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DEMAND FOR FREIGHT TRANSPORTATION IN THE U.S.: A HIGH-LEVEL VIEW 
 
Adrian Albert, Stanford University 
Andreas Schaefer, University College London 
 
ABSTRACT 
 

Research on freight transportation has seen a tremendous increase in the last decades, yet it still lags behind that on 
passenger travel, particularly at a macro-level suitable for nation-wide policy analysis. A key challenge in freight demand 
modeling is the availability of data on key drivers of demand - such as cost, time, and trip length - which usually is proprietary 
and expensive. Moreover freight data available to the public is usually heterogeneous and published by a number of different 
bodies. In this study we integrate many publicly-available datasets on these attributes into a consistent database describing 
freight movement at the U.S. level. We then use this dataset to estimate a discrete-choice model of the shares of major single 
modes - truck, rail, and air, and compare our results with other similar exercises from the transportation economics literature. 
We thus present an analysis of the effect of generalized transportation costs and infrastructure quality - captured by travel 
time - on modal split at the national level. We conclude with recommendations regarding freight transportation data that 
arise from the insights offered by this exercise for policy-makers and practitioners. 
 
1.  INTRODUCTION AND BACKGROUND 
 

Transportation of goods is a major force that drives economic prosperity and has attracted much interest from 
researchers over the past 30 years from both methodological and empirical standpoints. Despite its importance, and more 
critically than in passenger transportation, freight demand modeling suffers from low availability of data on key drivers of 
demand (such as cost, time, and trip length), both at the micro- and at the macroeconomic level. Freight transportation 
surveys are expensive to conduct, are commercially-sensitive, and thus are usually proprietary and unavailable to researchers. 
Moreover U.S.-level freight data available to the public is usually heterogeneous and published by a number of different 
bodies typically concerned with just a small niche of the entire freight system. 

While undoubtedly vital for the economy, the freight transportation network is also a major consumer of energy, 
accounting for around 28% of final energy used in the transportation sector, which is responsible for almost 30% of CO2 
emissions in the U.S. Authority (2011). In the last several decades both volume of freight transportation (in ton-mileage) and 
its energy footprint have increased Schipper et al. (2011), while a pronounced shift to faster (and more energy-intensive) 
modes has been observed in the U.S. and in a number of European countries Nijkamp et al. (1999). However accounting for 
the relationships between main operational factors of different transportation modes and their energy intensity has only 
currently come again into the attention of researchers Gucwa and Schafer (2011). 

The goal of the present paper is to complement the transportation literature by analyzing the impact of the main drivers 
of U.S.-level, aggregate freight demand, with a particular emphasis on the effect of cost and infrastructure quality on modal 
competition. We arrive at a macroscopic picture of the market and logistics factors (which are also connected to energy use, 
e.g., Gucwa and Schafer (2011)) in the transportation of freight. For this we first perform a comprehensive survey of the 
econometric literature on freight transportation as described in Section  2. In Section 3 we review a standard discrete-choice 
model that we used in our estimations. We then identify and integrate publicly-available data on U.S. freight transportation, a 
process which is detailed in Section  4; this is a main contribution of our research effort. To achieve this we used several 
national survey datasets to develop high-level models of the market and geographical factors influencing logistics decisions 
(e.g., speed and cost of transportation). Next we used this dataset to estimate a high-level econometric model of freight 
demand in Section  5, building upon the current state of the practice; note that most previous models were estimated 
primarily on data from small-scale disaggregate surveys including just a handful of shippers or on state-level data. We validate 
our model using literature estimates of elasticities of freight attributes from previous U.S. and international studies. A typical 
quantity of interest in transportation demand (both freight and passenger) that we also estimate is the value of time (VOT) 
Massiani (2003), which we use to further validate our results. We conclude in Section  6 with thoughts on what data would be 
necessary to improve the understanding of nation-wide freight transportation system. 

 
2.  ECONOMETRIC FREIGHT TRANSPORTATION LITERATURE 
 

Empirical literature on freight transportation demand has seen a rapid increase over the last several decades, although it 
has remained less researched than that on passenger transportation. Numerous specialized studies have been performed that 
isolate particular aspects of the freight demand problem: operational characteristics and commodity flows for particular 
modes (e.g., state-wide models of truck trips (Sorratini and Robert L. Smith (2000)), survey-based models of state-wide 
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trucking costs (Levinson  et al. (2005))), high-level demand analyzed through macroeconomic techniques such as Input-Output 
analysis (e.g.,  Vilain et al. (1999)), or on studying general or spatial price equilibrium models to arrive at microeconomically-
sound descriptions of freight flow characteristics (e.g., “generalized cost” Tavasszy et al. (2009)). Our focus is on 
transportation econometrics research, in particular those that use the discrete choice framework  Ben-Akiva and Lerman 
(1985); thus we shall concentrate here on reviewing econometric models.  

