
Are Crop Yields Normally Distributed? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by 
 

Octavio A. Ramirez1,2,3,4 

 
Sukant Misra1 

 
and 

 
James Field1 

 
 
 
 
 
 
 
 
 
 
 
 
 

1 Associate Professor and MS student, respectively. Department of Agricultural and Applied 
Economics, Texas Tech University, Box 42132, Lubbock, TX 79409-2132. Email (senior author): 
Octavio.Ramirez@ttu.edu. 

  
2 The authors acknowledge the helpful comments and suggestions of Don Ethridge, Eduardo 

Segarra and Michael Livingston. 
 
3 Copyright 2001 by Octavio A. Ramirez. All rights reserved. Readers may make verbatim copies of 

this document for non-commercial purposes by any means, provided that this copyright notice 
appears on all such copies. 

 
4 Paper presented at the annual meeting of the American Agricultural Economics Association, 

Chicago, Illinois, August 5-8, 2001 
 



 2 

Are Crop Yields Normally Distributed? 
 
 
 
 
 
 
 
 
 
 

Abstract 

 
This paper revisits the issue of crop yield distributions using improved model specifications, 

estimation and testing procedures that address the methodological concerns raised in recent 

literature that could have invalidated previous conclusions of yield non-normality. It shows beyond 

reasonable doubt that some crop yield distributions are non-normal, kurtotic and right or left 

skewed, depending on the circumstances. A procedure to jointly estimate non-normal farm- and 

aggregate-level yield distributions with similar means but different variances is illustrated, and the 

consequences of incorrectly assuming yield normality are explored. 

 

Key Words: Yield non-normality, probability distribution function models, Corn Belt yields, West 

Texas dryland cotton yields. 
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Are Crop Yields Normally Distributed? 

 The issue of crop yield normality versus non-normality has been sporadically addressed in 

the agricultural economics literature since the early 1970s. In 1974 Anderson argues about the 

importance of being able to model crop yield non-normality (skewness and kurtosis) and changing 

variances in the yield distributions through time/space; since these could be important characteristics of 

many crop yield distributions and could have substantial implications for economic risk analyses.  

 Gallagher (1987) advances a univariate procedure to model and simulate skewed yield 

distributions using the Gamma density, focusing on modeling the changing variability of soybean 

yields over time as. He recognizes, however, that there are fixed relationships between the mean, the 

variance and the level of skewness and kurtosis imposed by the Gamma density, which depends on two 

parameters only. A consequence of this “lack of flexibility,” for example, is that in order to model and 

simulate a changing variance one needs to accept that the mean, skewness and kurtosis of the yield 

distribution are also changing according to arbitrarily fixed formulae. 

 In 1990, Taylor tackles for the first time the problem of multivariate non-normal simulation. He 

uses a cubic polynomial approximation of a cumulative distribution function instead of assuming a 

particular multivariate density for empirical analysis. Ramirez, Moss and Boggess explore the use of a 

parametric density based on an inverse hyperbolic sine transformation to normality. Ramirez (1997) 

analyzes aggregate Corn Belt yields using a multivariate non-normal parametric modeling procedure. 

He concludes that annual average Corn Belt corn and soybean yields (1950-1989) are non-normally 

distributed with a tendency towards left-skewness. 

 A consensus about the possible non-normality of some crop yield distributions, however, 

has not been reached in the agricultural economics literature, and recent research (Just and 

Weninger) points to model specification and statistical testing problems that shed doubt on the 

validity of all previous findings of yield non-normality. The following specific problems have been 

identified: (i) misspecification of the non-random components of the yield distributions, more 
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specifically the assumption of linearity in the time trend for the mean of the distribution, (ii) 

misreporting of statistical significance, more specifically using the results of separate (non-joint) 

tests for skewness and kurtosis to conclude non-normality, and (iii) the use of aggregate time series 

data to represent farm-level yield distributions, more specifically to estimate the variance of the 

farm-level yield distribution. In addition, there are concerns about the inconsistency of the yield 

non-normality findings, such as Day’s reporting positive (right) skewness while others (Gallager, 

1986, 1987; Swinton and King; Ramirez, 1997) conclude negative (left) skewness; and about the 

using of competing alternative distributional assumptions. 

 The issue of whether an applied researcher conducting economic risk analyses should 

assume yield normality or allow for the possibility of yield non-normality is critical. Distributional 

misspecification could fundamentally impact, for example, the results of crop insurance analyses, 

and non-normality could invalidate mean-variance (E-V) approximations of expected utility 

maximization (Just and Weninger). This article revisits the issue of yield non-normality while 

addressing all of the procedural problems discussed above. 

 Specifically, an expanded, more refined parameterization of Johnson SU family of densities 

is utilized, arguing that this parameterization is flexible enough to alleviate the concerns of using 

different competing distributional assumptions in applied research. This expanded SU family of 

densities is used to revisit the issue of whether the aggregate Corn Belt corn and soybean yield 

distributions are non-normal, relaxing the assumption of linearity in the time trends for the means 

on the distributions, using joint tests for non-normality under the full and all restricted model 

specifications, to avoid the “double-jeopardy of normality” problem and ensure that the conclusions 

are not affected by the ordering of the statistical tests. The tests are conducted under two different 

heteroskedastic specifications to explore if this could affect the non-normality conclusions. 

 West Texas dryland cotton yield distributions are also analyzed in this study, illustrating the 

use of the expanded SU family of densities to jointly estimate aggregate and farm-level yield 
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distributions. A combination of county- (1970-1998) and farm- (1988-1998) level data from six 

Southern High Plain counties and 15 different farm units, and four Northern Low Plain counties and 

10 different farm units, is used to estimate the corresponding distributions. This addresses another 

important issue recently raised in the literature: how to estimate different farm and aggregate level 

yield variance structures without assuming normality. The article also provides likely explanations 

for the apparently contradictory findings of positively and negatively skewed crop yield 

distributions, the last issue recently cited as evidence against the proposition of non-normality.  

