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ABSTRACT 

 

The primary function of equipment managers is to replace the right equipment at the 

right time and at the lowest overall cost. To accomplish this task, a theoretically 

sound and practically feasible equipment replacement optimization methodology has 

been developed so that a significant amount of money can potentially be saved. In 

this paper, the opportunities and challenges associated with equipment replacement 

decision making are discussed in detail. First, a comprehensive review of the state-of-

the art and state-of-the practice literature for the equipment replacement optimization 

(ERO) problem is conducted. Second, a dynamic programming (DP) based 

optimization solution methodology is presented to solve the ERO problem. The 

Bellman’s formulation for the ERO deterministic (DDP) and stochastic dynamic 

programming (SDP) problems are discussed in detail. Finally, comprehensive ERO 

numerical results and implications are given. 

 

KEYWORDS: Equipment replacement; decision making; optimization; dynamic 

programming. 
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INTRODUCTION 

 

As assets age, they generally deteriorate, resulting in rising operating and 

maintenance (O&M) costs and decreasing salvage values. Furthermore, newer assets 

that are more efficient and better at retaining their value may exist in the marketplace 

and be available for replacement. The conditions of deterioration and technological 

changes motivate public and private agencies that maintain fleets of vehicles and/or 

specialized equipment to periodically replace vehicles composing their fleet.  This 

decision is usually based upon a desire to minimize fleet costs, which typically 

include the acquisition, operating and maintenance cost, and salvage value over a 

definite or infinite horizon.  

 

Much research has been undertaken in equipment replacement optimization (ERO) 

including the Texas Department of Transportation’s (TxDOT) ongoing equipment 

replacement optimization efforts. A detailed review of the state-of-the art and state-

of-the-practice literature of the ERO problem and commercial fleet management 

systems currently available worldwide can be seen and examined in a separate 

research paper (Fan et al. 2011). In summary, previous research efforts have been 

made to examine the ERO problem, which can be classified into and solved using 

three categories from the solution approach perspectives:  

1) Minimum Equivalent Annual Cost (EAC) Approach  

The most basic ERO problem is studied under the assumption of no technological 

change over an infinite horizon (i.e., the equipment is needed indefinitely). The “no 

technological change” is sometimes also referred to as “stationary cost” by some 

researchers in the sense that an asset is replaced with the purchase of a new, identical 

asset with the same cost. Under this assumption, the optimal solution to the infinite-

horizon equipment replacement problem with stationary costs is to continually 

replace an asset at the end of its economic life. Once determined, the asset should be 

continuously replaced at this age under the assumption of repeatability and stationary 

costs (Fan et al. 2011). 

2) Experience/Rule based Approach 

Many state DOTs use the experience/rule based approach to make keep/replacement 

decisions for their equipment, particularly during the early stages of ERO 

implementation (Fan et al. 2011). For example, TxDOT uses threshold values for age, 

use of an equipment unit, and repair cost as inputs for replacement (Fan et al. 2011, 

TERM 2004). This experience/rule based approach to the ERO problem can work 

really well for the fleet manager under certain circumstances. However, this approach 

heavily depends upon the fleet manager’s engineering judgment and experience with 

the ERO.  

3) Dynamic Programming (DP) Approach 

The solution of continuously replacing an asset at the end of its economic life based 

on the minimum EAC method is optimal only under the assumptions of an infinite 

horizon and stationary costs. However, many situations occur in practice in which an 

asset is required for a finite length of service (i.e., finite horizon). In particular, if the 
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costs (including O&M cost and salvage value) are age based, assuming constant or 

predetermined utilization over a finite horizon, the DP approach is commonly used to 

solve the ERO problem. 

 

There has been an enormous amount of research on the ERO with finite time horizon 

using the Deterministic Dynamic Programming (DDP) approach (Hartman and 

Murphy 2006, Hartman and Rogers 2006, Hillier and Liberman 2005, Wolsey 1998, 

Nemhauser and Wolsey 1999). However, it should be noted that almost all the 

previous research efforts are devoted to the DDP solution formulation and its limited 

applications to extremely simplified case studies and/or toy examples. To the best of 

our knowledge, there have been no research efforts made so far (except Fan et al. 

