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Is the Decision to Code-share a Route Different for Virtual versus 

Traditional Code-Share Arrangements? 

Yan Du
1
                        B. Starr McMullen

2 

Abstract 
This paper analyzes factors that determine whether individual routes remain in or leave a 

code-share agreement in different scenarios: pooled, purely traditionally code-shared 

routes, purely virtual code-shared routes and routes both traditionally and purely code-

share.  The code-share alliance between Continental and America West Airlines is used 

as the case study for this analysis.  Empirical results show that factors affecting alliance 

firms’ code sharing decision significantly differ for virtual versus traditional code share 

agreements.  
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INTRODUCTION  
            Six major domestic U.S. airlines (Delta and United Airlines, American and US 

Airways, Northwest and Continental Airlines) proposed various kinds of alliances in 

1998.  All of these alliances combined frequent flier programs and club facilities.  

Northwest Airlines planned to buy an equity share in Continental Airlines.  Delta and 

United and Northwest and Continental entered into code-sharing agreements.  

Code-sharing has emerged as one of the most important forms of alliance in the 

airline industry.  Under code-sharing, contracting firms merge their computerized 

reservation systems so that each contracting carrier can issue tickets with their own flight 

numbers on flights operated by other contracting air carriers.  Through code-sharing, 

partner firms effectively link their networks without operating additional aircraft and gain 

exposure in markets where they do not operate directly but participate via display of their 

flight numbers.  As a result, airlines are able to make use of hub-and-spoke systems to 

generate greater passenger volumes.  Due to economies of traffic density, the marginal 

operating cost of carrying an additional passenger drops with increased volume, 

explaining why code-sharing has become a popular form of airline alliance.
 
   

           The first major code-sharing alliance in the US airline industry began in the 

middle of the 1990s between Continental and America West Airlines.  America West 

Airlines, the second largest low cost air carrier in the US, now operating as US Airways, 

was one of the greatest business successes in the US airline industry in the 1980s.  But 

rapid expansion growth without proper handling of large operating losses placed the 

company at the verge of bankruptcy by 1986.  With the pressure from increasing fuel 

costs due to concerns about stability in the Gulf States in the lead-up to the Persian Gulf 

War, America West was forced to file for bankruptcy in 1991.  In 1994, America West 

managed to secure reorganization, with a large portion of the airline owned by a 

partnership with Continental Airlines.  This partnership resulted in a code-sharing 

arrangement with Continental and heralded the beginning of code-sharing alliances in the 

domestic airline industry.  

            The America West and Continental code-sharing arrangement lasted 8 years, from 

1994 to 2002.
1
  During the code-sharing period, individual routes were added and old 

routes dropped.  Indeed, the route structure of the code-share agreement was very 

dynamic as indicated in Table 1.  The purpose of this paper is to examine why some 

routes were kept and others deleted. 

According to the most recent study by Ito and Lee (2007), there are basically two 

different practices of code-sharing: traditional or virtual code-sharing.  A traditional 

code-sharing itinerary involves the combination of the networks of two different 

operating carriers to create a connecting flight, which is the same as complementary 

code-sharing defined in Park (1997) and Du, McMullen and Kerkvliet (2008).  For 

example, the operating carriers of a traditionally code-shared itinerary are Continental 

and America West (CO: HP) or America West and Continental Airlines (HP: CO) while 

the marketing carriers are just Continental (CO: CO) or America West (HP: HP).  By 

contrast, a virtual code-sharing itinerary only involves a single operating carrier but the 

ticket is sold by a marketing carrier different from the operating one.  Different from 

parallel code-sharing, operating and marketing carriers do not necessarily compete on the 

same flight routes when they are virtually code-shared.  For example, a fully virtual code- 



 

Table 1    Changes in the Number of Code-shared (CS) Routes 

Quarter
2
 CS Routes  New CS Entries

3
  New CS Entries %

4
 New CS Exits New CS Exits %

5
 

1998Q1 731 N/A N/A N/A N/A 

1998Q2 765 351 45.9% 317 43.4% 

1998Q3 635 246 38.7% 376 49.2% 

1998Q4 620 282 45.5% 297 46.8% 

1999Q1 823 446 54.2% 243 39.2% 

1999Q2 627 251 40.0% 447 54.3% 

1999Q3 803 396 49.3% 220 35.1% 

1999Q4 889 350 39.4% 264 32.9% 

2000Q1 760 217 28.6% 346 38.9% 

2000Q2 770 272 35.3% 262 34.5% 

2000Q3 515 137 26.6% 392 50.9% 

2000Q4 503 193 38.4% 205 39.8% 

2001Q1 425 140 32.9% 218 43.3% 

2001Q2 331 139 42.0% 233 54.8% 

2001Q3 305 140 45.9% 166 50.2% 

2001Q4 358 182 50.8% 129 42.3% 

2002Q1 277 93 33.6% 174 48.6% 

2002Q2 208 71 34.1% 140 50.5% 

2002Q3 28 17 60.7% 197 94.7% 

2002Q4 14 13 92.9% 27 96.4% 

 

share itinerary may consist of a connection between two Continental flights (CO: CO) or 

two America West flights (HP: HP) while the entire ticket is marketed or sold by 

America West (HP: HP) or Continental Airlines (CO: CO), respectively.  Virtual code-

sharing could happen on the direct flight itinerary as well: if the operating carrier is CO 

or HP but the marketing carrier is HP or CO, respectively.  Furthermore, if only one 

segment of the ticket is sold by America West while the other segment is still sold by 

Continental (CO:HP or HP:CO), then the itinerary is called semi-virtually code-shared.  

In particular, Ito and Lee (2007) point out that the overwhelming majority of the U.S. 

domestic code-sharing is virtual code-sharing.  

