if candidate biorefinery } j \text{ is selected} (0 \text{ if not selected}); \]
\[y_{ij} = \text{percentage of feedstock produced by farm } i \text{ that is transported to candidate} \]
\[\text{biorefinery } j; \]
\[T _C = \text{total amount of feedstock required}; \]
\[C_j = \text{demand for feedstock at candidate biorefinery } j \text{ (tons)}; \]
\[M = \text{the total number of farms}; \text{ and} \]
\[N = \text{the total number of candidate biorefineries}. \]

The objective of the model in Eq. (2) is to minimize the biomass feedstock transportation cost as well as the biorefinery construction and operations cost. The first set of constraints in Eq. (2) is to ensure that if biorefinery \(j \) is not chosen, then \(y_{ij} \) must be zero. The second set of constraint is to guarantee that the demand of each selected biorefinery must be satisfied. The third set of constraints is to make sure that the total amount of feedstock shipped out from a farm is less than what it produces. When planning for biorefineries, the total biofuel production capacity is usually pre-specified and needs to be satisfied. Given this total production capacity value, the minimum total amount of biomass feedstock \((T _C) \) can easily be determined. To satisfy the pre-specified biofuel production capacity is equivalent to ensuring that the summation of biomass feedstocks required by each selected biorefinery is greater than \(T _C \), and this is why the last constraint is included.

Several unique features of the model in Eq. (2) distinguish it from some of the existing biorefinery location models reviewed in this paper:

1. The developed model use road network distances between farms and candidate biorefineries for calculating the transportation cost. Compared to using the distances of straight lines linking farms and biorefineries, the road network distances can give much better and more accurate transportation cost estimates.
2. Instead of dividing the entire study area into small pixels and treating each pixel as a candidate location for biorefineries, users are given the flexibility to specify candidate biorefinery locations. This can save considerable computation time by getting rid of some obviously infeasible locations such as lakes, residential areas, and wildlife refugees. Users can also specify as many candidate biorefineries as they want to cover all pixels in the study area.
3. None of the existing studies has developed an explicit optimization model to find the best locations for multi-biorefinery scenarios. Only empirical and heuristic methods
were used, and these methods cannot guarantee to find the global optimal solution. For the MILP model introduced in this study, a global optimal solution can always be reached given the necessary input data.

4. GIS TOOL DEVELOPMENT

A GIS tool in the form of an ArcMap® toolbar is developed to facilitate the implementation of the MILP model. The GIS tool is developed using ArcObjects and the Visual Basic for Applications (VBA) environment provided by ArcMap. This tool is not an independent program and can only be used along with ArcMap. It has two major functions: (1) input data editing and (2) MILP input data preparation. Since the toolbar is built based on the ArcMap environment, all tools provided in ArcMap can still be used for managing the GIS input data, and this saves a lot of time and efforts to write codes for data management. Some tasks pertaining to this study such as the MILP input data preparation cannot be done easily using the tools provided in ArcMap. For this reason, several customized toolbar menus are created to

1. Specify locations of candidate biorefineries: A simple tool is developed to allow users to specify the locations of candidate biorefineries on a point feature layer. With this tool activated, each click on this point feature layer will create a biorefinery at that location.

2. Match plants and farms to road network: Plants and farms may not be located exactly on the road network. To calculate the shortest distances between farms and candidate biorefineries, they must be connected to the road network. In this study, a shortest link between the farm/biorefinery and the road network is used to connect them. For each farm, a shortest link from its centroid is connected to the road network. Since candidate biorefineries are represented by point features, shortest links directly from those points to the road network are used. Several examples of the shortest links are shown in Figure 1. Such links are created automatically by a VBA code. For the example in Figure 1, the weighted shortest distance from biorefinery A to farm B is \(d_1 \text{coe_connection} + d_2 \text{coe_interstate} + d_3 \text{coe_connection} \).

Figure 1 Match farms and biorefineries to road network.
3. **Prepare input data for the MILP model**: Dijkstra’s shortest path algorithm is used in this study for finding the shortest distances between farms and biorefineries. To use the dijkstra’s method, matrices that store the intersection, road links, and link distances information must be provided. Such information usually cannot be directly derived from publicly available GIS data. A special ArcObjects and VBA program is developed in this study to generate these data required by the dijkstra’s algorithm.

4. **Run the single-biorefinery and multi-biorefinery optimization procedures**: The optimization algorithms in Eqs. (1) and (2) are implemented using the ArcObjects and VBA programming language. These two procedures take the attribute information from each GIS input layer and also write the modeling results into the attribute table of the candidate biorefinery layer.