2012a, 2012b) to apply such DP approaches to solving the real-world ERO problem. 

In our research a comprehensive DP-based optimization solution methodology has 

been developed to solve the ERO problem. The developed ERO software consists of 

three main components: 1) A SAS Macro based Data Cleaner and Analyzer, which 

undertakes the tasks of raw data reading, cleaning and analyzing, as well as cost 

estimation & forecasting; 2) A DP-based optimization engine that minimizes the total 

cost over a defined time horizon; and 3) A Java-based Graphical User Interface (GUI) 

that takes parameters input by users and coordinates the Optimization Engine and 

SAS Macro Data Cleaner and Analyzer.  

 

When using the DDP approach, both the vehicle usage and the annual O&M cost are 

assumed to be constant or predetermined. However, due to randomness in real 

operations, these expected equipment utilizations are not normally realized in 

practice, thus invalidating the replacement optimization decisions in some aspects.  

 

The stochastic dynamic programming (SDP) approach will undoubtedly be the 

preferred approach to solving the ERO problem because it can explicitly consider the 

uncertainty in the vehicle utilization and the annual O&M cost accordingly. Meyer 

(Meyer 1971), perhaps due to computational constraints, is one among the very few 

to study the ERO problem under uncertainty. With the advances in computing 

technology, a lot of research effort has been put forth to examine the ERO problem 

under uncertainties during the past decade, as can be seen by much of Hartman’s 

research work (Hartman and Rogers 2006). However, none of these previous research 

efforts made (except Fan et al. 2012b) uses real-world fleet cost/usage data, and all 

previous case studies are limited and based on small examples. As a result, many 

underlying characteristics of the ERO SDP problem have yet to be explored and 

identified. To our best knowledge, this is the first ERO SDP software that is targeted 

at a real-world application (using TxDOT’s current fleet data) and can explicitly 

consider the uncertainty in the vehicle utilization and the annual O&M cost. It is 

believed that the pilot SDP-based work is very general and can be used to make only 

broad statements regarding the ERO problem.  Nonetheless, it can be seen as an 

example demonstrating its promising feasibility for more large-scale applications. 

When enough cost/mileage data is collected, the SDP-based optimization solution can 

be of immediate use and will yield substantial cost savings for years to come in the 

fleet management industry worldwide. 
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ERO MODEL FORMULATION 

 

General DP Characteristics  

The basic features that characterize DP solution algorithms can be presented as 

follows (Bellman 1995): 1) The problem can be divided into stages with a policy 

decision required at each stage. The stages are usually related to time and are often 

solved by going backwards in time. 2) Each stage has a number of states associated 

with that stage. 3) The decision at each stage transforms the current state at this stage 

to a state associated with the beginning of the next stage (possibly with a probability 

distribution applied). 4) The solution procedure is designed to find an optimal policy 

for the overall problem, i.e., a prescription of the optimal policy decision at each stage 

for each of the possible states. 5) Given the current state, the optimal policy decision 

for the remaining stages is independent of decisions made in previous stages. 6) The 

solution procedure begins by finding the optimal policy for the last stage. 7) A 

recursive relationship is available to traverse between the value of the decision at a 

stage N and the value of the optimum decisions at previous stages N+1. 8) When 

using the recursive relationship, the solution procedure starts at the end and moves 

backward stage by stage – each time finding the optimal policy for that stage – until 

the optimal policy starting at the initial stage is found (Bellman 1995, Bellman 2003, 

Wagner 1975, Waddell 1983, Hartman 2005, Hartman and Murphy 2006). 