             Previous studies have examined the effect of code-sharing on air fares, passenger 

volumes, operating costs and consumer welfare (Oum, Park and Zhang (1996), Park 

(1997), Park and Zhang (2000), Park, Zhang and Zhang (2001), Park, Park and Zhang 

(2003), Brueckner and Whalen (2000), Shy (2001), Brueckner (2001, 2003), Hassin and 

Shy (2004), Bamberger, Carlton and Neumann (2004), Armantier and Richard (2005a, 

2005b), Chua, Kew and Yong (2005), Gayle (2006) and Ito and Lee (2007)), but no 

empirical research has been done to determine why code-sharing is proposed and 

implemented on some city pairs, but not on others.  In the case of the Continental and 

America West code-sharing alliance, of all the routes that were code-shared, only 6 

routes remained in the agreement for almost the entire 1998 - 2002 period.  There were 

1219 routes that were in the agreement for one quarter and then were dropped (See Table 

3.2).  Different decisions in these code-shared route arrangements reflect different 



operating strategies in response to route market structure and entry-deterring actions 

taken by incumbent firms.  Analysis of these entry and exit decisions can identify the  

 

Table 2   Time of Code-sharing for Different Code-shared Routes 

Number of  

CS Routes 

CS Time  

(in Qrts) 

6 19 

45 18 

23 17 

26 16 

30 15 

41 14 

39 13 

44 12 

36 11 

42 10 

47 9 

47 8 

79 7 

89 6 

93 5 

138 4 

235 3 

477 2 

1219 1 

Total:      2756 Total
6
:     20 

 

determinants of code-sharing choices to ascertain whether or not these choices are 

affected by anticompetitive behavior of incumbent firms.  For government agents and 

policy makers, identification of the determinants of code-sharing can provide information 

as how to regulate alliances and predict that which specific factors should be considered 

when reviewing a proposed code-share agreement. The results from this study should 

help policy makers determine the extent they should be concerned with antitrust issues 

when considering approval of a new agreement.  For individual firms considering which 

routes to include in a code-share agreement, this study provides information on which are 

the relevant factors to consider. 

 

LITERATURE REVIEW  
            The importance of entry conditions and their impact on economic performance in 

the process of competition has long been of concern in the industrial organization 

literature.  Extra-normal or excess economic profits in an industry suggest that entry 

barriers may exist to keep other firms from entering and taking advantage of the market 

profitability.  Bain’s (1956) pioneering work points out that economies of scale, absolute 

cost and product differentiation advantages of incumbent firms are three elements that 

affect the ability of incumbent firms to protect positive profits from entry.  



            However, the nature of Bain’s paradigm is entirely static with entry barriers taken 

as exogenous, problems which have been addressed in the game-theoretic literature.  

Sutton (1991) provides a two-stage game formulation and offers a detailed study of the 

role sunk costs play, either endogenously or exogenously, as entry barriers.
7
  In the 

airline literature, the most noteworthy work regarding entry conditions has been the 

theory of contestable markets.  Bailey and Panzar (1981) argued that long haul airline 

markets served by local service monopolists were basically contestable.  Baumol (1982) 

formally defined a perfectly contestable market as a market with freedom of entry and 

exit without incurring loss of sunk cost.  Perfect contestability guarantees absence of 

excess profits and cross subsidization even under monopoly or oligopoly situations.  

Bailey and Baumol (1984) further point out that even though airline markets could 

theoretically be represented as contestable, labor contracts, slot controls, airport 

dominance and long-term lease of airport facilities all may prevent contestability from 

occurring.
8
  This conclusion is consistent with Morrison and Winston (1987), Hurdle et al. 

(1989), Strassmann (1990) and Winston and Collins (1992) who agree that perfect 

contestability did not characterize the airline industry after deregulation.  In particular, 

Morrison and Winston (1987), Sinclair (1995), Dresner, Lin and Windle (1996), 

Morrison (2001), Dresner, Windle and Yao (2002) find that slot controls were a 

significant entry deterrent.  

            Bailey and William (1988), Borenstein (1989, 1990, 1991), Berry (1990, 1992), 

Evans and Kessides (1993) and Oum, Zhang and Zhang (1995) argue that airport 

dominance (hub concentration) is an important source of market power and monopoly 

rents, representing a dominant strategy in the oligopolistic deregulated airline industry. 

From the demand side, a dominant reputation can be acquired by a scale-driven carrier as 

a consequence of operating most flights at its hub airport, raising the value of the airline’s 

frequent flyer program and creating brand loyalty.  Large scale operations by an 

incumbent carrier can result in higher flight frequency------an important indicator of 

service quality, and may also inhibit potential competitors’ abilities to obtain gates and 

other facilities necessary for entry or expansion of service.  From the cost side, increased 

flight frequency may increase traffic density, which leads to lower marginal operating 

cost and generates cost advantages over potential entrants if the increase in costs 

associated with an increase in flight frequency is less than revenues produced by the 

additional passengers.
9
  From both demand and cost sides, economies of density play an 

important role in creating entry barriers.  

Travel agent commission override bonuses and biases due to computer reservation 

systems may benefit incumbent carriers; long-term leases of airport space to particular 

carriers give them the power to decide when, to whom and at what price to sublease 

space to competitors. 

            High route concentration may also be a significant deterrent to entry in the airline 

industry.  Hurdle etc. (1989) and Strassmann (1990) find that entry barriers exist in the 

highly concentrated airline markets due to incumbents’ large scale flight operations at 

their hub airports. 

            With the formation of hub-and-spoke networks after deregulation, airport 

congestion has become an important entry barrier to potential entrants.  Abramowitz and 

Brown (1993) and Dresner, Windle and Yao (2002) find that airport congestion measured 



either by the number of takeoffs and landings or by gate constraints and utilization are 

significant barriers to entry.  

            Finally, what is worth mentioning is that perfect contestability theory assumes 

that all players in the market have the same cost structure so the entrants can serve the 

market demands with the same technology by engaging in “hit-and-run” entry without 

incurring sunk cost.  But this is not true in the airline industry.  Low cost air carriers 

usually enjoy a cost advantage and can earn profits at prices that are not compensatory to 

incumbent carriers.  Low cost carriers are able to do this because they use a different 

business model than legacy carrier, such as only operating a single type of airplane, 

servicing a single passenger class, managing a simple fare scheme, and flying to cheaper, 

less congested secondary airports to avoid air traffic delays and take advantage of lower 

landing fees.  Whinston and Collins (1992) provide an example of the successful entry of 

a low cost air carrier People Express, which led to significant value reductions for 

incumbent firms.  Bennett and Craun (1993), Windle and Dresner (1995), Dresner, Lin 

and Windle (1996), Richards (1996), Morrison (2001), Bamberger and Carlton (2006) all 

find that the entry of low cost air carrier Southwest Airlines leads to significant air fare 

decreases. 

