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Optimally Locating Biorefineries: A GIS-Based Mixed Integer Linear 

Programming Approach 


Yuanchang Xie, Kaiguang Zhao, and Shaun Hemingway 

ABSTRACT 
Biofuels have recently attracted enormous attention from researcher in various disciplines. Most 
existing studies are focused on the biofuel production process to reduce production cost and 
improve efficiency. Although the cost of transporting bulky and unrefined biomass feedstock is 
also very significant compared to the total cost for producing biofuels, much less attention has 
been given to research on reducing the biomass transportation cost. This study is aimed to 
develop a GIS-based decision support tool for finding the best biorefinery locations to minimize 
the biomass transportation cost. The developed GIS tool first obtains reliable biomass 
distribution data from remote sensing images. Based on the biomass distribution data and other 
information such as transportation network, a mixed integer linear programming model is 
developed and integrated into the GIS tool to find the optimal locations of biorefineries. The 
developed GIS tool is applied to a case study in South Carolina using switchgrass as the biomass 
feedstock. The GIS-based framework established in the study not only provides a practical tool 
to inform decision-making but also serves as a versatile prototype to guide future research 
endeavors in biorefinery location selection and biomass transportation cost analysis. 

KEY WORDS 
GIS, Mixed Integer Linear Model, Facility Location, Remote Sensing, ArcObjects, Optimization 
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1. INTRODUCTION 
Diverse and affordable energy is critical for America’s future. To reduce the dependence on 
foreign oil and also mitigate the environmental impacts (e.g., climate change, pollution) of using 
fossil fuel, a significant amount of research has recently been devoted to methods on producing 
biofuels. Less attention has been given to the cost associated with transporting bulky biomass 
feedstock to biorefinery plants. The biomass transportation cost however is very significant 
compared to the biofuel production cost. For this reason, a majority of existing biorefinery plants 
in the United States are located in the Midwest where corn and soybean supplies are abundant. 

With the soaring and unstable gasoline price and the increasing environmental concern, 
many other states in the U.S. are now seeking the opportunity to use biomass feedstocks such as 
switchgrass for producing biofuels. Also, under the Energy Independence and Security At of 
2007, the U.S. Environmental Protection Agency (EPA) has developed a Renewable Fuel 
Standard program (RFS) to ensure that gasoline in the U.S. contains a minimum percentage of 
renewable fuel. The latest RFS (1) “will increase the volume of renewable fuel required to be 
blended into gasoline from 9 billion gallons in 2008 to 36 billion gallons by 2022.” Therefore, 
there is an immediately demand for biomass transportation cost analysis model to help optimally 
locate the new biorefineries. In this study, a GIS-based decision support system is developed for 
this purpose. A mixed integer linear programming (MILP) model is integrated into the system. 
Given the distribution of biomass feedstocks, transportation network, and candidate plant 
locations, the GIS tool and the MILP model will be able to help identify the best locations for 
biorefineries. 

2. LITERATURE REVIEW 
Only few pioneer studies have attempted to develop models for optimally locating biorefineries. 
Graham et al. (2) developed a GIS tool that takes raster data as input. The authors used a brutal 
search to find the best biorefinery locations. In their study, a 1km x 1km resolution cropland map 
was used as one of the input data. The entire study area was also separated into 1km x 1km 
pixels, and each pixel was a candidate location for biorefineries. Each of the candidate locations 
and the cropland pixels was connected to the road network by a shortest straight line between the 
pixel and the road network. The unit transportation costs from candidate biorefineries to any 
pixels in the cropland map were calculated and sorted in ascending order. Based on the yield of 
each pixel and the demand of each candidate biorefinery, the first n pixels (in the cropland map 
satisfying the demand of the candidate biorefinery) were selected and the total transportation cost 
for the candidate biorefinery was calculated. A similar strategy was used by Ravula (3). The 
difference was that Ravula only considered a single-biorefinery scenario and straight line 
distances was used in lieu of actual distances along road network. For multi-biorefinery scenarios, 
Graham et al. (2) assumed that energy crop resources in one pixel can only be assigned to one 
biorefinery. Based on this assumption, a sequential method was used. Starting from the first 
biorefinery, once its best location has been identified and cropland pixels have been assigned to 
it, those cropland pixels were removed from further consideration. The next best biorefinery 
location was then determined following the same procedure using the remaining cropland pixels. 
This process was repeated until the last biorefinery location was determined. Two key issues 
were not appropriately addressed by Graham et al. (2). First, for a large study area, the entire 
area can be separated into hundreds of thousands of 1km x 1km pixels. For instance, the state of 
Texas can be divided into 696,241 1km x 1km pixels. Such a huge number of pixels require 
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tremendous computation time for finding the shortest distances and the lowest transportation cost 
for each candidate biorefinery. Second, the procedure used in Graham et al. (2) cannot guarantee 
to find the optimal locations in multi-biorefinery scenarios. 