5. **CASE STUDY**

The developed GIS tool and the single-biorefinery and multi-biorefinery algorithms are applied to a four-county area in South Carolina, which includes Orangeburg, Calhoun, Dorchester, and Berkeley. These counties are close to or part of the Interstate 95 (I-95) corridor in South Carolina. The economy along this I-95 corridor is heavily dependent on traditional crops such as cotton and tobacco. With the decline in market for cotton and tobacco, the corridor has become economically depressed. The four-county area and the I-95 corridor are shown in Figure 2 below.

Switchgrass can produce 540% more renewable energy than the energy required for the production process (8). Unlike corn, using switchgrass for ethanol does not compete with food supply. Moreover, switchgrass can grow almost everywhere. Growing switchgrass requires less fertilizer and pesticide compared to growing corn, thus causing less impact on the environment. Switchgrass is also very useful for soil conservation and amendment due to its deep and extensive root system. The merits of switchgrass are not limited to producing ethanol. Switchgrass has an excellent capability of storing carbon in its root system. It removes more
Xie and Zhao

8 carbon from the atmosphere than is released by producing and using the switchgrass ethanol. Ethanol production from switchgrass is thus called “carbon negative” (9).

South Carolina has abundant switchgrass resources along the I-95 corridor. However, these resources have not been fully utilized. Areas along the I-95 corridor are still among the poorest parts of the State. In the mean time, South Carolina consumes about 2.5 billion gallons of gasoline every year, all of which is imported from other states and countries. Replacing gasoline by ethanol produced from switchgrass thus appears to be a very promising strategy for boosting the local economy and making South Carolina energy more independent. Assessing the feasibility of building biorefinery plants in these counties is very important. The result of this research could be used to make informed decisions that help people in these counties both economically and environmentally.

5.1. GIS Data

Table 1 shows the GIS data that need to be collected or provided for applying the developed model. The road network data (dataset 1) is used to calculated the shortest distances between farms and candidate biorefineries. Data for all highways maintained by the South Carolina Department of Transportation (SCDOT) are collected. Only highways within the four-county area are used for this study. Furthermore, some roadways such as those unpaved segments are not used for modeling. The resultant roadway segments are categorized into four groups: interstate, primary road, secondary road, and ramp.

The collected land cover data are in raster format. For the original raster data, the entire South Carolina is divided into approximately 173 million cells and each cell is 900 square meters. Each pixel has a value indicating its land cover type. There are totally 28 different types of land covers, including urban development, urban residential, grassland/pasture, swamp, etc. Pixels with certain types of land covers, such as aquatic vegetation, are obviously not suitable for growing switchgrass and are thus excluded from further consideration. Finally pixels with the following five types of land covers are considered as potential sites for growing switchgrass, which are dry scrub/shrub thicket, sandy bare soil, open canopy/recently cleared forest, grassland/pasture, and cultivated land. The “clip” tool provided in ArcToolbox is used to remove those pixels with other types of land covers from the original raster data.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Type of Data</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Road Network</td>
<td>South Carolina Geographic Information Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://gis.sc.gov/data.html#DOT</td>
</tr>
<tr>
<td>2</td>
<td>Land Cover</td>
<td>South Carolina Department of Natural Resources</td>
</tr>
<tr>
<td>3</td>
<td>Land Stewardship</td>
<td>GIS Data Server at the University of South Carolina</td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.cas.sc.edu/gis/dataindex.html</td>
</tr>
<tr>
<td>4</td>
<td>County Boundary</td>
<td></td>
</tr>
</tbody>
</table>

The land stewardship data are collected to identify lands that are reserved for various purposes and cannot be used for growing switchgrass. For example, some lands are reserved by the Department of Defense or Public Service Authority. The resulting land cover data from the previous paragraph are overlaid with the land stewardship and the four-county boundary to
obtain a new land cover layer. Pixels in this layer are all suitable for growing switchgrass, not reserved by federal or local governments, and are within the four-county study area. By combining pixels with the same type of land cover, this layer is further converted into a polygon shapefile. The entire process of preparing the farm input data is illustrated in Figure 3.