Methods and Procedures 

The SU family of parametric distributions was built from a Gaussian density (Johnson, Kotz 

and Balakrishnan). The SU family can be modified and expanded by one parameter to obtain a 

flexible probability distribution function (pdf) model: 

(1) Yt = XtB + [{σt/G(θ,µ)}1/2{sinh(θVt)−F(θ,µ)}]/θ,  Vt ∼ N(µ,1), 

F(Θ,µ) = E[sinh(θVt)] = exp(θ2/2)sinh(θµ), and 

G(Θ,µ) = {exp(θ2)−1}{exp(θ2)cosh(−2θµ)+1}/2θ2, 

where Yt is the random variable of interest (crop yields); Xt is a (1xk) vector of exogenous variable 

values shifting the mean of the Yt distribution through time (t); B is a (kx1) vector of parameters; σt  

>0, −∞<θ<∞, and −∞<µ<∞, are other distributional parameters; and sinh, cosh, and exp denote the 

hyperbolic sine and cosine and the exponential function, respectively. Vt, an independent normally 

distributed random variable, is the basis of the stochastic process defining the expanded SU family 

of densities. Using the results of Johnson, Kotz and Balakrishnan it can be shown that in this model: 

(2) E[Yt] = XtB, 

Var[Yt] = σt, 

Skew[Yt] = E[Yt
3] = S(θ,µ), 

Kurt[Yt] = E[Yt
4] = K(θ,µ). 
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where S(θ,µ) and K(θ,µ) involve combinations of exponential and hyperbolic sine and cosine 

functions. The results in (2) imply that E[Yt] = XtB, regardless of the values of σt, θ, and µ, and that 

the variance of Yt is solely determined by σt. The skewness and kurtosis of the Yt distribution are 

determined by the parameters θ and µ. If θ≠0 and µ approaches zero, the Yt distribution becomes 

symmetric, but it remains kurtotic. Higher absolute values of θ cause increased kurtosis. If θ≠0 and 

µ>0, Yt has a kurtotic and right-skewed distribution, while µ<0 results in a kurtotic and left skewed 

distribution. Higher values of µ increase both skewness and kurtosis, but kurtosis can be scaled back 

by reducing |θ| (proof available from the authors). 

Johnson, Kotz and Balakrishnan (pp. 34-38) indicate that both the normal and the log-

normal and density are limiting cases of the SU family, which also provides for a close 

approximation for the Pearson family of distributions. They present the Abac for the SU family and 

demonstrate that for any shape factor combination below the log-normal line, there is an appropriate 

SU distribution. Since these shape factor results apply to the proposed expanded form of the SU 

family, it follows that the expanded SU family allows for any mean and variance, as well as any 

combination of right or left skewness-leptokurtosis values below the log-normal line. This means 

that as long as the rare negative (platy) kurtosis can be ruled out, the expanded SU family is flexible 

enough to alleviate the concerns of imposing incorrect distributional assumptions when using it to 

approximate a true, unknown crop yield distribution. 

In practice, under normality, both µ and θ would approach zero and the proposed pdf model 

would collapse into a normal distribution with mean XtB and variance σ2
t (proof available from the 

authors). Therefore, the null hypothesis of normality vs. the alternative of non-normality is Ho: 

θ=µ=0 vs. Ha: θ≠0, µ≠0. The null hypothesis of symmetric non-normality versus the alternative of 

asymmetric non-normality is Ho: θ≠0, µ=0 vs. Ha: θ≠0, µ≠0. The concentrated log-likelihood 
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function that has to be maximized to estimate the non-normal pdf model defined in equation (1) is 

obtained using the well-known transformation technique (Mood, Graybill, and Boes): 

                         T                         T                                           
(3) LL = Σ ln(Gt) −0.5×Σ Ht

2 ; where: 
                       t=1                       t=1 
 

Gt  = {σt/G(θ,µ)(1+Rt
2)}-1/2, 

Ht  = {sinh–1(Rt)/θ}−µ, 

Rt  = [θ(Yt−XtB)/{σt/G(θ,µ)}-1/2]+F(θ,µ). 

t=1,…,T refers to the observations, sinh–1(x) = ln{x+(1+x2)1/2} is the inverse hyperbolic sine 

function, and σt, F(θ,µ), and G(θ,µ) are as defined in equation (1). 

 The multivariate equivalent of this non-normal pdf model is obtained by assuming that each 

of the M random variables of interest (the potentially correlated yields from different crops in this 

case) follows the flexible pdf model defined in equation (1). All theoretically possible degrees of 

correlation among these variables are achieved by letting a multivariate normal process vector Vt ∼ 

N(µµ ,ΣΣ ) underlie this model, where µµ  is an (Mx1) vector of parameters and ΣΣ  is an (MxM) 

correlation matrix with unit diagonal elements and non-diagonal elements ρij. The concentrated log-

likelihood function that has to be maximized to estimate this multivariate non-normal pdf model is 

obtained using the multivariate form of the transformation technique (Mood, Graybill, and Boes): 

                              T    M 
(4) LLM =  Σ   Σ { ln(Gjt) − 0.5[(Ht ΣΣ -1).*Ht]} −0.5Tln(|ΣΣ |), 
                             t=1  j=1 

where Gjt is as defined in equation (1) for each of the j=1,…,M random variables of interest; Ht is a 

1xM row vector with elements Hjt also as defined in equation (1). 

As suggested in recent literature, the non-random components (XtB) are specified to account 

for the possibility of non-linear time trends in the means of the Corn Belt corn, soybean and wheat 

and of the West Texas Southern High and Northern Low Plains dryland cotton yield distributions. 

To alleviate the concerns about the ordering and power of the non-normality test (Just and 
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Weninger), a full model is first estimated in each case, and all statistical testing is conducted in 

reference to that model using the most powerful likelihood ratio tests (LRT). 

 The multivariate Corn Belt yield pdf model includes six parameters (θC, θS and θW, and µC, 

µS and µW) to account for corn {subscript (c)}, soybean (s) and wheat (w) non-normality. The West 

Texas cotton pdf model assumes that the degree skewness and kurtosis of the county and farm level 

yield distributions in both regions are the same; therefore, kurtosis and skewness are modeled by 

only two parameters (θCO, and µCO). As discussed above, the null hypothesis of normality can be 

tested against the alternative of non-normality by Ho:θ=µ=0 vs. Ha: θ≠0, µ≠0. Notice that since this 

is a joint likelihood ratio test for Ho: no kurtosis and no skewness, it does not suffer from the 

“double-jeopardy of normality” problem discussed in the recent literature (Just and Weninger). 