 

VARIABLE DEFINATIONS AND EMPIRICAL HYPOTHESES   
            Due to data limitations, our data sample does not include the routes on which 

Continental (CO) and America West (HP) Airlines never code-shared.  During the 1998-

2002 sample period, they code-shared on each route for at least one quarter.  On some 

flight routes, they chose to code-share from the very beginning and stay code-shared for 

the entire alliance period while on other routes they chose to code-share at certain time 

but dropped code- sharing later, sometimes adding and dropping a route several times. 

Some routes were only code-shared for one quarter and then dropped forever.  

            To account for all of these circumstances, we assume firms make their code- 

sharing decisions at the beginning of each quarter for each route.  Thus, our dependant 

variable is a qualitative response variable.  At any specific time, if alliance firms were 

code-shared, no matter they were traditionally or virtually code-shared, then the code-

share decision is valued 1; and if alliance firms were not, then the code-share decision is 

valued 0.  Alliance firm’s different responses on route i at time t are determined by 

characteristics of both incumbents and code–sharer’s flight operations, those of the 

markets (both routes and airports) and other related factors such as government regulation.  

We assume the density of the dependent variable itDECISION  follows an exponential 

distribution with the probability of success denoted as it . The classical logistic 

regression model is then specified as  

0                     log( ) ( , )   
1

it
it

it

f X


 


 


 

 

where X is a matrix of the explanatory variables defined as follows:  

Route Characteristics 

            Because code-shared flights are fundamentally one stop flight service, market 

situations in the one stop market on the route level is more comparable for the analysis 

than those in the direct or multi-stop or whole flight markets.  Accordingly, we focus on 

explanatory variables that represent route characteristics in one stop markets.
10

 



1.  Average Yield from Previous Period --- 
, 1i tYLD 

 is defined as the average price 

per passenger mile in the one stop market on route i in the previous quarter t-1.  

Average price is calculated as the weighted average of per passenger air fare of 

different air carriers.  Staying or dropping decisions will depend on the average 

yield of last period.  The higher the average yield from last period; the higher the 

probability of code-sharing because of the resulting higher profits from code-

sharing (Strassmann, 1990; Dresner, Lin and Windle, 1996; Dresner, Windle and 

Yao, 2002); 

2. The Number of One Stop Booking Frequencies from Previous Period --- 

, 1i tFRE 
 is defined as the number of all incumbents’ one stop booking frequencies 

on route i at time t-1.  The larger the number of one stop booking frequencies, the 

more frequent the service and the higher the service quality, which makes the 

alliance firms’ code-shared flights more comparable to the market incumbents’ 

one stop flight services, thus leading to the higher probability of code-sharing 

(Whinston and Collins, 1992); 

3. Route Competition Level from Previous Period --- 
, 1i tRHHI 

 is defined as 

Herfindahl Hirschman Index (HHI) in the one stop market on route i at time t-1.  

HHI is calculated by using the number of passengers carried by individual air 

carriers on a specific route.  According to Sutton (1991), “Higher concentration 

implies higher margins and higher profitability”, so a market with less intense 

competition pre-entry may be more profitable and thus be more attractive to entry 

(Morrison and Winston, 1995; Dresner, Lin and Windle, 1996; Boguslaski, Ito 

and Lee, 2004; Oh, 2006).  However, both Hurdle et al. (1989) and Strassmann 

(1990) find that entry is significantly deterred in the highly concentrated airline 

markets because of large scale flight operations at hub airports.  So the overall 

effect of route competition level on the probability of code-sharing is uncertain.
11

 

City and Geographical Characteristics 

1. Population --- itPOP  are the multiplication of populations at the endpoints of 

the Metropolitan Statistical Areas (MSAs) on route i at time t, which is a proxy 

for the potential market size.  The larger the population, the higher the travel 

demand and the higher the probability of code sharing (Sinclair, 1995; Dresner, 

Lin and Windle, 1996; Boguslaski, Ito and Lee, 2004); 

2. Per Capita Income ---  itINCO  are the multiplication of per capita income at 

both endpoints of MSAs on route i at time t.  According to Morrison (2006), 

“It’s generally agreed that demand for air travel is very responsive to changes in 

income.  In particular, the income elasticity of demand is probably around 1.5.”  

So we expect the higher per capita income, the higher the air travel demand and 

the higher the probability of code sharing (Dresner, Lin and Windle, 1996; 

Boguslaski, Ito and Lee, 2004); 

3. Vacation Dummies --- iVAC  is equal to 1 if one of the endpoint airports is in 

Florida, Hawaii, Nevada and Puerto Rico otherwise it is equal to 0.  We expect 

the coefficient sign to be positively related to the probability of code- sharing 

since vacation routes will generate more passengers than non-vacation routes, 



all other factors being equal. (Dresner, Lin and Windle, 1996; Morrison, 2001; 

Boguslaski, Ito and Lee, 2004) 

Airport Characteristics 

1. Hub Dummies for Code-shared Firms. If either one of the endpoint airports 

(  and i iORIHUB DESTHUB ) or the connecting airports ( iCONHUB ) are hubs 

for code-shared firms, then the value takes 1. This variable represents the 

advantages of alliance firms’ hub-and-spoke network systems.  We expect that 

the alliance firms’ hubs at either endpoint or connecting airport will increase the 

probability of code-sharing on the routes. Table 3.3 provides a list of hubs for 

all major carriers in the US (Borenstein, 1989; Brueckner and Spiller, 1994); 

2.  Slot Control Dummy --- iSLOT .  Four airports in the U.S. have limits on the 

number of takeoffs and landings that may take place during any given hour. 