![Figure 3 Preparation of farm input data.](image)

5.2. Other Input Data for MILP Model

Other than the GIS data, the MILP model require several other inputs, including travel speeds on each type of roadways, switchgrass yields, construction and operations cost of each biorefinery, and capacity of each biorefinery. A recent research report released by the U.S. Department of Agriculture Iowa State office (10) shows that the average yield of switchgrass is between 4 to 7 tons per acre. This result is based on extensive field tests in three states: Iowa, Illinois, and Missouri. Based on this result, the switchgrass yield rate is assumed to be 5.5 tons per acre (1 acre is equal to 4,047 square meter) in this study.

As shown in Figure 4, there are four types of roadways considered in this study. For the collected road network data, there is no speed limits information available, and such information is not available in other publicly accessible road network GIS data either. In this study, the speeds on interstate, primary roads, secondary roads, and ramps are assumed to be 70 mph (112.7 km/h), 60 mph (96.6 km/h), 50 mph (80.5 km/h), and 30 mph (48.3 km/h), respectively. For the connection roads linking farms and candidate biorefineries to the road network, their speed limits are also assumed to be 30 mph (48.3 km/h). Based on the assumed speed limit data, the original length of each road segment is converted to an equivalent interstate length. The converted lengths are then used in the subsequent calculation of shortest distances. For example, a secondary road of length 10 miles (16.1 km) is converted to $70 \times (10/50) = 14$ miles (22.5 km).
5.3. Model Results

Single-Biorefinery Scenario

In April 2008, the U.S. Department of Energy announced the selection of 3 small-scale biorefineries for federal funding (11). One of the three biorefineries is in Vonore, Tennessee. The total investment for this biorefinery is $136 million. It requires 85 tons of switchgrass per day (equivalent to 31,025 tons annually) and can produce 2 million gallons of ethanol per year.
For this case study, it is assumed the same biorefinery plant is to be built in the four-county area. The developed GIS-based MILP model is used to find the best location for it. Since biorefineries require a substantial amount of water for producing ethanol, it is desirable to keep the biorefineries close to major surface water sources. In this case study, the six candidate locations in Figure 5 are prespecified.

As discussed in Section 3.1, for single-biorefinery location modeling, minimizing the total cost is equivalent to minimizing the total transportation cost. Furthermore, the transportation cost can be measured by ton-mileage instead of dollars. The flexibility provided here is very useful, especially when there is no reliable unit transportation cost estimate ($/ton-mileage). In this study, the best biorefinery location is selected based on the ton-mileages of each candidate biorefineries. Based on the final output from the MILP model shown in Table 2, the optimal location for this case study is biorefinery 2 (see Figure 5). Data in Table 2 also suggest that if biorefinery 6 is selected instead of biorefinery 2, this will increase the total travel by 117,362 ton-mileages.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Candidate</th>
<th>Average Rank</th>
<th>Ton-Mileage</th>
<th>Miles/Ton</th>
<th>Ton-Kilometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>7.4</td>
<td>228,123</td>
<td>367,128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>8.0</td>
<td>248,481</td>
<td>399,892</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>9.5</td>
<td>294,986</td>
<td>474,733</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>9.6</td>
<td>297,350</td>
<td>478,538</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>9.9</td>
<td>307,095</td>
<td>494,221</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>11.1</td>
<td>345,485</td>
<td>556,004</td>
<td></td>
</tr>
</tbody>
</table>

Multi-Biorefinery Scenario

The same six candidate biorefineries are considered for the multi-biorefinery scenario. Truck transportation cost was estimated by Levinson et al. (12) to be $1.11/mile ($0.69/km). Assume each truck can carry 20 tons of switchgrass and also take into account the return trip, the cost of truck transportation is assumed to be $0.111 per ton per mile. The annualized construction and operations cost of each biorefinery is assumed to be $10 million. Assume the goal is to produce 4 million gallons of switchgrass; the total demand for switchgrass would be 62050 tons. Given all these inputs, the candidate biorefineries 1 and 2 (see Figure 5) constitute the optimal solution. The optimal objective function (Eq. 2) value is $20,057,218. It can be seen that for this particular example, the transportation cost is relatively insignificant compared to the construction and operations cost. One reason is that this study considers all suitable cropland for growing switchgrass, and this can considerably reduce the transportation distances. Also, as the size of the biorefinery grows, the transportation distances typically increase at a much faster rate than the size of the biorefinery. By assuming different biorefinery sizes, the impact of the transportation cost will become more obvious.
6. SUMMARY AND CONCLUSIONS

Many studies have attempted to investigate the optimal biorefinery location problem. These studies used either brutal search or heuristic algorithms to solve the single-biorefinery problem. For the multi-biorefinery problem, empirical methods, enumeration, and heuristic optimizations were used to find the best locations. These methods are easy to understand and implement. However, they are usually computationally intensive. More important, these empirical and heuristic methods cannot guarantee to find the global optimal solutions.