 

DP can generally be classified into two categories: DDP and SDP. For DDP, the state 

at the next stage is completely determined by the state and policy decision at the 

current stage. In SDP the state at the next stage is not completely determined by the 

state and policy decision at the current stage. Rather, there is a probability distribution 

applied for what the next state will be. However, the probability distribution is still 

determined entirely by the state and policy decision at the current stage (Bellman 

2003, Wagner 1975, Meyer 1971). In SDP, the decision maker’s goal is usually to 

minimize expected (or expected discounted) cost incurred or to maximize expected 

(or expected discounted) reward earned over a given time horizon.  

 

DP Model Formulation 

The TxDOT fleet manager identifies equipment items as candidates for equipment 

replacement one year in advance due to the fact that generally one year is required to 

allow sufficient time for the procurement and delivery of a new unit of equipment. 

Since the TxDOT fleet manager makes decisions as to whether to keep or replace a 

piece of equipment at the beginning of each year, it is very natural to consider each 

year a stage. As a result, we refer to the year count (or index) as the stage variable 

and the age of the equipment in service at the beginning of each year as the state 

variable. In this project, the TxDOT fleet manager highly recommended that all the 

equipment must be salvaged at the end of a planning horizon of 20 years. In other 

words, it is assumed that an equipment unit will be kept no longer than 20 years. It is 

expected that the value of the planning horizon selected by the fleet manager may 
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have some impacts on the equipment optimal keep/replacement decisions. However, 

it is also believed that 20 years is a very reasonable value and is therefore highly 

recommended for the ERO problem for State DOTs. 

 

The equipment purchase cost model is year-based, the annual operating & 

maintenance cost and the usage of the equipment unit are both age-based, and the 

salvage values are dependent upon both the model year and equipment age. All of this 

data comes from SAS as outputs of the SAS macro based Data Cleaner and Analyzer 

(Fan et al. 2011) and act as inputs to the DDP-based optimization engine. Moreover, 

we have realized that it is standard practice to allow for discounting of future costs in 

any DDP model and solution process. Put another way, solving the ERO problem 

using the dynamic programming approach requires all costs (such as annual O&M 

costs including all repairs, regular maintenance and down time penalty costs, and 

salvage values, as well as purchase costs of the new model year) at each stage to be 

converted from the equipment model year (for the equipment purchase cost) and/or 

calendar year (for annual O&M costs and salvage value) to a benchmark year using 

the inflation rate. Such calculations for the discounting of future costs have been 

successfully performed (Fan et al. 2011).  

 

DP SOLUTION APPROACH 

 

Bellman’s Formulation for the ERO DDP Problem 

Bellman (Bellman 1995, Bellman 2003) introduced the first DDP solution to the 

finite horizon equipment replacement problem where the age of the asset defines the 

state of the system with the decision to keep or replace the asset at the end of each 

period (stage). We have implemented the Bellman DDP approach so that the solution 

caters to TxDOT’s needs in solving the ERO problem (Fan et al. 2012a).  

 

In a typical Bellman network, each node represents the age and the usage (i.e., 

mileage/hours) of the asset at that point in time, which is also the state space of the 

model. Each arc represents the decision to either keep (K) or replace (R) the asset. 

Keeping the asset connects nodes n (i.e., n-year-old) and n+1 (i.e., n+1-year-old) 

while replacing the asset is shown by an arc connecting n and 0. An optimal policy 

with this model, in the form (K, K, R, K, K, …),  gives the optimal decision at the 

beginning of each year. If an asset can be retained for a maximum of   periods, then 

the maximum number of states in a period is  . For an  -period problem, since there 

are a maximum of two decisions for any state, the problem can be solved using the 

following calculation: O(State of year 1 + State of year 2 + … + State of year  ) = O 

(1 + 2 + 3 + … +   -1 + 1) = O( 
 (   )

 
  ).  Therefore, the computer complexity of 

Bellman’s algorithm is O(  ). 
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Figure 1. Bellman’s Formulation 

 

Bellman’s Formulation for the ERO SDP Problem 

When Bellman’s approach is applied to the SDP method to solve the ERO problem, a 

phenomenon, commonly termed “curse of dimensionality,” appears. For example, the 

ERO SDP solution procedure, without scenario reduction treatment, has a general 

state-space issue that can result in exponential growth in the computer memory and 

software computational time with increases in the time horizon. Careful consideration 

and special treatments have been used to resolve these issues (Fan et al. 2012b). 