In the case of Corn Belt yields, both the full (θC≠µC≠θS≠µS≠θW≠µW≠0) and restricted 

(θC=µC=θS=µS=θW=µW=0) models are multivariate. They account for any potential correlation 

among corn, soybean and wheat yields through the parameters ρCS, ρCW  and ρSW , eliminating the 

other potential cause of inaccuracy in the statistical significance of the non-normality tests. The 

mean and standard deviation of each yield distribution are estimated independently of each other, 

and of the distribution’s skewness and kurtosis parameters, by the functions XjtBj and σjt. The 

means of the yield distributions (XjtBj) are specified as third-degree polynomial functions of time: 

(4) XCtBC = BC0 + BC1t + BC2t2+ BC3t3, 

 XStBS = BS0 + BS1t + BS2t2+ BS3t3, 

XW tBW  = BW 0 + BW 1t + BW 2t2+ BW 2t3; 

where t is a simple time-trend variable starting at t=1 in 1950 and ending at t=50 in 1999. 

In the West Texas dryland cotton pdf model the mean (XjtBj) is specified as: 

(5) XCOtBCO = B00 + B0RLP + B10t + B1R(txLP) + B2t2 + B3t3 + B4AFt + B5ACt; 
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where LP = 1 if the yield observation comes from a farm or county in the Northern Low Plains 

region and zero otherwise, t = 1,…29, depending on the year of the yield observation (1=1970, 

29=1998), AFt = acres planted in the farm at year t in the case of a farm level yield observation and 

zero otherwise, ACt = acres planted in the county at year t in the case of a county level yield 

observation and zero otherwise. Equation (5) recognizes that the mean of the farm and county level 

yield distributions for a given region should be the same, but average yields could be different 

across regions. The latter is modeled through regional intercept and slope shifters (B0R and B1R). 

In the Corn Belt yield model, the standard deviation functions (σjt) are first specified as: 

(6)  σCt = σC1 + σC2I1 +σC3I2 +σC4I3 +σC5I4  

  σSt = σS1 + σS2I1 +σS3I2 +σS4I3 +σS5I4
 

 σWt = σW1 + σW2I1 +σW3I2 +σW4I3 +σW5I4 

where I1=1 from 1960 through 1969 and zero otherwise, I2=1 from 1970 through 1979 and zero 

otherwise, I3=1 from 1980 through 1989 and zero otherwise, I4=1 from 1990 through 1999 and zero 

otherwise. Thus, 1950-1959 the baseline period, and a different standard deviation is estimated for 

the yield distribution of every crop during each decade. A parameter and an indicator variable for 

the 1990-1999 decade is added to each of the variance functions when working the expanded Corn 

Belt yield data set. A more common heteroskedastic specification where the standard deviations are 

modeled by second-degree polynomial functions of time is also evaluated: 

(7) σCt = σC0 + σC1t +σC2t2, 

 σSt = σS0 + σS1t +σS2t2, 

 σW t = σW 0 + σW 1t +σW 2t2; 

In the West Texas dryland cotton yield pdf model the standard deviation function is: 

(8) σCOt = σ00 + σ0RLP +σ0LCL + σ10t + σ1R(txLP) +σ1L(txCL) + σ2t2 +σ4AFt + σ5ACt; 
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where CL = 1 for county level yield observations and zero otherwise, and LP, t, AFt and ACt are as 

defined above. This heteroskedastic specification allows for different yield variances in the initial 

year, which change at different rates through time, depending on the level (farms vs. county) and on 

the region (High vs. Low Plains). It also allows for non-linearity in the time trends of the standard 

deviations, and for the acres planted at the farm and county levels to affect yield variability at each 

of these levels. 

In summary, in both cases the full models allow for yield non-normality (kurtosis and right 

or left skewness), third-degree polynomial time trends on the means of the yield distributions, and 

time-dependent heteroskedasticity. The Corn Belt yield model also permits cross-crop yield 

correlation. The West Texas cotton yield model estimates separate non-linear time paths for the 

variance at the farm and county levels, and for the two regions. 

The parametric functions and parameters modeling the first four moments of the yield 

distributions are jointly estimated using the full information maximum likelihood procedures 

discussed above. This addresses the other key concern raised in recent literature: that ignoring a 

critical distributional characteristic (i.e., non-linearity, heteroskedasticity or multivariate 

correlation) when testing for another (i.e., non-normality) invalidates the result of the test. 

 This type of joint estimation and testing approach is preferable to the alternative used in 

previous studies of first modeling the mean, variance, and the correlation among distributions, and 

then using the detrended, heteroskedastic-corrected residuals to test for non-normality, since the 

testing for time-trend non-linearity and heteroskedasticity without accounting for potential non-

normality could affect the results of these tests. Ramirez (2000) multivariate analysis of 1909-98 

U.S. corn, wheat, cotton and sorghum prices using Ramirez and Somarriba procedure to account for 

price autocorrelation, provides a clear example of this phenomenon. 
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Results 

Corn Belt Corn, Soybean and Wheat Yield Distributions 

 The maximum likelihood parameter estimates for the full Corn Belt yield pdf models and 

five restricted specifications are presented in Table 1. When estimating the full model, the 

parameter estimates that determine the degree of non-normality in the wheat distribution (θW and 

µW) approach zero, indicating normality. Thus, they are not reported in Table 1. LRTs for the 

statistical significance of the individual parameters are conducted in the case of the full and final 

models, by re-estimating the models with each parameter set to zero and comparing twice the 

difference of the maximum log-likelihood values with a χ2
(1) variable. As recommended in recent 

literature, each of the restricted model specifications is tested against the full model. 

The first of the restricted models is used to test if the means of the yield distributions follow 

a non-linear time-trend. A LRT statistic of χ2*
(6) = -2[-277.477-(-266.165)] = 22.626 rejects Ho: 

BC2=BS2=BW2=BC3=BS3=BW3=0 in favor of Ha: at least one, BC2, BS2, BW2, BC3, BS3, or BW3 ≠ 0 at 

the 1% level. LRTs of Ho: BC2=BC3=0, Ho: BS2=BS3=0, and Ho: BW2=BW3=0 reject each of these 

hypotheses at the 5% level as well, indicating significant non-linearity in the time trends of average 

Corn Belt corn, soybean and wheat yields. The criticism of potential mean trend misspecification 

due to a priory assumption of linearity is justified. 