In this study, a GIS-based biorefinery location tool is developed. This GIS tool provides users more flexibility by allowing them to prespecify candidate biorefinery locations. In this way, considerable computation time can be saved. Another major advantage of doing this is that it allows users to better incorporate some important factors that are difficult to quantify but have significant impact on the biorefinery location decision making. A Mixed Integer Linear Programming (MILP) model is integrated into the developed GIS tool for solving the multi-biorefinery location optimization problem. The MILP model can jointly optimize the quantities and locations of biorefineries. Given biomass distribution, road network, and candidate biorefineries data, the MILP model can guarantee the globally optimal solution with the lowest total cost.

The developed GIS tool is applied to a four-county area in South Carolina to find the best locations for switchgrass biorefineries, and the results for single-biorefinery and multi-biorefinery scenarios are presented. For this case study, land cover and road network data are obtained from South Carolina Department of Natural Resources and South Carolina Department of Transportation. Other data, such as speed limits for each road segments, unit transportation cost ($/ton-mileage), construction and operations cost of biorefineries, and switchgrass yield are assumed based on data in relevant documents. Some of the assumed numbers may not be very accurate. Nevertheless, the case study is used mainly for demonstrating the applicability of the GIS tool and the MILP model for biorefinery location optimizations. By supplying accurate and real (instead of the hypothetical data used in the case study) input data, this GIS-based MILP model should be able to provide more informative and useful results.

7. FUTURE WORK

Similar to other biorefinery location models reviewed in this study, the model developed in Section 3 uses deterministic input data and also generates a single output solution. However, for practical applications there are a lot of uncertainties involved in the biorefinery location modeling. For example, the yield of bioenergy crops such as switchgrass depends on many factors, including varieties, soil, and rainfall. All these factors are difficult to control and vary year by year and also from locations to locations. It is desirable to incorporate such uncertainties into the biorefinery location modeling and to see how the variations in the input data can affect the model output. In this case, the optimization objective is to minimize the expected total transportation and construction costs as shown in Eq. (3).

\[
\text{Min } E \left[\sum_j CC_j x_j + u \sum_i \sum_j y_{ij} P_{ij} d_{ij} \right]
\]

(3)
Xie and Zhao

The yield of biomass under different conditions can be considered as a random variable. By collecting enough biomass yield data under different scenarios, an empirical probability density function can be estimated for this random variable. Given this probability density function, the optimization problem in Eq. (3) can be solved empirically by using a simulation method. Assuming that \(N \) candidate biorefinery locations are specified by users, a single run of the optimization model in Eq. (2) will generate a vector \(S \) as in Eq. (4). The length of this vector is \(N \). Each element in \(S \) represents whether the corresponding candidate biorefinery is selected (=1) or not (=0). The basic idea of the simulation method is to run the optimization model in Eq. (2) \(K \) times, each time with different biomass yield data generated by the estimated probability function. In this way, \(K \) solutions can be generated. By averaging the \(K \) solutions, a solution vector \(\overline{S} \) can be obtained and Eq. (5) shows a simple example of \(\overline{S} \). Intuitively, values in Eq. (5) represent the preferences for each candidate biorefinery to be selected. The final model output can be obtained by sorting the candidate biorefinery locations in terms of the preference values in descending order and select the first \(n \) candidate biorefineries that meet the minimum feedstock demand \(T_C \) in Eq. (2).

\[
S = [0 \ 1 \ ... \ 1 \ 0 \ 0 \ \ 0]_{1 \times N} \quad (4)
\]

\[
\overline{S} = \frac{1}{K} \sum_{i=1}^{K} S_i = [0.11 \ 0.97 \ ... \ 0.87 \ 0.13 \ 0.05 \ \ 0.01]_{1 \times N} \quad (5)
\]

The empirical method just introduced is straightforward and easy to implement. However, it cannot guarantee the global optimal solutions for the biorefinery model that take uncertainties into consideration. Additional research is needed to develop new methods to solve Eq. (3). A good starting point to solve this problem is (13).

8. ACKNOWLEDGMENTS

The authors would like to thank the James E. Clyburn University Transportation Center at South Carolina State University for supporting this research.

REFERENCES