 
2.1. Freight demand modeling 
 

Several modeling econometric approaches have crystallized that depend in great part on the type of data used to inform 
the models, and the scope and goals of the modeling exercise. Early literature (e.g,  Winston (1981, 1982)) distinguishes 
between aggregate and disaggregate models based on the nature of the data employed for estimation: aggregate models use 
region-, or nation-wide aggregate (survey) data on commodity flows (or modal shares) to characterize the high-level trends in 
demand, whereas disaggregate models use survey data on individual shipments made by single freight companies. Essentially 
disaggregate models move away from the "representative shipper” concept utilized in the aggregate context, and provide a 
richer picture of the mechanisms behind the decision-making of shipping freight. Among the first applications of interest of 
these econometric models were studying intermodal competition, analyzing the effect of service quality on demand, and 
predicting or quantifying the effects of deregulation of the transportation industry in the 1970s  Winston (1982). A 
comprehensive review of the early (up to late 1980s) econometric literature is given in  Zlatoper  and Austrian (1989), where 
the authors stress the importance of identifying the appropriate variables, in particular for aggregate data (e.g., how does one 
approximate service characteristics such as reliability?), and point out that disaggregate models offer better estimates of 
attribute elasticities than aggregate ones (because they use data at the level of the individual decision-maker). At the same 
time, aggregate data can be more useful for the regional and national-level analysis that we attempt here, although it 
obscures the mechanisms and decisions at finer scale. More recent surveys on econometric modeling literature are performed 
in Winston (1983) and in Clark, Naughton, Proulx,  and Thomas (Clark et al.), where the authors specifically compare elasticity 
estimates across different modes and models computed for the U.S. The disaggregate studies surveyed in  Clark, Naughton,  
Proulx, and Thomas (Clark et al.) are presented from the perspective introduced in  Winston (1982), which divides them into 
two classes: inventory-based models (that adopt the perspective of an inventory manager that has to deal with multiple 
production decisions) and behavioral models (that are concerned maximizing utility when presented with a limited number of 
choices). A recent review on behavioral models (both aggregate and disaggregate) can be found in  Samimi et al. (2010). One 
recurrent question of concern in the disaggregate choice modeling literature is the (continuous) choice of shipment size along 
with the discrete choice of mode, as in  Inaba and Wallace (1989); de Jong  (2009). 

A survey of empirical work in the context of international (particularly European) freight transportation is done in  
Tavasszy (2006), where several directions of innovation are identified: freight economy linkages, logistics behavioral modeling, 
and freight trips and networks, and the interaction of freight with passenger travel. Similarly, in  Wigan and Southworth 
(2006) shortcomings of current modeling approaches (e.g., reliance on the limited and sparse data available) and practices 
(e.g., using some models for another purpose from that for which they were designed) are pointed out. Some of these insights 
are also well summarized and nuanced in  Ben-Akiva et al. (2008), where the authors present some of the most advanced 
developments in freight transportation modeling. 
 
2.2. Freight attributes in the literature 
 

Attributes used to explain variability in mode choice and the ensuing observed modal shares are surveyed in  CUTR 
(2001), with a focus on (mostly disaggregate) discrete-choice models. Table 2.2 presents a selection of studies that sample the 
vast space of freight demand modeling, and that we have found particularly useful for our modeling effort. Using aggregate 
Commodity Transportation Survey (1977) data from the U.S. Census Bureau,  Abdelwahab and Sargious (1992) develop a 
simultaneous discrete-continuous model that models both the choice of transportation mode (the discrete variable) and the 
choice of shipment size. To be able to use freight attributes not present in the CTS dataset, the authors use an external 
dataset (the MIT Commodity Attribute Data File) and several models from the literature. The same discrete-continuous 
approach is taken also in  Veras (2002), where the authors model the vehicle choice decision process using a multinomial logit 
model (MNL)  Ben-Akiva and Lerman (1985) on aggregate U.S. Commodity Flow Survey data from 1993. More recently 
improvements (in terms of predictive accuracy) have been proposed for the discrete-choice framework, e.g., by noting that 
the logistic regression problem can be expressed a special case of a more general neural-network training problem  Nijkamp 
et al. (1999), namely the single hidden-layer, feed-forward network. The authors of that study compare several specifications 
of logit models with corresponding neural network models using European inter-regional commodity flow data and obtain 
superior prediction accuracy using the neural network. 