The second restricted model is used to test for the correlation between the yield 

distributions. A LRT statistic of χ2*
(3) = -2[-280.312-(-266.165)] = 28.295 strongly rejects 

Ho:ρCS=ρCW=ρSW=0 vs. Ha: at least one, ρCS, ρCW or ρSW ≠ 0, at the 1% level of statistical 

significance, indicating that at least two of the distributions are correlated. Single-parameter 

asymptotic Student-t tests suggest that the corn and soybean distributions are linearly correlated to 

each other, but not with the wheat yield distribution. 
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The third restricted model is used to test for heteroskedasticity. A LRT statistic of χ2*
(9) = -

2[-284.830-(-266.165)] = 37.331 rejects the null hypothesis of homoskedasticity in favor of the 

alternative hypothesis of heteroskedasticity, as specified in the full model, at the 1% significance 

level. The log-likelihood function of a jointly restricted model assuming mean linearity, non-

correlation and homoskedasticity reaches a maximum value of –310.133. The LRT statistic exceeds 

the χ2
(18) table value of 34.81 required to reject this restricted model at the 1% level of significance. 

Mean linearity, non-correlation and homoskedasticity are individually and jointly rejected.  

The fourth restricted model specification is used to test for non-normality. As suggested in 

recent literature (Just and Weninger), all normality tests are conducted in relation to the full model, 

which includes third-degree polynomial time trends for the means, an unrestricted correlation 

matrix and heteroskedastic specifications. A χ2*
(4) = -2[-275.605-(-266.165)] = 18.881 LRT statistic 

strongly rejects the null hypothesis of normality of both the corn and soybean yield distributions 

(Ho:θC=θS=µC=µS=0) in favor of the alternative hypothesis that at least one of the distributions is 

non-normal, at the 1% significance level1. 

Analogous LRTs for Ho:θC=µC=0 vs. Ha: θC≠0, µC≠0 (χ2*
(2) = 16.275) and Ho:θS=µS=0 vs. 

Ha: θS≠0, µS≠0  (χ2*
(2) = 7.450) (restricted models not presented) separately reject normality at the 

2.5% level in the corn and the soybean distributions, respectively. The joint likelihood ratio tests 

above avoid the “double jeopardy” of other normality tests criticized in recent literature. Rejection 

of Ho indicates that at least one of the parameters, θ or µ, is not zero at the required level of 

significance, which implies non-normality at that level. 

The single-parameter tests (Table 1) suggest that µC and µS are individually different from 

zero at the 5% level, indicating that the Corn Belt corn and soybean yield distributions are skewed. 

The negative values of the parameter estimates for µC and µS imply left-skewness. As argued by 

Ramirez (1997) in more detail, the left skewness in Corn Belt corn and soybean yields is likely due 
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to technological constraints imposing a ceiling to the maximum yields combined with the possibility 

of wide-spread drought or pest attack causing unusually low yields in any given year. 

The log-likelihood function of a totally restricted model assuming mean linearity, non-

correlation, homoskedasticity and normality reaches a maximum value of -322.75. The LRT 

statistic exceeds the χ2
(22) table value of 37.57 required to reject this restricted model in favor of the 

full model at the 1% level of statistical significance. Mean linearity, homoskedasticity, non-

correlation and normality are individually as well as jointly rejected.  

The final model (Table 1) is formulated considering the results of the formerly discussed 

tests of the full vs. four restricted model specifications and of the single-parameter LRTs in the full 

model. It meets two essential conditions. First, neither any of the individual parameter restrictions 

imposed nor the set of restrictions as a whole is rejected at the 20% level of statistical significance. 

Second, all of the parameters included in the model are individually different from zero at the 10% 

level of statistical significance, according to single-coefficient LRTs. 

Ramirez (1997) conclusion that annual average corn and soybean yields in the Corn Belt are 

heteroskedastic and non-normally distributed with a tendency towards negative (left) skewness is 

verified using an updated data set that includes the last ten years of Corn Belt yield data, an 

expanded, more refined pdf model, and addressing all of the potential model specification and 

statistical testing problems identified in the recent literature. 

Recent literature also expresses concern about the effect of the heteroskedastic specification 

on the non-normality tests (Just and Weninger). Normal and non-normal yield pdf models were also 

estimated under the alternative, more common second-degree polynomial specifications for the 

standard deviation functions (the model estimation results are available from the authors upon 

request). A LRT rejects normality at the 2.5% significance level {χ2*
(4) = -2[-281.2674-(-273.8772)] 

= 14.7803} under this alternative heteroskedastic specification as well. 
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The 1950-1999 Corn Belt corn and soybean yield data is plotted in Figures 1 and 2 versus 

the corresponding third-degree polynomial trends estimated under the full normal model. In the case 

of corn yields, three of the 50 observations are at least two standard deviations below the fitted 

curve, even when assuming a heteroskedastic process that estimates larger error-term variances for 

decades with increased yield volatility. No observation is two standard deviations above the fitted 

polynomial, and only three yield values are one standard deviation above it. A visual inspection of 

the corn yield data versus the normal pdf model suggests non-normality and a clear tendency 

towards left-skewness. In the case of soybeans, three of the 50 observations are at least two standard 

deviations below the fitted curve; however, the very high 1994 yield occurrence is more than two 

standard deviations above it. This causes a weaker rejection of non-normality than in the case of 

corn yields. Yet, soybean yields also appear to be left-skewed. 

The 1985 corn and soybean yield distributions are simulated using the estimated normal and 

non-normal pdf model parameters and an adaptation of the general procedure outlined in Ramirez 

(1997) (details available form the authors). Figures 3 and 4 illustrate the substantial degree of left-

skewness in both the corn and soybean distributions under the non-normal pdf model. 