 

Figure 2 shows a complete “Keep-Replace” Bellman formulation example starting 

with a brand-new equipment unit for the ERO SDP problem, with uncertainty in 

vehicle utilization for the SDP-2Level case, after conducting the scenario reduction 

treatment. In Figure 2, the square nodes represent the decision to either keep or 

replace the equipment unit. The circular nodes represent chance nodes, as the 

equipment utilization level is uncertain and the path taken from theses nodes defines 

the cumulative equipment utilization in the next stage. The path taken from the 

circular nodes are defined as    and    which represent two feasible (i.e., the high 

and low) equipment utilization levels. Additionally, all nodes at time   are connected 

to a dummy node at time  +1, which represents the salvage of the equipment unit 

after the final stage of the finite horizon problem (Fan et al. 2012b). It should also be 

noted that the total cost would include the purchase cost, the expected annual O&M 

cost, and salvage value, as previously mentioned. 

K

K

K

K

K

K
R

R

R

R

R

R

(i0,j0,Y)

(i0+1,j0+ui0+1,Y+1)

(0,0,Y+1)

(i0+2,j0+ui0+1+ui0+2,Y+2)

(1,u1,Y+2)

(2,u1+u2,Y+3)

(1,u1,Y+3)

(0,0,Y+3)

(0,0,Y+2)

1 2 3Year Count

Note: 

a.                                                 represents the status of a vehicle which is                 -year old with its accumulative mileage 

being                  at the beginning of year                  . uk denotes the usage during the year at the end of which the equipment 

becomes k-year old. Similar notation follows.

b. The salvage value is associated with “R” decision. The decision is made at the beginning of each year where the starting 

node is located. The salvage value is referred to as the value of equipment age at the end of that year. The operating/

maintenance cost associated with “K” decision is related to the equipment age at the end of that year.

K – Keep asset

R – Replace asset

4

(i0+3,j0+ui0+1+ui0+2+ui0+3,Y+3)

...

TN+1N

.

.

.

)1NY,uj 1,-Ni(
1-Ni

1i k

k00

0

0

 




)1NY,0 ,0(  )NY,0 ,0( 

)1NY,u ,1( 1 

K

K

R

R

R

R

...

.

.

.

R

...

... N-1

Year Y+1 Y+2 Y+3 Y+NY+N-1Y+N-2Y

)1NY,uj 1,-Ni(
1-Ni

1i k

k00

0

0

 


 1)-N(i0 

)1N(Y 
)u(j

1-Ni

1i k

k0

0

0










 

  

Page 7 of 13 
 

 

 
Figure 2. A Complete “Keep-Replace” SDP Formulation for the ERO Problem with 

Uncertainty in Asset Utilization: the Two-Level Case after Conducting the Scenario 

Reduction Treatment 

 

SOFTWARE DEVELOPMENT AND FUNCTIONALITIES 

 

SDP Computer Implementation Techniques 

To successfully implement the Bellman formulation to solve the ERO SDP problem, 

an efficient and effective data structure is designed and then implemented by 

developed Java computer codes. The model year-based equipment purchase cost, the 

equipment age-, and model year- based salvage value, and the equipment age- and 

mileage-based annual operating and maintenance cost data along with corresponding 

probability distribution for each year that come from SAS (Fan et al. 2011) are read 

and processed by the Java codes through three steps/layers within the Optimization 

Engine. The first layer is reading the classcode, the second layer is reading the 

equipment age, and the third layer is reading the equipment utilization and associated 

probability (to accommodate the different equipment utilization levels). A series of 

dynamically allocated arrays are developed to store the data (Fan et al. 2012b). The 

Bellman approach as presented earlier is then solved backward and the recursive 

functions are called efficiently. 
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SDP Software Development and Functionalities 

The developed DDP software considers two approaches for the ERO problem: 1). 