Some studies have been carried out that use stated preference questionnaire data - e.g., in Danielis  and Rotaris (1999) 
the authors attempt to quantify the amount to which analysis would be improved by the availability of more freight data by 
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surveying relevant literature on this subject - however the large majority of research uses revealed preference survey data. 
For example,  Jiang et al. (1999) estimates a nested multinomial logit model using survey data for France to study the choice 
between private (own fleet) and public (purchased; rail, road, or combined) transportation based on many operational 
characteristics available only at the individual shipping manager level. In  Garca-Menndez  et al. (2004) the authors build a 
disaggregate conditional logit model using survey data on exporting firms in the Valencia area to study the role of cost, transit 
time, and frequency of shipments on the demand for freight transportation in four economic sectors. Recent disaggregate 
studies have sought to incorporate more logistics-related attributes (e.g., proximity to points of access to modes and 
transport chain modal breakdown) in explaining the choice of both mode and shipment size Windisch  et al. (2010). In Holgun-
Veras and Thornston (2000), the authors investigate the relationship with trip length of tonnage for different modes, and 
show the correspondences between commodity-based and vehicle-trip-based analyses. In  Johnson and de Jong (2011), time 
and cost are studied as primary drivers of both shipment size and mode choice. 

 
3.  MODELING FREIGHT DEMAND 
 
3.1. Discrete choice analysis of mode shares 
 

The Multinomial Logit (MNL) model  (Ben-Akiva and Lerman (1985)) is a workhorse of demand and behavior analysis. The 

setup assumes a set of N individuals, each individual n  facing M choices , and maximizing utility 

functions of the form , with a deterministic component (usually a linear function of covariates), 

and  a random component. The predominant functional form of the deterministic utility V is a linear-in-

parameters one with the vector x of attributes, . In this case it can be shown that the probability (and 

ensuing market share) of mode m under the model is 

, 

and the relative probability of choosing mode m with respect to mode j is given by the log-odds ratio  

. 

We chose the MNL specification because of its wide acceptance in the literature, its closed-form expression of the choice 
probabilities, and its relative ease of estimation. 
 
3.2. Specification of demand utility function 
 

Following the discussion in Section  2.2 we focus on two of the most important factors affecting freight demand: unit cost 
(perceived on the demand-side of freight transportation) and haul time. Thus the linear-in-parameters specification of the 
utility function (see above) takes the following form: 

 
where i refers to the observation and m to the mode. The variables included (and that we need to estimate as inputs) are: 

  is the transit time in hours for mode m. It is expected that larger times of haul will decrease utility.  

  is commodity unit value in $/ton. Manufactured and high-end commodities (such as electronics or 

pharmaceuticals) have larger unit value, whereas bulk commodities (e.g., coal or grains) have lower unit value (see 

Section 4). While unit value is a characteristic of the commodity, and not the shipping mode, their product 

( ) is a rough proxy for the capital value tied-up in transit, which both shippers and 

receivers would like to minimize.  

 is the unit cost in $/ton-mile for mode m. We also estimate specifications where unit cost 

is expressed in $/ton ( ) to compare with literature estimates that use this formulation.  

(1) 

(2) 

(3) 
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 , are coefficients on dummy variables corresponding to origins and destination regions, and 

commodities (markets). Using such fixed effects accounts for more variation in the freight flow data that is not 

captured in either cost or time.  

We describe our estimation of the above inputs to the model in Section  4. We test several specifications of the model by 
choosing subsets of the above variables in  5. 
 
3.3. Model estimation strategy 

 
Our data is in the form of aggregate flows between origin and destination regions by commodity and by mode (see 

Section 4). Thus the typical Maximum-Likelihood estimation used in discrete choice analysis  Ben-Akiva and Lerman (1985) is 
not directly applicable. Thus we turn to the alternative method of estimation using ordinary least squares (OLS). Berkson's OLS 
method  Ben-Akiva and Lerman (1985) estimates the model as follows: 

, 

with i and j two alternatives from the choice set, xi and xj their corresponding attributes, and Pn(i) and Pn(j) the observed 
shares. Here alternative j is the reference alternative. Note that an efficient estimator needs to account for the structural 

heteroscedasticity of (see below). The main advantages of OLS estimation of MNL are its reduced computational burden 

and is thus suited for large datasets. However, as pointed out in Section  4, the basic MNL model does not account for highly-
skewed data due to the presence of many zero flows. To account for heteroskedasticity, we used a formulation of Feasible 
Generalized Least Squares (FGLS) with a flexible, multiplicative structure on the error covariance term due to Harvey  Greene 
(2002): 

 
This formulation is estimated using two-stage feasible generalized least squares Greene (2002). 