Instead of finding the best locations for biorefineries, Dubuc (4) developed a GIS tool to 
identify the best locations for feedstock farms used for supplying bioenergy crops to power 
plants. In his study, Dubuc considered a scenario with only one power plant. Given the location 
of the power plant and the locations of candidate farm locations, the GIS tool was used to 
identify the best locations for feedstock farms. However, it is unclear if the developed system 
can be used for multiple power plants. In (4), the locations for the power plant and the candidate 
feedstock farms were given, and the author did not treat each pixel as a candidate farm and use 
brutal search to evaluate its transportation cost. Compared to the brutal search in (2), this method 
makes more sense in many cases because finding the best locations is not a pure mathematical 
problem. A lot of other issues that cannot be readily quantified also need to be considered in this 
process. 

Celli et al. (5) applied a genetic algorithm to find the best locations for biomass power 
plants. The authors again discretized the entire study area into small cells. In the genetic 
algorithm, each chromosome (individual solution) is of length equal to the total number of cells. 
For a specific chromosome, if one element in it is equal to 1 (or 0), that means the corresponding 
cell is selected (or not selected) for power plants. For large study areas such as one state, the 
chromosomes will become extremely long, which will significantly degrade the computation 
efficiency. 

In a recent study conducted by Panichelli and Gnansounou (6), a BIOAL algorithm was 
developed to find the optimal locations for gasification units (GUs). The authors initially 
identified (6) nine candidate locations. The BIOAL algorithm was then used to choose two out of 
them. Therefore, there are a total of 36 combinations. The BIOAL algorithm is basically an 
enumeration method. The authors evaluated each of the 36 combinations and selected the one 
that is of the lowest cost. Compared to optimization methods, the BIOAL algorithm is 
computationally inefficient and cannot guarantee the optimal solution. For instance, the best 
solution might be choosing three candidate plants instead of two. 

The literature review shows that most previous studies did not use an explicit optimization 
model to jointly determine the best quantities and locations of biorefineries. Almost all existing 
methods used brutal search or enumeration methods to solve the multi-biorefinery problem. In 
this study, the optimal biorefinery location problem is formulated as a MILP model. This MILP 
model assumes that the candidate biorefinery locations, road network, and biomass distribution 
data are given. As discussed previously, the optimal locations for biorefineries also depend on a 
number of other issues that are difficult to quantify and model mathematically. Therefore, 
compared to discretizing the study area into small cells and treating every cell as a candidate 
biorefinery location, allowing users to specify the biorefinery locations not only makes sense but 
also save considerable computation time especially when the study area is large. The proposed 
MILP model is integrated into a GIS framework and a GIS-based tool is developed. The GIS tool 
is used to manage the road network and biomass resources distribution data. Another important 
usage of the GIS tool is to generate input data to the MILP model. Given the input data, the 
MILP model is formulated in a special way such that the optimal quantities and locations of 
biorefineries can be determined simultaneously. 
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3. OPTIMIZATION MODEL DEVELOPMENT 

3.1. Modeling Single-Biorefinery Problem  
If the problem is to find the optimal location of a single biorefinery, then it becomes  
straightforward to solve and no complicated mathematical models are required. For each  
pre-selected candidate biorefinery, one just needs to find the shortest paths from it to all biomass 
feedstock farms. After sorting the farms based on the shortest path values in ascending order, 
data from the first n farms that satisfy the subject candidate biorefinery’s demand will be used to 
calculate its lowest possible transportation cost using Eq. (1). When looking for the best location 
for a single biorefinery, there is no need to consider the construction and annual operational cost 
of the biorefinery, as such cost does not vary significantly by location for a given study area. 
 