They are Chicago O’Hare, New York J.F. Kennedy and La Guardia and 

Washington Reagan National Airport. If any of the endpoint or connecting 

airports is a slot-controlled airport, then iSLOT  equals 1 otherwise 0.  We 

expect a negative relationship between the probability of code-sharing and the 

slot control dummy (Morrison and Winston, 1987; Strassmann, 1990; Sinclair, 

1995; Dresner, Lin and Windle, 1996; Morrison, 2001; Dresner, Windle and 

Yao, 2002); 

3. Gate Constraints Dummy --- iGATE .  There are six airports in which long-

term, exclusive use gates are thought to be barriers to entry (GAO report, 1993).  

They are Charlotte, Cincinnati, Detroit International, Minneapolis, Newark and 

Pittsburgh. If the endpoint or connecting airport is a gate-constrained airport,  

 

Table 3   U.S. Major Air Carriers and Their Hubs and Focus Cities 

Major Carriers Hubs 

Second      

Hubs Focus Cities 

American Airlines  DFW, ORD, MIA, STL, SJU JFK, LGA BOS, LAX, RDU 

Alaska Airlines  SEA, ANC, PDX, LAX  SFO 

Continental Airlines  IAH, EWR, CLE   

Delta Air Lines  ATL, SLC, CVG, JFK LAX MCO, LGA, BOS 

Northwest Airlines  DTW, MSP, MEM  IND, HNL 

United Airlines  ORD, DEN, IAD, SFO, LAX   

US Airways  CLT, PHL, PHX, LAS  DCA, LGA, PIT 

America West  PHX, LAS, PHL, CLT PIT DCA, LGA, BOS 

ATA Airlines  MDW  HNL,OAK 

Horizon Air  SEA, PDX, LAX  DEN 

Frontier Airlines  DEN   

Southwest Airlines    

LAS, MDW, PHX, BWI, OAK, 

HOU, DAL,LAX, MCO, SAN 

JetBlue Airways    JFK, BOS, FLL, OAK, IAD 

 

      then iGATE equals 1 otherwise 0.  We assume code-sharing will be deterred in 

      the airports with gate constraints due to airport congestion (Dresner, Windle and 



      Yao, 2002). 

Code-sharing Characteristics 

1. Code-sharing Dummies ---   and i iTCS VCS  are used to distinguish whether the       

route is traditionally or virtually code-shared (fully or semi-virtual), respectively.  

On a specific route, if the operating carriers are CO:HP or HP:CO but the 

marketing carriers are CO:CO or HP: HP, then the route is traditionally code-

shared.  If the operating carriers are CO:CO or HP:HP but the marketing carriers 

are HP:HP or CO:CO, respectively, then the route is fully virtually code-shared; if 

the operating carriers are CO:CO or HP:HP but the marketing carriers are HP:CO 

or HP:CO, then the route is semi-virtually code-shared.  

Time Characteristics 

1. Quarterly Dummies --- ,   and t t tWIN SPR SUM  are used to control for seasonal 

fixed effects (Dresner, Li and Windle, 1996; Morrison, 2001); 

2.  Time since the Initial Alliance --- tTIME  is used to measure how long (in years) the 

initial code-sharing alliance has been in place.  For instance, if the code-share 

alliance began in 1994, then tTIME =5 in year 1998, 6 in year 1999, 7 in year 2000, 

8 in year 2001 and 9 in year 2002.  On one hand, we expect a negative relationship 

between alliance duration and the probability of code-sharing because the longer the 

time, the more information firms will have about the profitability of alliances.  As 

time passes, market situations may change dramatically, firms’ financial situations 

and operating strategies may change, government policy may change, etc.  On the 

other hand, the longer firms stay in an alliance, the better the reputation of the 

alliance and the lower the continuation cost so there could be a positive relationship 

between the time and the probability of code-sharing.  Thus, the expected sign of 

the time coefficient is uncertain.  

 

DATA SOURCE 

            The whole data sample has 55120 quarterly observations on a total of 2756 routes 

code-shared by Continental and America West Airlines at some time during 1998Q1 to 

2002Q4 period.  Among the 2756 code-shared routes, 1113 routes are purely traditionally 

code-shared, 793 routes are purely virtually code-shared and 850 routes are both 

traditionally and virtually code-shared.  Every observation is route and time specific.  

Table 4 shows the descriptive statistics.  

The data for the number of passengers and per passenger air fares for individual 

carriers on route i at time t are from Bureau of Transportation Statistics (BTS) US 

Department of Transportation (DOT) Origin and Destination Survey DB1B Market, a 

10% ticket random sample data set. itYLD  is calculated as the average price per 

passenger mile on route i in its one stop market at time t where average price is calculated 

as the weighted average of the per passenger air fare for all air carriers operating on that 

route. The data for the code-sharing decision itDECISION are identified from the same 

data set by tracking each route once code-shared by Continental and America West 

Airlines quarter by quarter. The data for the number of one stop booking frequencies 

itFRE and the calculation of route concentration itRHHI  are from DB1B Market. Hub 

dummies are identified from each air carrier’s website.
12

 The data for 



population _ itPOP ORIGIN and _ itPOP DEST and per capita income 

_ itINCOME ORIGIN  and _ itINCOME DEST  at  

 

Table 4 Descriptive Statistics 

Variables (Descriptions and Units) Mean Std 

DECISIONit (Equals 1 if the alliance firms code-shared on route i, otherwise 0) 0.1884 0.391 

ONESTOPYIELDit-1 (Average air fare from t-1 in dollars per passenger mile in the 

one-stop market of route i) 0.0676 0.027 

FREit-1 (All incumbents' one-stop booking frequencies from t-1 on route i) 421 337 

RHHIit-1 (HHI from t-1 in the one-stop market of route i ) 2739 1507 

INCOME_ORIGINit (Per capita income in dollars at the MSA of the origin airport on 

route i) 18126 3262 

INCOME_DESTit (Per capita income in dollars at the MSA of the destination airport 

on route i) 18082 3288 

POP_ORIGINit (Population at the MSA of the origin airport on route i) 4061988 4654822 