Assume “Current Trend” --- Take all the information from current TERM data that 

are “error- and outlier- free” and assume that the same trend will continue for all 

future years. For example, the current TERM data shows that equipment utilization 

decreases as equipment gets older and therefore we assume this trend will continue 

(Fan et al. 2011); and 2) Assume “Equal Utilization” --- Take the average mileage 

across all equipment with same classcode and use this number for the utilization for 

all equipment during that year. Note that year-to-year utilization for the same 

classcode can still be different under this assumption. In subsequent sections, 

numerical results will be presented to show an example of the differences in the 

equipment keep/replacement decisions between these two approaches. 

 

Many other functions have been incorporated in the DP-based ERO software 

including the following: 1) The software allows the user to specify budget constraints, 

as well as the time window that the programming will use during optimization. 2) The 

software allows users to selectively “Clean the data.” 3) The user can choose to run 

the software using SAS automatically generated cost data or use the Editable cost 

data that they have provided manually at the beginning of each year. 4) The user can 

choose from several different approaches, namely: Cost Current Trend or Cost Equal 

Mileage; DDP or SDP, and Bellman or Wagner. 5) The user can also choose to delay 

the replacement of equipment or replace it early by specifying a positive or negative 

delay time. 6) The software can also run optimization on a single used piece of 

equipment from a specific classcode, on all equipment units from either one specific 

classcode or from all classcodes, or on brand new equipment units from either one 

specific classcode or from all classcodes. 7) The software gives an EXCEL report for 

the cost savings by comparing the optimal solution with the benchmark rules, and it 

provides an EXCEL report summarizing the cost savings by comparing the optimal 

solution with the “delay by N years” option or the “ignore the optimized decision” 

option. 8) Finally, users can add new annual TERM data at the beginning of each year 

and make dynamic keep/replacement decisions for any chosen classcode or 

equipment unit (Fan et al. 2012b). 

 

OPPORTUNITIES AND CHALLENGES  

 

The developed ERO solution software in this paper is very general and can be used to 

make optimal keep/replacement decisions with or without uncertainty in vehicle 

utilization for both brand-new and used vehicles, both with or without annual budget 

considerations. In other words, the developed solution methodology can be used to: 1) 

Provide a general guide for the equipment keep/replacement decisions (i.e., how 

many years to keep) for a particular classcode containing brand-new equipment 

without considering any budget constraints; 2) Select the equipment units for annual 

replacement from a solution space that is composed of all the candidate equipment 

units that are eligible for replacement based on the annual budget and other 

constraints, if any. Also, it should be noted that all numerical results are essentially 
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dependent upon the specific classcode chosen. However, after comprehensive testing 

it was found that numerical results of all classcodes seem to follow similar patterns 

and exhibit some shared general characteristics. In this regard, the following section 

uses the real TxDOT TERM data (TERM 2004) and describes some interesting and 

representative numerical results using two classcodes, 420010 and 520020, as an 

example for the light vehicle and heavy vehicle classes respectively. Related 

characteristics are discussed as follows. 

 

Opportunities 

The computational time of the ERO software for all classcodes and each solution 

approach was examined. It was found that the computational time is very uniform for 

the DDP and SDP 2-Level approaches and it takes an average of 10 seconds for the 

software to provide the best optimized decision for each classcode. It takes a total of 

about 32 minutes to loop through all (i.e., 194) classcodes and output all optimized 

solutions in an EXCEL file for either “Current Trend” or “Equal Utilization” 

approach. However, the SDP 3-Level approach appears to be less uniform and most 

classcodes take more time to run; the average for this approach was nearly 30 seconds 

for the ERO software to provide the best optimized decision for each classcode with 

probabilistic vehicle utilization. Therefore, it takes a total of about 97 minutes to loop 

through all (i.e., 194) classcodes and output all optimized solutions in an EXCEL file 

for the “current trend” approach in which the probability distribution of the vehicle 

utilization is forecasted based on the historical data. 