⎡
∑
n−1 ⎛ ∑

n−1 ⎞ ⎤ 
⎢ Pi dij + ⎜T _ C − Pi ⎟dnj ⎥u  (1)
⎣ i=1 ⎝ i=1 ⎠ ⎦ 

where 
  Pi  = yield of farm  i (tons); 
  dij  = weighted distance between farm  i and candidate biorefinery j (miles); 

T _ C  = total amount of feedstock required by biorefinery j; and  
u  = unit transportation cost ($/ton-mileage).  

 
Eq. (1) has two major parts. The first part calculates the transportation cost for the first n-1  

farms, while the second part calculates the transportation cost for the nth farm separately. The  
reason for this separation is that in many cases only part of the yield of the nth farm is supplied  
to the biorefinery. Also notice that weighted distances between farms and the candidate refinery  
are used in Eq. (1). This is because on different types of roadways the vehicular operational 
characteristics are quite different, which results in different costs for the same distance traveled.  
The use of the weighted distances in Eq. (1) enables the developed tool to model the switchgrass  
transportation cost more accurately.  u  in Eq. (1) can be ignored, as it does not affect the final 
results.  
 

3.2. Modeling Multi-Biorefinery Problem  

For multi-biorefinery scenario, the problem is formulated as a mixed-integer linear programming 
(MILP) model shown in Eq. (2). The solution to this MILP model will answer how many 
candidate biorefineries should be selected and how the produced biomass feedstock should be 
allocated among the selected biorefineries to minimize the total transportation, construction, and 
operations cost. The multi-biorefinery scenario is essentially a location-allocation problem (7). 
 

Min ∑CC j x j + u∑∑ yij Pidij  (2) 
j i j 

s.t．  
yij − x j ≤ 0 , ∀j  

∑ yij Pi − C j x j = 0 , ∀j  
i 



                                                                  5 Xie and Zhao

1 ∑ yij ≤ 1, ∀i  
j 

∑C j x j ≥ T _ C  
j 

x j = {0,1}  
0 ≤ yij ≤ 1 ,  ∀i, j  
i = 1,..., M  j = 1,..., N
  

where 

  CC j  = annualized construction and operational cost of candidate biorefinery j ($); 

  x j  = 1 if candidate biorefinery j is selected (0 if not selected);  

yij  = percentage of feedstock produced by farm  i that is transported to candidate 
biorefinery j; 


T _ C  = total amount of feedstock required; 

C j  = demand for feedstock at candidate biorefinery j (tons); 

M = the total number of farms; and 

N = the total number of candidate biorefineries. 


 
The objective of the model in Eq. (2) is to  minimize the biomass feedstock transportation 


cost as well as the biorefinery construction and operations cost. The first set of constraints in Eq. 

(2) is to ensure that if biorefinery j is not chosen, then yij  must be zero. The second set of 


constraint is to guarantee that the demand of each selected biorefinery must be satisfied. The 

third set of constraints is to make sure that the total amount of feedstock shipped out from a farm 
 
is less than what it produces. When planning for biorefineries, the total biofuel production 

capacity is usually pre-specified and needs to be satisfied. Given this total production capacity 

value, the minimum total amount of biomass feedstock (T_C) can easily be determined. To 

satisfy the pre-specified biofuel production capacity is equivalent to ensuring that the summation 

of biomass feedstocks required by each selected biorefinery is greater than T_C, and this is why 
 
the last constraint is included. 


Several unique features of the model in Eq. (2) distinguish it from some of the existing 

biorefinery location models reviewed in this paper: 


 
1.  The developed model use road network distances between farms and candidate 

biorefineries for calculating the transportation cost. Compared to using the distances of 
straight lines linking farms and biorefineries, the road network distances can give 
much better and more accurate transportation cost estimates. 

2.  Instead of dividing the entire study area into small pixels and treating each pixel as a 
candidate location for biorefineries, users are given the flexibility to specify candidate 
biorefinery locations. This can save considerable computation time by getting rid of  
some obviously infeasible locations such as lakes, residential areas, and wildlife 
refugees. Users can also specify as many candidate biorefineries as they want to cover 
all pixels in the study area. 