POP_DESTit (Population at the MSA of the destination airport on route i) 4075897 4667366 

SLOTi (Equals 1 if either the endpoint or the connecting airport is slot-controlled)  0.0722 0.2589 

GATEi (Equals 1 if either the endpoint or the connecting airport has gate constraints) 0.2496 0.4328 

VACATIONi (Equals 1 if either the endpoint or connecting airport on route i is in FL, 

HI or NV; otherwise 0) 0.3792 0.4852 

E_ORI_HUBi (Equals 1 if the origin airport on route i is the alliance firms' 

dominated hub or focus city) 0.3266 0.469 

E_CONN_HUBi (Equals 1 if the connecting airport on route i is the alliance firms' 

dominated hub or focus city) 0.8545 0.353 

E_DEST_HUBi (Equals 1 if the destination airport on route i is the alliance firms’ 

dominated hub or focus city) 0.3193 0.4662 

WINTERt (Equals 1 if the quarter is in Jan-Mar; otherwise 0) 0.25 0.433 

SPRINGt (Equals 1 if the quarter is in Apr-Jun; otherwise 0) 0.25 0.433 

SUMMERt (Equals 1 if the quarter is in Jul-Sep; otherwise 0) 0.25 0.433 

TCSi (Equals 1 if the route was once traditionally code-shared; otherwise 0) 0.7123 0.453 

VCSi (Equals 1 if the route was once virtually code-shared; otherwise 0) 0.5962 0.4907 

TIMEt (Equals 5 if in year 1998, 6 in 1999, 7 in 2000, 8 in 2001, 9 in 2002) 7 1.414 

  

    All the dollar values are deflated by Consumer Price Index (1982-84=100). 

 

origin and destination airport MSAs are from Bureau of Economic Analysis US 

Department of Commerce. The slot control and gate constraints dummies are obtained 

from reports by US General Accounting Office (1993).       

       

ECONOMETRIC MODELS AND EMPIRICAL RESULTS  
           Following Molenberghs and Verbeke (2005) for the study of discrete longitudinal 

data, we apply Subject-specific Models for the analysis of the discrete longitudinal data 

set, in which the dependent variable is non-Gaussian repeated binary measures.
13

  

           In subject-specific models, when responses are binary, the effect of covariates on 

the response probabilities is conditional upon the level of the subject-specific effect. A 

unit change in the covariate translates into an appropriate change in probability, keeping 

the level of the subject-specific effect fixed (Neuhaus, Kalbfleisch and Hauck, 1991). 

Even though subject-specific parameters can be dealt with either as fixed effects or as 



random effects, the fixed effects approach is in many cases flawed.
14

 So we use the 

Generalized Linear Mixed Models (GLIMM) proposed by Breslow and Clayton (1993) in 

this paper, which is the most frequently used random effects model in the context of 

discrete repeated measurements. We apply GLIMM regression into four different 

scenarios: a regression on the totally pooled 2756 code-shared routes and separate 

regressions on the 1113 purely traditionally code-shared (TVS) routes, 793 purely 

virtually code-shared (VCS) routes and 850 both traditionally and virtually code-shared 

(TVCS) routes, respectively.  We then compare the regression results to find out the 

different impacts of those explanatory variables on the code-sharing decision from four 

different scenarios. 

            Let itY  be the tth outcome measured for subject i, i=1, …, N, t=1, …, it  and iY  is 

the it -dimensional vector of all measurements available for subject i. The GLIMM model 

is then formalized as follows: 

                                              |     ( )it i itY b Bernoulli   

 The conditional means ( | )it iE Y b   are given by  

                                       0

0

exp( )
( | )

1 exp( )

i
it i

i

b X
E Y b

b X

 

 

 


  
                                  

Rewrite the equation above as  

                                     
0logit( ) log( )

1

RE REit
it i

it

b X


  


   


                     

where ( 1| , )it it iP Y b X   , 
0

RE  is the constant term, and RE  is a p-dimensional vector 

of unknown fixed regression coefficients, common to all subjects.
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 We assume that q-

dimensional random effects ib are drawn independently from the N (0, G) and the 

responses itY  of  iY  are independent with densities of the form 

                      1( | , , ) exp{ [ ( )] ( , )}i it i it it it itf y b y c y                                

with   a scale parameter,  i.e. ' '( )it it it ix z b     for a known link function (.) , and for 

 and it itx z  two vectors containing known covariates.  The density of the N (0, G) 

distribution for the random effects ib  is denoted as ( | )if b G .  Estimated through 

Penalized Quasi-likelihood (PQL) methods, GLIMM results are shown in Table 5.           

          GLIMM regression results show that on a specific route, the number of flights and 

the average yields on the one stop market in the previous quarter are significant factors 

affecting the probability of code-sharing. The probability of code-sharing is higher when 

the yield is higher and the number of flights is     increasing on the one stop market from 

the previous period. For a given route, the odds of code-sharing increases 6.33 times for 

every increase of 0.1 dollar in the yield (5.19 times to 7.71 times at 95% confidence 

interval) and 1.04 times (1.02 times to 1.06 times at 95% confidence interval.) for every 

increase of 100 flights on the one stop market. In contrast to Sutton (1991), Morrison and 

Winston (1995), Dresner, Lin and Windle (1996), Boguslaski, Ito and Lee (2004) and Oh 

(2006), who found that higher concentration induces entry, we find that route 

concentration level has a negative impact on the probability of code-sharing: the higher 

the concentration in the one stop market, the lower the probability of code-sharing,  



 

Table 5 Comparison of GLIMM Regression Results in Different Scenarios (on Pooled, TCS, VCS or TVCS Routes) 

 

a. 

d. 