 

A comparison of the solution quality for the DDP solution, the SDP 2-Level and 3-

Level optimization solutions, and the current benchmark solutions for classcodes 

420010 and 520020 is given in Table 1. As can be seen, the objective function values 

(represented in $ value) for each DP approach are smaller (more desirable) than for 

the corresponding benchmark solutions for both classcodes. This is expected because 

each DP approach ensures that all solution paths (which certainly include the current 

purely experience-based replacement benchmark solution) are explored by solving 

backward. This guarantees that the best solution is also found by selecting the 

solution path with minimum total cost over the definite horizon (determined by the 

benchmark year). 

 

In addition, one may notice that the total cost of the benchmark solutions for the 

DDP, SDP 2-Level and SDP 3-Level approaches are all different. This is expected 

because the DDP approach uses the classcode-level cost/mileage forecast for all 

future years to calculate the benchmark decision year. On the other hand, both SDP 

approaches generate and use cost/mileage forecasts for each individual and all the 

vehicle utilization levels (low-high for 2-Level, or low-medium-high for 3-Level) and 

their associated probability distributions for all future years to determine the 

benchmark decision year. This can cause the expected cost/mileage data to be slightly 

different between the different solution approaches. 
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Table 1. Solution Quality Comparisons between the SDP and DDP Optimized 

Solutions and the Current Benchmark Solutions for Classcodes 420010 and 520020 

 
 

As one can see from Table 1, using classcode 420010 with the “current trend” 

approach as an example, the SDP 2-Level approach results in the most savings and 

suggests 5 replacements over the 20 year window, while the benchmark solution 

suggests replacement at years 10 and 20 only. While the SDP 3-Level solution and 

the DDP solution offer similar replacement strategies, the difference in savings comes 

from the difference in the expected costs associated with each approach; these results 

indicate that using the developed SDP-based ERO software can significantly improve 

the replacement procedures and can result in substantial cost savings every year. 

Specifically, for classcode 420010, the estimated savings is about $5,464.40/20 = 

$273.22 per year for a single piece of equipment. For classcode 520020 the SDP 2-

Level solution estimates the cost savings with replacement on years 6, 13, and 20 of 

$8,631.65/20 = $431.58 per year, which is much greater than either of the DDP or the 

Decision Cost Decision Cost Decision Cost Decision Cost Decision Cost Decision Cost