3.  None of the existing studies has developed an explicit optimization model to find the 
best locations for multi-biorefinery scenarios. Only empirical and heuristic methods 
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1 were used, and these methods cannot guarantee to find the global optimal solution. For 
2 the MILP model introduced in this study, a global optimal solution can always be 
3 reached given the necessary input data. 
4 

5 4. GIS TOOL DEVELOPMENT 

6 A GIS tool in the form of an ArcMap® toolbar is developed to facilitate the implementation of 
7 the MILP model. The GIS tool is developed using ArcObjects and the Visual Basic for 
8 Applications (VBA) environment provided by ArcMap. This tool is not an independent program 
9 and can only be used along with ArcMap. It has two major functions: (1) input data editing and 

10 (2) MILP input data preparation. Since the toolbar is built based on the ArcMap environment, all 
11 tools provided in ArcMap can still be used for managing the GIS input data, and this saves a lot 
12 of time and efforts to write codes for data management. Some tasks pertaining to this study 
13 such as the MILP input data preparation cannot be done easily using the tools provided in 
14 ArcMap. For this reason, several customized toolbar menus are created to 
15 
16 1. Specify locations of candidate biorefineries: A simple tool is developed to allow 
17 users to specify the locations of candidate biorefineries on a point feature layer. With 
18 this tool activated, each click on this point feature layer will create a biorefinery at that 
19 location. 

20 2. Match plants and farms to road network: Plants and farms may not be located 
21 exactly on the road network. To calculate the shortest distances between farms and 
22 candidate biorefineries, they must be connected to the road network. In this study, a 
23 shortest link between the farm/biorefinery and the road network is used to connect 
24 them. For each farm, a shortest link from its centroid is connected to the road network. 
25 Since candidate biorefineries are represented by point features, shortest links directly 
26 from those points to the road network are used. Several examples of the shortest links 
27 are shown in Figure 1. Such links are created automatically by a VBA code. For the 
28 example in Figure 1, the weighted shortest distance from biorefinery A to farm B is 
29 d1*coe_connection+d2*coe_interstate+d3*coe_connection. 

30 

31 

Farms 

Candidate Plants 

Interstate 

Connections 

A 

B 

d1 

d2 

d3 

d4 d5 

d6 

d6 

d7 

Figure 1 Match farms and biorefineries to road network. 32 
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1 
2 3. Prepare input data for the MILP model: Dijkstra’s shortest path algorithm is used in 
3 this study for finding the shortest distances between farms and biorefineries. To use the 
4 dijkstra’s method, matrices that store the intersection, road links, and link distances 
5 information must be provided. Such information usually cannot be directly derived 
6 from publicly available GIS data. A special ArcObjects and VBA program is 
7 developed in this study to generate these data required by the dijkstra’s algorithm. 

8 4. Run the single-biorefinery and multi-biorefinery optimization procedures: The 
9 optimization algorithms in Eqs. (1) and (2) are implemented using the ArcObjects and 

10 VBA programming language. These two procedures take the attribute information 
11 from each GIS input layer and also write the modeling results into the attribute table of 
12 the candidate biorefinery layer. 

13 

14 5. CASE STUDY 
15 The developed GIS tool and the single-biorefinery and multi-biorefinery algorithms are applied 
16 to a four-county area in South Carolina, which includes Orangeburg, Calhoun, Dorchester, and 
17 Berkeley. These counties are close to or part of the Interstate 95 (I-95) corridor in South Carolina. 
18 The economy along this I-95 corridor is heavily dependent on traditional crops such as cotton 
19 and tobacco. With the decline in market for cotton and tobacco, the corridor has become 
20 economically depressed.  The four-county area and the I-95 corridor are shown in Figure 2 
21 below. 

22 

23 Figure 2 The four-county study area and the I-95 corridor. 


24 

25 Switchgrass can produce 540% more renewable energy than the energy required for the
 
26 production process (8). Unlike corn, using switchgrass for ethanol does not compete with food 

27 supply. Moreover, switchgrass can grow almost everywhere. Growing switchgrass requires less 

28 fertilizer and pesticide compared to growing corn, thus causing less impact on the environment.
 
29 Switchgrass is also very useful for soil conservation and amendment due to its deep and 

30 extensive root system. The merits of switchgrass are not limited to producing ethanol. 