 

Pooled Routes INT. FRE i,t-1 YLD i,t-1 RHHI i,t-1 INCOit POPit WINt SPRt SUMt TIME SLOTi GATEi VACi ORIHUBi CONHUBi DESTHUBi 

Parameter Est. -1.04 3.07E-04 14.38 -1.70E-04 7.54E-04 2.09E-03 0.46 0.25 -0.05 -0.55 -1.28 -0.27 0.44 0.86 1.53 0.90 

Std Error 0.17 9.30E-05 0.88 1.90E-05 3.43E-04 9.83E-04 0.04 0.04 0.04 0.01 0.12 0.07 0.06 0.06 0.09 0.06 

t Value -6.01 3.3 16.36 -9.17 2.2 2.12 12.61 6.67 -1.43 -52.1 -11.2 -4.07 7.67 13.71 16.84 14.39 

Pr>|t| .0001 .0001 .0001 .0001 .0282 0.0339 .0001 .0001 .1531 .0001 .0001 .0001 .0001 .0001 .0001 .0001 

Odds Ratio 0.35 1.03
a 

4.21
b 

0.84
c 

1.000754 1.00209 1.58 1.28 0.95 0.58 0.28 0.76 1.55 2.35 4.60 2.47 

                     

TCS Routes INT. FRE i,t-1 YLD i,t-1 RHHI i,t-1 INCOit POPit WINt SPRt SUMt TIME SLOTi GATEi VACi ORIHUBi CONHUBi DESTHUBi 

Parameter Est. -1.56 1.74E-04 6.82 -4.12E-05 -3.1E-04 8.00E-04 0.14 0.13 -0.08 -0.24 -0.60 -0.06 0.11 0.40 0.41 0.30 

Std Error 0.20 1.14E-04 0.87 1.77E-05 3.34E-04 1.22E-03 0.07 0.07 0.07 0.02 0.14 0.06 0.06 0.06 0.09 0.07 

t Value -7.83 1.53 7.8 -2.33 -0.92 0.65 2.08 1.96 -1.13 -13.6 -4.25 -0.93 1.88 6.56 4.74 4.52 

Pr>|t| .0001 .1251 .0001 .0198 .3599 .5136 .0375 .0503 .258 .0001 .0001 .351 .0604 .0001 .0001 .0001 

Odds Ratio 0.21 1.02
a 

1.98
b 

0.96
c 

0.999694 1.0008 1.15 1.14 0.92 0.78 0.55 0.94 1.11 1.49 1.50 1.34 

                     

VCS Routes INT. FRE i,t-1 YLD i,t-1 RHHI i,t-1 INCOit POPit WINt SPRt SUMt TIME SLOTi GATEi VACi ORIHUBi CONHUBi DESTHUBi 

Parameter Est. 2.51 -5.32E-05 1.11 -1.21E-04 -3.9E-03 -3.3E-03 0.60 0.17 -0.01 -0.57 0.06 -0.05 0.06 -0.07 0.37 0.06 

Std Error 0.31 1.54E-04 1.60 3.84E-05 5.92E-04 1.56E-03 0.08 0.08 0.08 0.02 0.13 0.11 0.09 0.11 0.14 0.10 

t Value 8.11 -0.35 0.69 -3.16 -6.52 -2.1 7.86 2.14 -0.07 -24.8 0.43 -0.46 0.73 -0.63 2.75 0.59 

Pr>|t| .0001 .7299 .4906 .0016 .0001 .0355 .0001 .0326 .9433 .0001 .6673 .644 .4655 .5309 .006 .5556 

Odds Ratio 12.25 1.00
a 

1.12
b 

0.9999
c 

0.996148 0.99673 1.83 1.19 0.99 0.57 1.06 0.95 1.06 0.94 1.45 1.06 

                     

TVCS Routes INT. FRE i,t-1 YLD i,t-1 RHHI i,t-1 INCOit POPit WINt SPRt SUMt TIME SLOTi GATEi VACi ORIHUBi CONHUBi DESTHUBi 

Parameter Est. -0.84 7.35E-04 26.39 -5.44E-05 4.1E-03 1.99E-03 0.64 0.38 -0.07 -0.78 -2.04 -0.59 0.16 1.01 1.63 1.05 

Std Error 0.36 1.64E-04 1.81 4.79E-05 6.79E-04 1.74E-03 0.06 0.06 0.06 0.02 0.26 0.13 0.11 0.12 0.21 0.12 

t Value -2.32 4.49 14.58 -1.14 6.04 1.14 11.47 6.83 -1.26 -45.8 -7.9 -4.54 1.42 8.53 7.86 8.9 

Pr>|t| .0205 .0001 .0001 .2506 .0001 .2544 .0001 .0001 .2063 .0001 .0001 .0001 .157 .0001 .0001 .0001 

Odds Ratio 0.43 1.08
a 

14.01
b 

0.95
c 

1.004112 1.00199 1.90 1.47 0.93 0.46 0.13 0.56 1.17 2.74 5.12 2.86 



consistent with Hurdle et al (1989) and Strassmann (1990). Large scale operations from 

the market incumbents on a specific highly concentrated route in their one stop market 

could deter the probability of code-sharing greatly. The odds of code-sharing increase 

only 0.86 times (0.83 times to 0.90 times at a 95% confidence interval) for every increase 

of 1000 in route competition as measured by the HHI.  

           Regression results also tell that as expected, on a specific route, the probability of 

code-sharing is lower if the origin and connecting airports on the route are slot-controlled 

or have gate constraints. This means that airport congestion measured by slot control and 

gate constraints are significant entry barriers for code-sharing on individual routes, 

consistent with previous findings by Morrison and Winston (1987), Strassmann (1990), 

Sinclair (1995) and etc. Specifically, the occurrence of code-sharing is only 0.20 as likely 

to occur on a route with slot-controlled airports as on a route without slot control, given 

other factors constant. This difference could be as little as 0.15 or as much as 0.25 with a 

95% confidence interval. Compared with routes whose origin and connecting airports 

have no gate constraints, the odds of code-sharing are only 0.68 times the odds on the 

route whose airports are with gate constraints. The change in the odds could be as little as 

0.59 or as much as 0.79 with a 95% confidence interval. 