The non-normal model precisely predicts the upper limit of the corn yield distribution during 

the 1980s at 132 bu/acre, while the normal model implies a 23% probability of a yield occurrence 

above that level. The non-normal model is also accurate in predicting the probability of the six 

highest yields, between 120 and 132 bu/acre, observed during the 1980s (60% probability 

prediction, versus 25% by the normal model). In the case soybeans, the 1985 normal model 

forecasts a 20% likelihood of a yield occurrence above 40 bu/acre, versus a negligible probability 

prediction by the non-normal pdf model (Figure 4). Corn Belt soybean yields never exceeded that 

level during the 1980s (Figure 2). The non-normal model also provides an accurate 33% probability 

prediction of the three high yield occurrences of 1985, 1986 and 1987, versus 16% under the normal 

model. In general, for all decades, the non-normal corn and soybean pdf models are accurate in 



 15 

predicting the yield ceilings implied by the data, while the normal models predict between a 10% 

and a 30% probability of a yield occurrence above the maximum yield observed during each 

decade. The non-normal models are also better at predicting the probability of yields that are 

relatively close to the mean. Intuitively, the pdf models have to accommodate a few very low yield 

years with clusters of most commonly occurring yields. In doing so, the normal model forecasts a 

substantial proportion of improbably high yield levels and often underestimates the probability of 

the most commonly occurring yields. Imposing normality in these cases is inappropriate, and could 

substantially affect the results of any risk analysis using the simulated yield distributions. 

West Texas Dryland Cotton Yield Distributions 

The maximum likelihood parameter estimates for the full West Texas cotton yield pdf model 

and for six restricted specifications are presented in Table 2. As before, the statistical significance of 

each individual parameter is evaluated through LRTs in the case of the full and final models. The 

first restricted specification assumes that the kurtosis and skewness parameters (θ and µ) are equal 

to zero, i.e. that dryland yields are normally distributed. This is used to test for non-normality. As 

suggested in recent literature, the normality test is conducted in relation to the full model, which 

includes a third degree polynomial time trend for the mean and variance of the yield distribution. 

A LRT statistic of χ2*
(2) = -2[-4721.495-(-4690.946)] = 61.098 strongly rejects the null 

hypothesis of normality in the West Texas dryland cotton yield distribution (Ho: θCO=0, µCO=0) in 

favor of the alternative hypothesis that the distribution is non-normal (Ho: θCO≠0, µCO≠0) at the 1% 

significance level. The single-parameter test in the full model suggests that µCO is individually 

different from zero at the 1% level, indicating that the West Texas dryland cotton yield distribution 

is skewed. The positive value of the µCO parameter estimate implies right-skewness. 

The second restricted model is used to test for mean-trend non-linearity. The null hypothesis 

that the second and third degree polynomial trend parameters B2 and B3 are jointly equal to zero is 
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rejected at the 1% significance level (χ2*
(2) = -2[-4719.047-(-4690.946)] = 56.202). The single 

parameter tests in the full model (Table 2) indicate that both B2 and B3 are individually different 

from zero at the 5% level of statistical significance. The third restricted model is used to test if the 

mean and variance of the yield distributions are different across regions. A LRT statistic of χ2*
(4) = -

2[-4716.990-(-4690.946)] = 52.088 rejects Ho: B0R=B1R =σ0R=σ1R=0 vs. Ha: at least one, B0R, B1R, 

σ0R or σ1R ≠ 0, at the 1% significance level. The single-parameter tests in the full model identify the 

intercept shifter in the mean function (B0R) and the slope shifter in the variance function (σ1R) as 

individually significant at the 5% level. 

The fourth restricted model is used to test if the variance of the yield distribution is different 

at the farm vs. county level. A LRT (χ2*
(2) = -2[-4700.543-(-4690.946)] = 16.830) strongly rejects 

Ho: σ0L=σ1L=0 vs. Ha: at least one, σ0L or σ1L ≠ 0, at the 1% significance level. The single-

coefficient tests in the full model, however, fail to reject the null hypothesis that either of these 

parameters is individually different from zero at the 10% level. Nevertheless, when σ1L is excluded 

from the full model, σ0L becomes statistically significant. 

The fifth restricted model is used to test if the mean and variance of the farm and county 

level yield distributions are affected by the number of acres planted at the farm and county levels, 

respectively. A LRT statistic of χ2*
(4) = -2[-4699.361-(-4690.946)] = 16.83 strongly rejects Ho: 

BAF=BAC=σAF=σAC=0 vs. Ha: at least one, BAF,  BAC, σAF or σAC ≠ 0, at the 1% significance level. 

The single-parameter tests in the full model indicate statistically significant effects of acreage on the 

mean of the county level distribution and on the variance of the farm level distribution. 

The full model implies that a West Texas county that plants 50,000 acres/year above the 

region’s average produces 17 lbs/acre (i.e. 6%) higher yields. This is consistent with the commonly 

held view that the counties that traditionally grow more cotton tend to have higher yields, perhaps 

because they are better suited to produce dryland cotton or because farmers in these counties have 
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more widely adopted superior technologies. According to the full model, an increase in farm level 

area decreases yield variability, as expected. The parameter σ0L accounts for the reduction in yield 

variability from the small farm-level areas to the much larger county level areas. Differences in 

planted acres across counties do not appear to have a substantial effect on yield variability, i.e., the 

higher the level of aggregation, the least the effect of aggregation on yield variability. This is 

consistent with statistical theory. 

The sixth restricted model is used to test for time-dependent heteroskedasticity. A LRT 

statistic of χ2*
(4) = -2[-4696.930-(-4690.946)] = 11.968 rejects the null hypothesis of 

homoskedasticity with respect to time in favor of the alternative hypothesis of time-dependent 

heteroskedasticity at the 2.5% significance level. This means that yield variance is systematically 

changing through time in at least one of the regions. The single-coefficient tests indicate that σ1R is 

statistically different from zero but σ10 is not. Yield variability has been decreasing through time in 

the Northern Low Plains, but it has remained constant in the Southern High Plains. 

The seventh restricted model in Table 2 is the final model, formulated considering the 

results of the formerly discussed tests of the full vs. the other six restricted model specifications and 

of the single-parameter LRTs in the full model. It meets two essential conditions. First, neither any 

of the individual parameter restrictions imposed nor the set of restrictions as a whole is rejected at 

the 20% level of statistical significance. Second, all of the remaining parameters are individually 

different from zero at the 5% level, according to single-coefficient LRTs. 