 
3.4. Model inputs estimation 
 

Following existing literature on freight demand modeling, we set to estimate major determinants (inputs to the utility 
equation  (3) that may be reasonably expected to enter shipping decisions (for air, rail, and road transport), on a per-mode 
basis: 

 
 Unit cost. This represents the cost paid by the beneficiary of the freight transportation service to transport one more 

unit of a particular good, for one more mile. We estimate marginal unit cost using financial revenue or expenses 
statements and survey data. We assume perfect markets (zero profits) in which costs reflected to the receivers are 
equal to the expenditures incurred by the shippers.  

 Haul speed/time. Modal speed and, related, time-of-haul are critical in shipping, as they affect multiple interrelated 
decisions (e.g., mode choice and shipment size). While primarily capturing a main characteristic of the mode of 
transportation, both quantities can also be seen as a measure of the quality and availability of the infrastructure 
between given origin and destination points.  

 Effective distance. Distance is a fundamental determinant of freight transportation demand  Holgun-Veras and 
Thornston (2000) which also captures infrastructure availability and quality between given origin-destination pairs 
for given modes.  

 
Here we develop cost and speed curves as function of distance using operations and financial statements data for various 
modes. For each mode in our analysis (air, rail, road) we fit a functional form with distance as below: 

 

 

 
 
where i refers to the observation, yi is either unit cost or average haul speed, xi is distance, and a, b, c, and are 

coefficients to be estimated. The functional form (6) captures certain key economic phenomena for the distance dependence 
of unit cost or speed (e.g.,  Schaefer and Victor (1997);  Ben- Akiva et al. (2008)): 
 

(4) 

(5) 

(6) 
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 A unit cost that is inversely-proportional with distance captures the effect of economy-of-scales and market size: 
larger haul distances are typically serviced by large companies, which in turn achieve economies of scale by 
transporting more goods to more markets.  

 

 In the case of speed, an increasing door-to-door speed with distance for trucking captures the effect of switching 
from local (low-speed) roads (usually for small urban shipments) to highways for inter-city freight. This phenomenon 
also applies to railway and air freight transport, since for longer haul distances the maximum admissible speed on 
particular segments is maintained for a longer period of time, and acceleration and breaking periods (which, in fact, 
amount to a solid share of the energy consumed) are a relatively smaller share of the total travel time. 

 
Although a strong dependence of both cost and speed with distance is expected, distance alone does not explain much of 

the geographic and market-specific variability observed in these parameters. Effects such as operational decisions, region-
specific infrastructure quality and regulation constraints, or employment and industry output characteristics for particular 
regions are all absorbed in the respective dummy variables in Equation  (6). 

 
4.  DATA DESCRIPTION AND INTEGRATION 
 

In this paper we focus on freight transported by air, truck, and rail primarily because these three modes are 
representative of single modes used in shipping, and amount for most freight tonnage, but also because of data availability 
constraints. We deliberately leave out one important mode - intermodal shipping, because (i) it has lost significant market 
share over the past 20 years (from 27% in 1990 to 12% in 2010), (ii) our focus is on single modes, and (iii) it is comparatively 
difficult to obtain relevant cost and speed data for intermodal freight. We make use of several types of data from a number of 
publicly-available sources to arrive at a consistent dataset describing U.S.-wide freight transportation demand and key factors 
determining it. Mainly we are dealing with two types of data: operational (describing financial and logistic decisions) and 
freight flows (aggregate tonnage and dollar values shipped between regions, broken down by commodity classes and mode of 
transport). Note that some sources contain disaggregate data (reflecting actual decisions by shippers), whereas others contain 
aggregate data (totals and averages across many firms or shipments). Below we describe in detail these data and highlight the 
caveats of using the respective sources in discrete-choice models. All origin and destination information is reported at the 
level of the FAF

3
 analysis zones (see below); we matched all data not in this form from all our sources outlined in this section. 

All physical values (tonnages, speeds, infrastructure distances) reported are for year 2007, the date for which the latest five-
yearly Commodity Flow Survey was available (see below). All monetary values have been converted to 2007 U.S. $ units. 
 