           Whether individual route is a vacation route also turns out to be an important 

factor affecting the probability of code-sharing. The probability of code-sharing is found 

here to be higher on a vacation route than on a non-vacation route. For a given route, the 

odds of code-sharing, ( 1itDECISION  ) if it is a vacation route, are 1.39 times the odds 

of code-sharing if it is not a vacation one, holding other things constant (1.23 times to 

1.58 times at 95% confidence interval). Consistent with previous studies (Dresner, Lin 

and Windle, 1996; Morrison, 2001; Boguslaski, Ito and Lee, 2004), this result supports 

the hypothesis that vacation routes generate more passengers than non-vacation routes, 

therefore increasing the probability of code-sharing. Carriers may choose to code-share 

on vacation routes because of the route density. 

            On a specific route, whether or not its endpoint or connecting airports is an 

alliance firm hub strongly affects the probability of code-sharing. The probability of 

code- sharing is higher if the airports are alliance firm hubs than if not. In particular, the 

odds of code-sharing when the origin, connecting and destination airports are alliance 

firm hubs or focus cities on an individual route are 2.56, 3.67 and 2.72 times the odds of 

code- sharing when these airports are not their hubs or focus cities respectively. This is 

consistent with studies by Bailey and William (1989), Borenstein (1989, 1990 and 1991) 

and Brueckner and Spiller (1994) who argue that airport dominance is an important 

source of market power and monopoly rent in the airline industry. Alliance firms make 

use of their hubs to combine their existing operating systems and compete with the 

market incumbents. 

            Results also show that on a given route, per capita income and population at the 

endpoint MSAs are significant factors affecting the code-sharing decision. The higher the 

per capita income and population on a specific route, the higher probability of code- 

sharing because of the resulting higher travel demand. On a given route, the odds of code 

sharing increase 1.45 and 1.57 times respectively as the per capita income at the origin 

and destination MSAs increases by 10,000 dollars. The odds of code-sharing increase 

1.02 and 1.02 times for every increase of 1,000,000 persons in the number of origin and 

destination MSA population.  



      As time passes, the probability of code-sharing tends to decrease as expected. The 

odds of code-sharing increase 0.65 times on a specific route (0.64 times to 0.67 times at 

95% confidence interval.) as one more year passes by. Seasonal effects significantly 

affect the code-share decisions with the lower probability of code-sharing in the summer 

and higher probability in the winter and spring. On a specific route, the odds of code-

sharing in the winter and spring are 1.30 times and 1.25 times the odds of code-sharing in 

other seasons, respectively. The odds of code-sharing in the summer are only 0.91 times 

the odds of code-sharing in other seasons for a given route. This may be because code- 

sharing helps generate traffic in off season whereas demand is seasonally high in summer. 

 

CONCLUSIONS   
Our empirical results show that a successful code-sharing depends on many 

factors.  Airport dominance is an important factor that affects alliance firm code-sharing 

decisions.  Contracting carriers try to take advantage of their hub dominance to build 

code-shared routes with their partners. Since there is previous research (Bailey and 

William (1988), Borenstein (1989, 1990, 1991), Berry (1990, 1992), Evans and Kessides 

(1993) and Oum, Zhang and Zhang (1995)) that suggests there may be monopoly rents 

enjoyed by carriers serving concentrated hubs, policy makers including the Department 

of Transportation and the Department of Justice should pay special attention to the code-

shared routes proposed to or from alliance firms’ hubs to insure against the possible 

exercise of market power on individual routes.  

            High route level concentration was found to discourage carriers from staying in a 

code-share arrangement after initial entry, which could be a sign for policy makers to be 

alert for anti-competitive behavior on the part of market incumbents on highly 

concentrated routes.  High average yields on a route were found to induce alliance firms 

to stay in a code-share arrangement. 

Firms prefer to code-share on vacation routes because of the larger number of 

potential passengers.  Population and per capita incomes are also important determinants 

of successful code-sharing.  The probability of code sharing tends to be higher in the 

markets with more population and higher income.  The airline industry is characterized 

by seasonal demand, which significantly affects code-sharing decisions.  

In addition, we find that both airport congestion measured by slot-control and gate 

constraints are important barriers that limit firm’s use of code-sharing.  Government 

policies to deal with airport congestion by instituting slot controls and gate restrictions 

have generally discouraged firms from entering into and staying in code-share 

agreements on those routes.  Thus, regulators need to continue to monitor competitive 

conditions at those airports where gate and slot controls are in effect as this not only 

discourages direct entry but also code-share entry which is another way that competitive 

outcomes can be achieved. 
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Table 6 Standardized Coefficients from GLIMM Regression in Different Scenarios (Pooled, TCS, VCS and TVCS Routes) 

 

Pooled Routes INT. FRE i,t-1 YLD i,t-1 RHHI i,t-1 INCOit POPit WINt SPRt SUMt TIME SLOTi GATEi VACi ORIHUBi CONHUBi DESTHUBi 

Parameter Est. -1.95 24.35 92.13 -60.62 14.84 14.77 46.43 24.95 -5.50 -182.88 -78.07 -27.50 50.04 94.22 126.25 98.89 

Std Error 0.03 7.38 5.63 6.61 6.76 6.97 3.68 3.74 3.85 3.51 6.99 6.75 6.52 6.87 7.50 6.87 

t Value -70.93 3.3 16.36 -9.17 2.2 2.12 12.61 6.67 -1.43 -52.1 -11.2 -4.07 7.67 13.71 16.84 14.39 

Pr>|t| 0.0001 0.0001 0.0001 0.0001 0.0282 0.0339 0.0001 0.0001 0.1531 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

                                  

TCS Routes INT. FRE i,t-1 YLD i,t-1 RHHI i,t-1 INCOit POPit WINt SPRt SUMt TIME SLOTi GATEi VACi ORIHUBi CONHUBi DESTHUBi 

Parameter Est. -2.42 7.97 29.19 -11.40 -4.04 2.89 9.01 8.47 -5.09 -51.58 -20.57 -3.77 7.59 26.40 21.59 18.79 