The final model implies separate dryland cotton yield distributions for the Northern High 

Plains and Southern Low Plains, which are kurtotic and right skewed and exhibit different variances 

at the farm and county levels. The 1975, 1985 and 1995 Northern High Plains distributions are 

simulated using the final model and an adaptation of the general procedures outlined in Ramirez 
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(1997). The mean, standard deviation, skewness and kurtosis coefficients of the simulated 

distributions (n=50,000) are calculated using standard formula (Table 3). 

The pdf model predicts that dryland cotton yields reached a maximum of 267 lbs/acre in the 

High Plains and of 318 lbs/acre in the Low Plains, during the mid 80s, and had slightly declined to 

about 245 and 296 lbs/acre, respectively, by 1995. This is consistent with West Texas farmers’ and 

researchers’ beliefs that cotton yields did not increase during the last decade, and were actually 

lower than in the 1980s due to abnormally poor weather affecting West Texas. A concomitant factor 

under bad weather conditions could be the increased adoption of catastrophic crop insurance 

programs. Farmers covered by these programs might have less of an incentive to harvest damaged 

crops, thus reducing average yields per planted acre. 

The model indicates that county level yield variability was initially the same in both regions. 

Variability has remained constant in the Southern High Plains, but it has decreased through time in 

the Northern Low Plains. As a result, the coefficient of variation of the Northern Low Plains yield 

distribution has declined substantially. The standard deviation of the yield distribution is 45 lbs/acre 

higher at the farm than at the county level, in both regions (Figure 5). In 1995, this would represent 

a 30-40% difference, depending on the region (Tables 2 and 3). 

The kurtosis and skewness coefficients of the estimated yield distributions are the same by 

construction. The slight differences observed in Table 3 are due to the finite sample size used to 

simulate the distributions. Their average magnitudes (1.45 and 0.91, respectively) are substantial, 

and explain the noticeable right skewness of the distributions (Figures 5 to 7). Yield right skewness 

is also compatible with West Texas farmers and researchers intuition: Dryland cotton production 

systems have evolved to produce 100-500 lbs/acre (300 lbs/acre, on average), given normal rainfall 

conditions of 8-12 inches during the critical (May-to-August) period of the growing season. Under 

severe heat and very low rainfall (4-6 inches) that occurs about once a decade, many farms report 

very low or even zero yields. Extremely favorable temperatures and rainfall amounts of 15-20 
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inches occur in certain areas every 20-25 years, resulting in yields of between 600 and 750 lbs/acre. 

In other words, the right skewness of the dryland cotton yield distribution is likely derived from the 

right skewness of the rainfall distribution. In fact, the kurtosis and skewness coefficients of the 

1911-1999 Lubbock, Texas, May-to-August rainfall data2 (kurtosis=2.24, skewness=1.07) are 

strikingly similar to those of the simulated dryland cotton yield distribution. Including rainfall as a 

factor shifting the mean of the yield distribution from year to year could result on a conditional 

yield distribution that is normal. This, however, would be conditional on prior knowledge of the 

amount of rainfall that would occur in any given year, which is not compatible with the usual risk 

analyses applications of simulated yield distributions. 

 The full normal model {Rest. (1)} presented in Table 2 can be used to compare the 

simulated yield distributions that would have been obtained under the assumption of normality 

versus those implied by the non-normal pdf model {Rest. (7)}. Normality is rejected at the 1% level 

of statistical significance when comparing the full non-normal model with the full normal model. 

The very high LRT statistic leading to this rejection (61.098) provides strong evidence that the West 

Texas dryland cotton yield distribution is non-normal. 

Although the non-normal model cannot be considered the true population model, it is 

certainly more accurate in describing yields than the normal model, and can be used to assess the 

potential consequences of ignoring yield non-normality. Figures 6 and 7 show the simulated 1995 

farm and county level yield distributions for the Northern Low Plains, according to the normal and 

non-normal models. The models estimate similar means and nearly the same standard deviations at 

the farm level, but the differences in the implied probability distributions are substantial. 

At the farm level (Figure 6) the normal model predicts a 3.6% probability of below zero 

yields, versus 0.4% by the non-normal pdf model (Table 3). The normal model underestimates the 

probability of low to moderately low yields, of between 80 and 280 lb/acre, by 19.1% (39.2% vs. 

46.7%), and it overestimates the probability of moderately high-to-high yields, of between 280 and 
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560 lb/acre, by 12.7% (47.1% vs. 41.8%). The probability of extremely high yields, in excess of 560 

lb/acre, predicted by the non-normal pdf model is 57.5% higher (6.3% vs. 4%). 

The average error, obtained by aggregating the absolute values of the errors in the 

probability predictions within small (40 lb) intervals is 20.1%. At the county level, the normal pdf 

model also underestimates the probability of low to moderately low yields and overestimates the 

probability of moderately high to high yields, and it is particularly inaccurate in predicting the 

probability of very high yields (Figure 7 and Table 3). Using the normal model as an input for risk 

analysis would likely result in erroneous conclusions in this case as well.   

Conclusions and Recommendations 

This paper reaffirms Ramirez’s (1997) findings that Corn Belt corn and soybean yields are 

non-normally distributed and substantially left skewed, using an expanded data set and addressing 

the procedural issues that have been raised in recent literature. The procedures used here are 

preferable to previous methods because they allow for the testing of all potential distributional 

characteristics (non-linear trends in the means, heteroskedasticity, kurtosis, right or left skewness 

and cross-distribution correlation) in a joint, full information context, which is the most efficient. 

The tests for non-linear trends and heteroskedasticy are conducted while allowing for any potential 

non-normality, and vice versa, using the additional information transmitted through the cross-

distribution correlation matrix. 