31 Switchgrass has an excellent capability of storing carbon in its root system.  It removes more 
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1 carbon from the atmosphere than is released by producing and using the switchgrass ethanol. 
2 Ethanol production from switchgrass is thus called “carbon negative” (9). 
3 South Carolina has abundant switchgrass resources along the I-95 corridor. However, 
4 these resources have not been fully utilized. Areas along the I-95 corridor are still among the 
5 poorest parts of the State. In the mean time, South Carolina consumes about 2.5 billion gallons 
6 of gasoline every year, all of which is imported from other states and countries. Replacing 
7 gasoline by ethanol produced from switchgrass thus appears to be a very promising strategy for 
8 boosting the local economy and making South Carolina energy more independent.  Assessing 
9 the feasibility of building biorefinery plants in these counties is very important. The result of this 

10 research could be used to make informed decisions that help people in these counties both 
11 economically and environmentally. 
12 

13 5.1. GIS Data 
14 Table 1 shows the GIS data that need to be collected or provided for applying the developed 
15 model. The road network data (dataset 1) is used to calculated the shortest distances between 
16 farms and candidate biorefineries. Data for all highways maintained by the South Carolina 
17 Department of Transportation (SCDOT) are collected. Only highways within the four-county 
18 area are used for this study. Furthermore, some roadways such as those unpaved segments are 
19 not used for modeling. The resultant roadway segments are categorized into four groups: 
20 interstate, primary road, secondary road, and ramp. 
21 The collected land cover data are in raster format. For the original raster data, the entire 
22 South Carolina is divided into approximately 173 million cells and each cell is 900 square meters. 
23 Each pixel has a value indicating its land cover type. There are totally 28 different types of land 
24 covers, including urban development, urban residential, grassland/pasture, swamp, etc. Pixels 
25 with certain types of land covers, such as aquatic vegetation, are obviously not suitable for 
26 growing switchgrass and are thus excluded from further consideration. Finally pixels with the 
27 following five types of land covers are considered as potential sites for growing switchgrass, 
28 which are dry scrub/shrub thicket, sandy bare soil, open canopy/recently cleared forest, 
29 grassland/pasture, and cultivated land. The “clip” tool provided in ArcToolbox is used to remove 
30 those pixels with other types of land covers from the original raster data. 
31 

32 Table 1 Collected data and sources. 

Dataset Type of Data Data Source 

1 Road Network South Carolina Geographic Information Systems 
http://gis.sc.gov/data.html#DOT 

2 Land Cover South Carolina Department of Natural Resources 
3 Land Stewardship http://www.dnr.sc.gov/GIS/gap/mapping.html 

4 County Boundary GIS Data Server at the University of South Carolina 
http://www.cas.sc.edu/gis/dataindex.html 

33 
34 The land stewardship data are collected to identify lands that are reserved for various 
35 purposes and cannot be used for growing switchgrass. For example, some lands are reserved by 
36 the Department of Defense or Public Service Authority. The resulting land cover data from the 
37 previous paragraph are overlaid with the land stewardship and the four-county boundary to 
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1 obtain a new land cover layer. Pixels in this layer are all suitable for growing switchgrass, not 
2 reserved by federal or local governments, and are within the four-county study area. By 
3 combining pixels with the same type of land cover, this layer is further converted into a polygon 
4 shapefile. The entire process of preparing the farm input data is illustrated in Figure 3. 
5 

6 

Land 
Stewardship 

Farms 
(Polygon 
Shapefile) 

Overlay 

Land 
Cover 

7 Figure 3 Preparation of farm input data. 
8 

9 5.2. Other Input Data for MILP Model 
10 Other than the GIS data, the MILP model require several other inputs, including travel speeds on 
11 each type of roadways, switchgrass yields, construction and operations cost of each biorefinery, 
12 and capacity of each biorefinery. A recent research report released by the U.S. Department of 
13 Agriculture Iowa State office (10) shows that the average yield of switchgrass is between 4 to 7 
14 tons per acre. This result is based on extensive field tests in three states: Iowa, Illinois, and 
15 Missouri. Based on this result, the switchgrass yield rate is assumed to be 5.5 tons per acre (1 
16 acre is equal to 4,047 square meter) in this study. 
17 As shown in Figure 4, there are four types of roadways considered in this study. For the 
18 collected road network data, there is no speed limits information available, and such information 
19 is not available in other publicly accessible road network GIS data either. In this study, the 
20 speeds on interstate, primary roads, secondary roads, and ramps are assumed to be 70 mph 
21 (112.7 km/h), 60 mph (96.6 km/h), 50 mph (80.5 km/h), and 30 mph (48.3 km/h), respectively. 
22 For the connection roads linking farms and candidate biorefineries to the road network, their 
23 speed limits are also assumed to be 30 mph (48.3 km/h). Based on the assumed speed limit data, 
24 the original length of each road segment is converted to an equivalent interstate length. The 
25 converted lengths are then used in the subsequent calculation of shortest distances. For example, 
26 a secondary road of length 10 miles (16.1 km) is converted to 70*(10/50) = 14 miles (22.5 km). 
27 
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1 
2 Figure 4 Input data for the four-county study area. 