1 K $2,881.39 K $2,881.39 R $5,269.29 K $2,469.76 K $2,469.76 K $2,469.76

2 R $9,050.29 K $3,320.66 R $6,101.20 K $3,448.38 R $8,794.86 K $3,065.23

3 K $2,881.39 K $3,782.13 K $2,469.76 K $3,696.17 K $2,469.76 K $3,724.82

4 K $3,320.66 K $4,256.11 K $3,448.38 K $4,038.96 K $3,065.23 K $4,198.20

5 K $3,782.13 K $4,732.92 K $3,696.17 K $4,503.90 K $3,724.82 K $4,783.81

6 K $4,256.11 K $5,202.88 K $4,038.96 K $5,070.60 R $15,601.30 K $4,967.72

7 R $17,989.34 K $5,656.32 R $17,760.33 K $5,556.50 K $2,469.76 K $5,478.87

8 K $2,881.39 K $6,083.55 K $2,469.76 K $6,007.50 K $3,065.23 K $5,779.37

9 K $3,320.66 K $6,474.89 K $3,448.38 K $6,474.89 K $3,724.82 K $6,151.15

10 K $3,782.13 R $25,673.63 K $3,696.17 R $25,478.75 K $4,198.20 R $25,413.79

11 K $4,256.11 K $2,881.39 K $4,038.96 K $2,469.76 K $4,783.81 K $2,469.76

12 K $4,732.92 K $3,320.66 K $4,503.90 K $3,448.38 R $21,279.03 K $3,065.23

13 R $21,887.57 K $3,782.13 R $21,755.29 K $3,696.17 K $2,469.76 K $3,724.82

14 K $2,881.39 K $4,256.11 K $2,469.76 K $4,038.96 K $3,065.23 K $4,198.20

15 K $3,320.66 K $4,732.92 K $3,448.38 K $4,503.90 K $3,724.82 K $4,783.81

16 K $3,782.13 K $5,202.88 K $3,696.17 K $5,070.60 K $4,198.20 K $4,967.72

17 K $4,256.11 K $5,656.32 K $4,038.96 K $5,556.50 K $4,783.81 K $5,478.87

18 K $4,732.92 K $6,083.55 K $4,503.90 K $6,007.50 K $4,967.72 K $5,779.37

19 K $5,202.88 K $6,474.89 K $5,070.60 K $6,474.89 K $5,478.87 K $6,151.15

20 R $26,202.97 R $29,674.69 R $26,103.16 R $29,479.81 R $27,230.39 R $29,414.86

Total $135,401.15 Total $140,130.02 Total $132,027.48 Total $137,491.88 Total $131,565.38 Total $136,066.51

Cost Savings $4,728.87 Cost Savings $5,464.40 Cost Savings $4,501.13   

1 K $1,865.53 K $1,865.53 K $1,865.53 K $1,865.53 K $1,865.53 K $1,865.53

2 K $2,915.71 K $2,915.71 K $2,915.71 K $2,915.71 K $2,915.71 K $2,915.71

3 K $3,916.86 K $3,916.86 K $3,916.86 K $3,916.86 K $3,916.86 K $3,916.86

4 K $4,864.60 K $4,864.60 K $4,864.60 K $4,864.60 K $4,864.60 K $4,864.60

5 K $5,754.55 K $5,754.55 K $5,754.55 K $5,754.55 K $5,754.55 K $5,754.55

6 K $6,582.32 K $6,582.32 R $39,399.23 K $6,582.33 K $6,582.32 K $6,582.32

7 K $7,343.55 K $7,343.55 K $1,865.53 K $7,343.55 K $8,567.48 K $8,567.48

8 K $8,033.85 K $8,033.85 K $2,915.71 K $10,042.31 K $8,033.85 K $8,033.85

9 R $47,607.00 K $8,648.84 K $3,916.86 K $10,090.31 R $47,607.00 K $8,648.83

10 K $1,865.53 K $9,184.14 K $4,864.60 K $11,152.17 K $1,865.53 K $8,309.46

11 K $2,915.71 R $52,129.15 K $5,754.55 R $53,735.05 K $2,915.71 R $49,987.96

12 K $3,916.86 K $1,865.53 K $6,582.33 K $1,865.53 K $3,916.86 K $1,865.53

13 K $4,864.60 K $2,915.71 R $47,495.25 K $2,915.71 K $4,864.60 K $2,915.71

14 K $5,754.55 K $3,916.86 K $1,865.53 K $3,916.86 K $5,754.55 K $3,916.86

15 K $6,582.32 K $4,864.60 K $2,915.71 K $4,864.60 K $6,582.32 K $4,864.60

16 K $7,343.55 K $5,754.55 K $3,916.86 K $5,754.55 K $8,567.48 K $5,754.55

17 K $8,033.85 K $6,582.32 K $4,864.60 K $6,582.33 K $8,033.85 K $6,582.32

18 K $8,648.84 K $7,343.55 K $5,754.55 K $7,343.55 K $8,648.83 K $8,567.48

19 K $9,184.14 K $8,033.85 K $6,582.33 K $10,042.31 K $8,309.46 K $8,033.85

20 R $60,198.47 R $57,327.35 R $53,674.70 R $58,768.83 R $58,057.28 R $57,327.35

Total $208,192.39 Total $209,843.42 Total $211,685.59 Total $220,317.24 Total $207,624.37 Total $209,275.40