As recognized by the authors of previous studies, their non-rejections do not prove yield 

normality, since the magnitudes of the type-two errors in their normality tests are unknown. In 

contrast, here Corn Belt corn and soybean yields are shown to be non-normally distributed, with a 

small 2.5% probability of making an error in this conclusion. The consistency of the results after 

adding a significant amount of recent data, and under the original and an alternative heteroskedastic 

specification, is further evidence to the soundness of the non-normality concussions. 
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The case of West Texas dryland cotton yields further supports the thesis that some crop 

yield distributions are non-normal. The data set for this second analysis is much larger (n=850) and 

contains multiple observations per year. This allows for a rejection of yield normality at a very high 

(greater than 0.001%) level of statistical significance. This case also illustrates how to use the 

proposed procedures to address another issue raised in recent literature - the difference between 

farm and aggregate level yield variability - without having to assume yield normality. As argued 

above in more detail, there is no contradiction in the findings of Corn Belt corn and soybean yield 

distribution left-skewness and West Texas dryland cotton yield distribution right skewness. Diverse 

non-normality patterns can result from different critical factors affecting aggregate and farm-level 

yields, depending on the crop, cropping system, and geographical region. 

The main recommendation of this study is that researchers estimating and simulating farm, 

county, state, regional or U.S. level crop yield distributions for policy, market, industry or farm risk 

analysis, or for any other purpose, should recognize that they could be non-normal, and use 

appropriate methods available for testing, and for estimating and simulating non-normal 

distributions when necessary. 

Footnotes 

1 When assuming mean linearity, homoskedasticity and non-correlation, the null hypothesis of 

normality (Ho:θc=θs=µc=µs=0) is also rejected at the 1% significance level: The log-likelihood 

functions for the normal model reaches a maximum value of –322.75, implying a LRT statistic of 

χ2
(2) = -2[-322.75-(-310.13)] = 25.23. The null hypothesis of normality is rejected under each of the 

restricted non-normal pdf model specifications presented in Table 1, as well, at the 2.5% level of 

statistical significance. 

2 Assuming that the mean and variance of the rainfall distribution are invariant through time, its 

skewness and kurtosis coefficients are estimated by standard formulae. 
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Table 1. Parameter estimates for six different multivariate pdf model specifications for the Corn 

Belt corn, soybean and wheat yield distributions.   

 Full Model Full Normal 
Model1 

Non 
Correlated 

Homosce 
dastic 

Linear 
Trends 

Final Model 

MLV -266.165 -275.605 -280.312 -284.830 -277.478 -269.848 

LR  18.881+ 28.295+ 37.331+ 22.626+ 7.366x 

θc 1.1640**           . 1.4083 0.6108 0.5265 1.2333** 

µc -8.4820**           . -7.5364 -9.7222 -11.3689 -8.3207** 

BC0 48.9749** 45.2794 47.9434 36.5964 44.6256 49.3118** 

BC1 0.3309ns 1.6513 0.3503 2.1671 1.9187     . 

BC2 0.1037** 0.0406 0.1124 0.0291           . 0.1224** 

BC3 -1.6467** -0.7848 -1.8923 -0.6523           . -1.9665** 

σC1 6.4191** 3.0001 8.2924 11.6993 4.0833 8.4648** 

σC2 9.5525** 3.1807 8.4697           . 7.1020 9.7336** 

σC3 14.2950** 8.4016 13.7969           . 12.2738 14.9422** 

σC4       7.5024* 14.1026 8.7211           . 10.2764 9.7336** 

σC5 23.6230** 9.4127 35.1803           . 11.1823 30.7209** 

θs  0.4648**           . 0.4927 0.6619 0.4272 0.6628** 

µs -10.9701**           . -10.9913 -1.2647 -11.1328 -10.9786** 

BS0 22.0146** 21.7667 20.9574 20.2606 20.4352 21.7875** 

BS1 0.1246ns 0.1913 0.3669 0.3273 0.4309     . 

BS2 0.0149** 0.0121 0.0043 0.0076           . 0.0248** 

BS3     -0.1943* -0.1550 -0.0703 -0.1040           . -0.3649** 

σS1 1.7167** 1.7386 1.6674 1.7474 1.9984 2.6761** 

σS2 0.5574ns -0.0085 0.0661           . -0.0336     . 

σS3 1.1405ns 0.8888 0.5536           . 0.6878     . 

σS4 0.9143ns 2.0716 1.2093           . 0.7716     . 

σS5 2.0385** 0.4836 2.6811           . 1.9791 3.0729** 

BW0 20.2963** 20.1510 19.8743 19.2727 23.8071 19.9706** 

BW1 1.2332** 1.2529 1.3267 1.3079 0.6362 1.3213** 

BW2 -0.0254** -0.0262 -0.0300 -0.0272           . -0.0302** 

BW3     -0.3033* -0.3151 -0.3653 -0.3144           . -0.3711** 

σW1 3.6749** 3.7244 3.6221 4.4717 4.1419 4.1245** 

σW2 -1.4983** -1.5586 -1.4869           . -1.8041 -1.9917** 

σW3 0.7501ns 0.6987 0.9405           . 0.3266     . 

σW4 0.5691ns 0.4709 0.5059           . -0.1597     . 

σW5       2.8706* 2.8348 3.0740           . 2.6910      2.5682* 

ρCS 0.7358** 0.7007           . 0.7283 0.6784 0.7327** 

ρCW 0.1387ns 0.1408           . 0.2381 0.1485     . 

ρSW 0.1178ns 0.1285           . 0.2055 0.1237     . 
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Notes: MLV indicates the maximum value reached by the concentrated log-likelihood function; LR 

indicates the likelihood ratio test statistic computed with respect to the full model; * and ** indicate 

that the parameter is statistically different from zero at the 10% and at the 5% level of statistical 

significance, respectively, according to a likelihood ratio test; ns indicates that the parameter is not 

different from zero at the 10% level of significance; + indicates that the restricted model is rejected 

at the 1% level of statistical significance; x indicates that the restricted model can not be rejected at 

the 10% level of statistical significance; 1 indicates the full model under the restriction of normality. 

The parameter estimates corresponding to t3 (BC3, BS3 and BW3) are multiplied by 1000. 
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Table 2. Parameter estimates for seven pdf models of West Texas dryland cotton yields. 

 
 Full 

Model 
Rest. (1) 

Full 
Normal1 

Rest (2) 
Linear 
Trend 

Rest. (3) 
No Reg. 

Diff. 