Std Error 0.03 5.20 3.74 4.89 4.41 4.42 4.33 4.33 4.50 3.79 4.84 4.04 4.04 4.02 4.56 4.16 

t Value -88.36 1.53 7.8 -2.33 -0.92 0.65 2.08 1.96 -1.13 -13.6 -4.25 -0.93 1.88 6.56 4.74 4.52 

Pr>|t| 0.0001 0.1251 0.0001 0.0198 0.3599 0.5136 0.0375 0.0503 0.258 0.0001 0.0001 0.351 0.0604 0.0001 0.0001 0.0001 

                                  

VCS Routes INT. FRE i,t-1 YLD i,t-1 RHHI i,t-1 INCOit POPit WINt SPRt SUMt TIME SLOTi GATEi VACi ORIHUBi CONHUBi DESTHUBi 

Parameter Est. -2.56 -2.33 3.91 -18.10 -40.32 -13.89 32.97 9.48 -0.32 -101.11 2.34 -2.55 3.68 -3.88 18.92 3.39 

Std Error 0.04 6.74 5.68 5.72 6.19 6.61 4.19 4.44 4.57 4.08 5.45 5.53 5.04 6.20 6.88 5.76 

t Value 60.18 -0.35 0.69 -3.16 -6.52 -2.1 7.86 2.14 -0.07 -24.8 0.43 -0.46 0.73 -0.63 2.75 0.59 

Pr>|t| 0.0001 0.7299 0.4906 0.0016 0.0001 0.0355 0.0001 0.0326 0.9433 0.0001 0.6673 0.644 0.4655 0.5309 0.006 0.5556 

                                  

TVCS Routes INT. FRE i,t-1 YLD i,t-1 RHHI i,t-1 INCOit POPit WINt SPRt SUMt TIME SLOTi GATEi VACi ORIHUBi CONHUBi DESTHUBi 

Parameter Est. -0.62 32.37 79.11 -7.15 41.43 8.54 36.33 21.66 -4.06 -144.21 -57.02 -34.26 10.18 64.72 60.76 67.53 

Std Error 0.05 7.21 5.43 6.30 6.86 7.49 3.17 3.17 3.21 3.15 7.22 7.55 7.19 7.58 7.73 7.59 

t Value -11.88 4.49 14.58 -1.14 6.04 1.14 11.47 6.83 -1.26 -45.8 -7.9 -4.54 1.42 8.53 7.86 8.9 

Pr>|t| 0.0205 0.0001 0.0001 0.2506 0.0001 0.2544 0.0001 0.0001 0.2063 0.0001 0.0001 0.0001 0.157 0.0001 0.0001 0.0001 



 

                                                 
1
 Continental Airlines, the fourth largest US airline with headquarters in Houston, Texas and 

operations throughout the US, Canada, Latin America, Europe and the Asia-Pacific region, has 

entered a number of subsequent alliances. As of 2007, it had more than 3,000 daily departures, 

serving 151 domestic and 120 international destinations and has 42,200 employees. In September 

2004, Continental became a member of the SkyTeam Alliance, in which it participates with Delta 

Air Lines, Northwest Airlines and KLM Royal Dutch Airlines. It also initiated code-sharing with 

Amtrak rail services to some cities in the northeastern United States, which is the first code-

sharing agreement between airline and rail services. 
2
 Information on code-shared routes between Continental and America West is available from 

Bureau of Transportation Statistics (US Department of Transportation) only from 1998 because 

of reporting requirements adopted by the Congress in 1998. 
3
 A route is defined as a new code-shared entry if carriers did not code-share in the previous 

period but code-share at the current period; A route is defined as new code-shared exit if carriers 

code-shared in the previous period but do not code-share at the current period. 
4
 New code-shared entry percentage is calculated as new code-shared entries at the current period 

divided by code-shared routes at the current period. 
5
 New code-shared exit percentage is calculated as new code-shared exits from the previous 

period divided by code-shared routes in the previous period. 
6
 The whole period of code sharing time is only calculated from the first quarter of 1998 due to 

the data unavailability before 1998 from Bureau of Transportation Statistics U.S. Department of 

Transportation. 
7
 For a detailed review of empirical studies of entry and exit, please refer to Siegfried and Evans 

(1994).  
8
 Since 1968, four airports in the U.S. have limits on the number of takeoffs and landings that 

may take place during any given hour. They are Chicago O’ Hare, New York Kennedy and La 

Guardia and Washington Reagan National Airports. But in 1986, the U.S. Department of 

Transportation permitted airlines to buy and sell their takeoff and landing slots. 
9
 Please see also Caves, Christensen and Tretheway (1984), Brueckner, Dyer and Spiller (1992), 

Brueckner and Spiller (1994) and Hendricks, Piccione and Tan (1995) for details of economies of 

aircraft size and economies of traffic density as an important reason of adopting hub-and-spoke 

systems.  
10

 We also used the number of flights, yield and route HHIs calculated from the direct service, 

multi-stop or the whole market (including direct, one-stop and multi-stop services) on a route as 

the covariates, but the parameter estimates were strongly insignificant.  
11

 All these three covariates
, 1i tYIELD 

, 
, 1i tFRE 

 and 
, 1i tRHHI 

 are taken the average of their 

values in the past four quarters from t-1 to t-4 to smooth out the seasonal effect on these variables.  
12

 We also use the number of flights, yield and route HHI calculated from the direct service 

market or the whole market, which includes direct, one-stop and multi-stop services on a route as 

the covariates, but the parameter estimates are strongly insignificant.  
13

 In longitudinal settings, each individual has a vector of responses with a natural (time) ordering 

among the components. Non-Gaussian longitudinal cases include repeated binary or ordinal data, 

or longitudinally measured counts.  
14

 Neyman and Scott (1948) show that in a fixed-effect model, if the number of subjects is getting 

larger while the number of time points remains constant, the number of parameters is increasing 

at the same rate as the sample size, which leads to inconsistency of the so-obtained maximum 

likelihood estimates. This is a well-known result in the context of logistic regression for binary 

data. Breslow and Day (1989) have an extensive discussion in this context. 
15

 Superscript RE stands for the coefficient estimates in the random effect models.  