3 

4 5.3. Model Results 

5 Single-Biorefinery Scenario 
6 
7 
8 
9 

10 

In April 2008, the U.S. Department of Energy announced the selection of 3 small-scale 
biorefineries for federal funding (11). One of the three biorefineries is in Vonore, Tennessee. 
The total investment for this biorefinery is $136 million. It requires 85 tons of switchgrass per 
day (equivalent to 31,025 tons annually) and can produce 2 million gallons of ethanol per year. 

11 

Candidate biorefinery 

Lakes 
1 

2 
3 4 5 

6 

Figure 5 Prespecified candidate locations for biorefineries. 12 
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1 For this case study, it is assumed the same biorefinery plant is to be built in the four-county area. 
2 The developed GIS-based MILP model is used to find the best location for it. Since biorefineries 
3 require a substantial amount of water for producing ethanol, it is desirable to keep the 
4 biorefineries close to major surface water sources.  In this case study, the six candidate 
5 locations in Figure 5 are prespecified. 
6 As discussed in Section 3.1, for single-biorefinery location modeling, minimizing the total 
7 cost is equivalent to minimizing the total transportation cost. Furthermore, the transportation cost 
8 can be measured by ton-mileage instead of dollars. The flexibility provided here is very useful, 
9 especially when there is no reliable unit transportation cost estimate ($/ton-mileage). In this 

10 study, the best biorefinery location is selected based on the ton-mileages of each candidate 
11 biorefineries. Based on the final output from the MILP model shown in Table 2, the optimal 
12 location for this case study is biorefinery 2 (see Figure 5). Data in Table 2 also suggest that if 
13 biorefinery 6 is selected instead of biorefinery 2, this will increase the total travel by 117,362 
14 ton-mileages. 
15 

16 Table 2 MILP output for single-biorefinery scenario (One-way trip). 

Candidate AverageRank Ton-Mileage Ton-Kilometer Biorefinery Miles/Ton 

1 2 228,123 7.4 367,128 
2 1 248,481 8.0 399,892 
3 5 294,986 9.5 474,733 
4 4 297,350 9.6 478,538 
5 3 307,095 9.9 494,221 
6 6 345,485 11.1 556,004 

17 

18 Multi-Biorefinery Scenario 
19 The same six candidate biorefineries are considered for the multi-biorefinery scenario. Truck 
20 transportation cost was estimated by Levinson et al. (12) to be $1.11/mile ($0.69/km). Assume 
21 each truck can carry 20 tons of switchgrass and also take into account the return trip, the cost of 
22 truck transportation is assumed to be $0.111 per ton per mile. The annualized construction and 
23 operations cost of each biorefinery is assumed to be $10 million. Assume the goal is to produce 4 
24 million gallons of switchgrass; the total demand for switchgrass would be 62050 tons. Given all 
25 these inputs, the candidate biorefineries 1 and 2 (see Figure 5) constitute the optimal solution. 
26 The optimal objective function (Eq. 2) value is $20,057,218. It can be seen that for this particular 
27 example, the transportation cost is relatively insignificant compared to the construction and 
28 operations cost. One reason is that this study considers all suitable cropland for growing 
29 switchgrass, and this can considerably reduce the transportation distances. Also, as the size of the 
30 biorefinery grows, the transportation distances typically increase at a much faster rate than the 
31 size of the biorefinery. By assuming different biorefinery sizes, the impact of the transportation 
32 cost will become more obvious. 
33 
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6. SUMMARY AND CONCLUSIONS 
Many studies have attempted to investigate the optimal biorefinery location problem. These 
studies used either brutal search or heuristic algorithms to solve the single-biorefinery problem. 
For the multi-biorefinery problem, empirical methods, enumeration, and heuristic optimizations 
were used to find the best locations. These methods are easy to understand and implement. 
However, they are usually computationally intensive. More important, these empirical and 
heuristic methods cannot guarantee to find the global optimal solutions. 