Rest (4) 
No Level 

Effect 

Rest. (5) 
 No Acres 

Effects 

Rest. (6) 
T. Homos 
cedastic 

Rest. (7) 
Final 

Model 
MLV -4690.946 -4721.495 -4719.047 -4716.990 -4700.543 -4699.361 -4696.930 -4694.669 

LR  61.098+ 56.202+ 52.088+ 19.193+ 16.830+ 11.968+ 7.446x 

θct 0.2966**      . 0.2934 0.2116 0.3012 0.2778 0.2910 0.2923** 

µct 30.2531**      . 29.7856 29.2805 30.1077 30.2835 29.9771 30.1011** 

B00 266.6783** 265.6435 249.0720 273.6648 235.4011 252.2262 284.8195 302.1442** 

B0R 95.3106** 92.1551 160.1461      . 92.2608 78.3167 49.8378 50.7793** 

B10 -19.0842** -17.1129 -0.1901 -11.6607 -7.8884 -12.4151 -20.5551 -23.8497** 

B1R -2.1294ns -1.9091 -4.7579      . -2.0407 -2.0053 0.1089 . 

B2 2.1444** 1.9141      . 1.6097 1.4004 1.6895 2.0986 2.2932** 

B3 -5.6647** -5.0841      . -4.5994 -4.2671 -4.7648 -5.3598 -5.7290** 

BAF 0.0993ns 0.1097 -0.0128 0.0004 0.0837      . 0.0448 . 

BAC 0.3420** 0.3066 0.3581 0.0023 0.3158      . 0.2422 0.3131** 

σ00 130.9806** 172.6902 173.3662 184.3557 88.6422 156.3592 187.4728 190.8934** 

σ0R 35.4857ns 36.5598 68.5013      . 33.0098 23.2337 -27.2037 . 

σ0L -25.9728ns -54.0063 -24.5557 -71.2007      . -44.2818 -37.5010 -45.0094** 

σ10 6.1280ns 3.4662 -2.5795 3.2627 8.6244 4.5327      . . 

σ1R -3.0792** -2.6169 -3.9351      . -2.7972 -2.1434      . -1.4115** 

σ1L -0.7233ns -0.1265 -0.4042 1.4519      . 0.1701      . . 

σ2 -0.1480ns -0.1174 0.1312 -0.1579 -0.1928 -0.1377      . . 

σAF -0.0989** -0.1102 -0.1219 -0.0492 -0.0877      . -0.1263 -0.1417** 

σAC -0.0078ns -0.0110 0.0885 0.0237 -0.0241      . -0.0789 . 
 

Notes: MLV indicates the maximum value reached by the concentrated log-likelihood function; LR 

indicates the likelihood ratio test statistic computed with respect to the full model; * and ** indicate 

that the parameter is statistically different from zero at the 10% and at the 5% level of significance, 

respectively, according to a likelihood ratio test; ns indicates that the parameter is not different from 

zero at the 10% level of statistical significance; + indicates that the restricted model is rejected at 

the 2.5% level of statistical significance; x indicates that the restricted model can not be rejected at 

the 10% level; 1 indicates the full model under the restriction of normality. The estimate 

corresponding to t3 (B3) is multiplied by 100. 
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Table 3. Selected statistics about the estimated/simulated Northern Low Plains and Southern High 

Plains 1995, 1985, and 1975 dryland cotton yield distributions. 

Northern Low Plains 

 Mean Std. C.V. Skew Kurt <0 80-280 280-560 >560 A.E. 

95/FA/NO 284.58 156.89 0.55 0.00 0.01 0.036 0.392 0.471 0.040 

95/FA/NN 295.78 158.68 0.54 0.91 1.49 0.004 0.467 0.418 0.063 

20.1 
% 

 Mean Std. C.V. Skew Kurt <0 150-275 275-450 >450 A.E. 

95/CO/NO 284.43 99.80 0.35 0.00 0.01 0.002 0.373 0.489 0.049 

95/CO/NN 295.49 112.78 0.38 0.91 1.49 0.000 0.418 0.424 0.094 

15.8 
% 

85/CO/NN 317.76 126.98 0.40 0.90 1.44 -- -- -- -- -- 

75/CO/NN 283.88 141.37 0.50 0.91 1.42 -- -- -- -- -- 

Southern High Plains 

 Non-Normal Normal 

 Mean Std. C.V. Skew Kurt Mean Std. C.V. Skew Kurt 

95/FA 245.22 194.66 0.79 0.91 1.49 240.22 185.71 0.77 0.00 0.01 

95/CO 244.94 148.76 0.61 0.91 1.49 240.08 128.62 0.54 0.00 0.01 

85/CO 266.98 148.53 0.56 0.90 1.44 -- -- -- -- -- 

75/CO 233.10 148.56 0.64 0.91 1.42 -- -- -- -- -- 

 

Notes: Mean, Std., C.V., Skew and Kurt indicate the mean, standard deviation, coefficient of 

variation, skewness and kurtosis coefficients of the simulated yield distribution; <0 indicates the 

estimated probability of less than zero yields; 80-280 indicates the estimated probability of yields 

between 80 and 280 lbs/acre, etc.; A.E. indicates the average error in predicting yield probabilities 

with the normal distribution (in percentage terms); FA, CO, NO, and NN stand for farm level, 

county level, normal and non-normal distribution, respectively. 



 

 

Figure 2: Annual Average Corn Belt Soybean Yields (1950-
1999)
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Figure 1: Annual Average Corn Belt Corn Yields (1950-1999)
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Figure 3: Simulated Distributions of 1985 Annual Average
Corn Belt Corn Yields under Normal and Non-Normal 

Models
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Figure 4: Simulated Distribution of 1985 Annual Average
Corn Belt Soybean Yields under Normal and Non-Normal 

Models
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Figure 5: Simulated Distributions of the West Texas 
Northern Low Plains 1985 Dryland Cotton Farm and County 

Level Yields

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

66
0

72
0

78
0

Yield (lbs/acre)

P
ro

b
ab

ili
ty

County Level

Farm Level

 

 

 

 

 

 

 
 



Figure 6: Simulated Distributions of the West Texas 
Northern Low Plains 1995 Dryland Cotton Farm Level 

Yields
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Figure 7: Simulated Distributions of the West Texas 
Northern Low Plains 1995 Dryland Cotton County 

Level Yields
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