Cost Savings $1,651.03  Cost Savings $8,631.65   Cost Savings $1,651.03   

Classcode

SDP Solution

SDP 2-Level ApproachDDP Approach

Year DDP Solution Benchmark Solution Benchmark Solution SDP Solution Benchmark Solution

SDP 3-Level Approach

420010

520020
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SDP 3-Level solutions. The average of the cost savings for both classcodes is 

estimated at ($273.22 + $431.58)/2 = $352.40 per year. Considering there are 194 

classcodes used by TxDOT and on average each classcode includes 84 pieces of 

equipment, a cost savings of $352.40*194*84 = $5,742,730.77 might be expected. As 

can also be seen from Table 1, an also-significant cost savings of $2,506,389.98 for 

the SDP 3-Level approach can be estimated using the same calculation method. 

Therefore, one might expect a cost savings of several million dollars annually for the 

agency using the SDP approaches.  

 

The results provided here were run without explicitly considering the annual budget 

constraints, which may exist in the real world for government agencies and private 

fleet sectors. However the developed solution methodology in this paper can also be 

used to select the equipment units for annual replacement based on the annual budget 

constraints and possibly some other constraints specified by the fleet manager. To 

solve the ERO problem under such constraints, the following steps are required. 

 

First, the cost of NOT replacing an equipment unit when it should be replaced is 

estimated by comparing the total cost of the optimal solution to the minimum total 

cost incurred when delaying the replacement of equipment by a certain number of 

years. The increases in cost are quantified for each feasible replacement year and are 

used as inputs to the second round of optimization. Next, the second round of 

optimization is used to select the equipment units for annual replacement from all 

equipment units that are eligible for replacement. The main objective of this step is to 

maximize the benefits produced, in order to embody a mixture of both TxDOT’s 

short-term and long-term interests. Preliminary results indicate that a significant 

amount of cost savings can be estimated by using our developed solution 

methodology when using an annual budget of 15 million dollars for TxDOT’s current 

TERM data. 

 

Challenges 

After conducting comprehensive testing, all three approaches have produced 

promising results and can yield significant cost savings compared to the current 

TxDOT benchmark decision process. However, because the probabilistic nature of 

vehicle utilization is explicitly considered, the formulated SDP approach appears to 

be more practically feasible than the DDP approach. However, the lack of large 

enough and dependable data sets for some classcode/equipment units may prevent the 

SDP software from generating as reliable of solutions as possible. In this regard, the 

SDP approach is still in somewhat of an early development stage and will be more 

promising for a future application as this line of research matures and the data 

collection effort progresses. The impact of the uncertain future purchase cost, the 

down time cost, and O&M cost on the ERO keep/replacement decision and its total 

cost also needs further investigation. 
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SUMMARY AND FUTURE RESEARCH 

 

In this paper, a comprehensive review of the state-of-the art and state-of-the practice 

literature for the equipment replacement optimization (ERO) problem is first 

conducted. A dynamic programming (DP) based optimization solution methodology 

is then presented to solve the ERO problem. The Bellman’s formulation for the ERO 

deterministic (DDP) and stochastic dynamic programming (SDP) problems are 

discussed in detail. Finally, comprehensive ERO numerical results and implications 

are given along with the opportunities and challenges associated with the equipment 

replacement optimization problem. The software computational time and solution 

quality have been demonstrated to be very promising and encouraging, and 

substantial cost-savings are estimated using this ERO software. The computational 

experience with the ERO problem also indicates some challenges with data collection 

efforts need to be met in the future. Other issues with forecasting future purchase 

cost, the down time cost, and O&M cost must also be addressed. As this line of 

research matures and data accumulates, the software can be of immediate use to 

provide even more reliable and better results. 
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