In this study, a GIS-based biorefinery location tool is developed. This GIS tool provides 
users more flexibility by allowing them to prespecify candidate biorefinery locations. In this way, 
considerable computation time can be saved. Another major advantage of doing this is that it 
allows users to better incorporate some important factors that are difficult to quantify but have 
significant impact on the biorefinery location decision making. A Mixed Integer Linear 
Programming (MILP) model is integrated into the developed GIS tool for solving the 
multi-biorefinery location optimization problem. The MILP model can jointly optimize the 
quantities and locations of biorefineries. Given biomass distribution, road network, and candidate 
biorefineries data, the MILP model can guarantee the globally optimal solution with the lowest 
total cost. 

The developed GIS tool is applied to a four-county area in South Carolina to find the best 
locations for switchgrass biorefineries, and the results for single-biorefinery and 
multi-biorefinery scenarios are presented. For this case study, land cover and road network data 
are obtained from South Carolina Department of Natural Resources and South Carolina 
Department of Transportation. Other data, such as speed limits for each road segments, unit 
transportation cost ($/ton-mileage), construction and operations cost of biorefineries, and 
switchgrass yield are assumed based on data in relevant documents. Some of the assumed 
numbers may not be very accurate. Nevertheless, the case study is used mainly for demonstrating 
the applicability of the GIS tool and the MILP model for biorefinery location optimizations. By 
supplying accurate and real (instead of the hypothetical data used in the case study) input data, 
this GIS-based MILP model should be able to provide more informative and useful results. 

7. FUTURE WORK 
Similar to other biorefinery location models reviewed in this study, the model developed in 
Section 3 uses deterministic input data and also generates a single output solution. However, for 
practical applications there are a lot of uncertainties involved in the biorefinery location 
modeling. For example, the yield of bioenergy crops such as switchgrass depends on many 
factors, including varieties, soil, and rainfall. All these factors are difficult to control and vary 
year by year and also from locations to locations. It is desirable to incorporate such uncertainties 
into the biorefinery location modeling and to see how the variations in the input data can affect 
the model output. In this case, the optimization objective is to minimize the expected total 
transportation and construction costs as shown in Eq. (3). 

Min E
⎡
⎢∑CC j x j + u∑∑  yij Pidij 

⎤
⎥ (3) 

⎣ j i j ⎦ 
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1 The yield of biomass under different conditions can be considered as a random variable. 
2 By collecting enough biomass yield data under different scenarios, an empirical probability 
3 density function can be estimated for this random variable. Given this probability density 
4 function, the optimization problem in Eq. (3) can be solved empirically by using a simulation 
5 method. Assuming that N candidate biorefinery locations are specified by users, a single run of 
6 the optimization model in Eq. (2) will generate a vector S as in Eq. (4). The length of this vector 
7 is N. Each element in S represents whether the corresponding candidate biorefinery is selected 
8 (=1) or not (=0). The basic idea of the simulation method is to run the optimization model in Eq. 
9 (2) K times, each time with different biomass yield data generated by the estimated probability 

10 function. In this way, K solutions can be generated. By averaging the K solutions, a solution 
11 vector S can be obtained and Eq. (5) shows a simple example of S . Intuitively, values in Eq. 
12 (5) represent the preferences for each candidate biorefinery to be selected. The final model 
13 output can be obtained by sorting the candidate biorefinery locations in terms of the preference 
14 values in descending order and select the first n candidate biorefineries that meet the minimum 
15 feedstock demand T_C in Eq. (2). 
16 
17 S = [0 1 .... 1 0 0 ..... 0]1×N (4) 
18 

19 S = 
1 ∑ 

K 

Si = [0.11 0.97 .... 0.87 0.13 0.05 ..... 0.01] ×N (5)
K i=1

1 

20 
21 The empirical method just introduced is straightforward and easy to implement. However, 
22 it cannot guarantee the global optimal solutions for the biorefinery model that take uncertainties 
23 into consideration. Additional research is needed to develop new methods to solve Eq. (3). A 
24 good starting point to solve this problem is (13). 
25 
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