4.1. Freight flow data 
 

Commodity Flow Survey (CFS). This is the primary publicly-available freight flow data resource  Bureau (2007) 
administered by the Census Bureau. It is conducted every 5 years (the latest version available is for 2007). The data is 
collected via a mandatory questionnaire sent at random to economic establishments in every U.S. state, according to a 
methodology that ensures national representativeness of the obtained data. The CFS contains flows for a number of modes 
(air, rail, truck, water, parcels), including origin-destination (at the economic area or state level) and commodity class (up to 5-
digit STCG disaggregation) or industry sector information. The data is reported at different levels of aggregation, and at the 
most disaggregate levels there are many missing data points due to estimation errors or concerns about commercial 
sensitiveness. For that reason we did not use this dataset in our estimation, but resorted to the FAF

3
 dataset below. 

Freight Analysis Framework 3 (FAF3). This dataset has been prepared by the Transportation research group at the Oak 
Ridge National Laboratory  Oak Ridge National Laboratory (2010) and its stated goal is to address the shortcomings of the CFS. 
In particular, the authors focus on obtaining estimates for the “missing” data points in the most disaggregated tables in the  
CFS by using data from higher aggregation levels, Input-Output tables from the Economic Census  Bureau (2007), and 
econometric modeling. The FAF

3
 contains aggregate (at the economic area level) tonnage and dollar flows reported for each 

of 123 origins and destinations, 8 modes (which includes air, rail, truck, water, and parcel) and commodity class (43 classes at 

the SCTG 2-digit level), i.e., on a  grid. It reports about 32% more tonnage than the CFS, mainly 
because it contains data for additional modes (e.g., pipelines) and commodity classes (e.g., agricultural products and oil) that 
are out-of-scope for the CFS. In our analysis in Section  5 we used the freight flows as reported in the FAF

3
. The modal 

breakdown in the FAF
3
 dataset is summarized in Table 2. Road transport (mainly trucks) account for 76% of the total tonnage 

transported, which shows an economy dominated by truck transportation (in 2007). Rail freight makes up for 13% of tonnage, 
but only 3% of value, confirming that rail is used for transporting mainly bulk, cheap commodities (e.g., coal or grains). Air 
freight is less than fraction of a percent of total tonnage, yet accounts for about 1% of value transported, which is consistent 
with the picture of air transporting high-value commodities such as electronics and pharmaceuticals. Intermodal freight 
accounts for 3% of total tonnage (but 11% of value); being much smaller than single modes we left it out of our analysis. It is 
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also instructive to look at a breakdown with distance of the modal split as presented in Figure  1. There we illustrate the 
cumulative tonnage percentage by each mode as a function of distance (in thousand miles, see distance calculation discussion 
in Section 4.2 below). The heterogeneity between modes from the haul distance is clear, with road freight reaching more than 
95% of tonnage for distances of 500 miles, whereas rail and air freight take, in turn, 1500 and 2500 miles to reach that 
tonnage percentage. 

Even the relatively coarse level of aggregation of the FAF
3
 may be too detailed for a high-level analysis of freight trends 

U.S.-wide. This is noted in several studies in the literature, e.g.,  Ming  (2011) and the references within. We used the 
aggregation from the 43 two-digit level SCTG classes to 12 commodities as proposed in that study (see Table  Appendix A in 
the Appendix). The basis for aggregation is the similar sectorial input/output patterns exhibited by commodities in each 
aggregation group. Commodity-based analysis is an important paradigm in freight transportation  Ben-Akiva et al. (2008) as 
the heterogeneity due to sectorial input/output differences, different time sensitivities (e.g., perishable vs. non-perishable 
commodities) and unit value can be better captured by explicitly including commodity information in the modeling process. In 
Figure  2 we present a breakdown of the modal shares with distance and by commodity class (as proposed by  Ming (2011). 
Clear patterns emerge of the alternation between dominant modes at different haul distances, with truck usually dominating 
small distances, rail taking over at medium distances, and air becoming dominant for very large distances. However this 
picture is an aggregate, and therefore hides important differences at particular commodity classes. For example, coal and 
fuels are primarily transported by rail for up to medium distances, by truck for larger distances, and then only trace quantities 
are transported by air (e.g., from the lower U.S. states to Alaska) for very large distances. However higher-valued goods such 
as tobacco are transported predominantly by road up to very long distances, when air transportation starts to become a 
sizable alternative. 
 
  Mode VAL [$M] VALP [%] TON [000's]    TONP [%] 

  Truck 10,223,022 77 12,580,080 76  

  Rail 373,963 3 1,745,364 11  

  Water 98,221 1 356,658 2  

  Air (include truck-air) 152,229 1 2,679 0  

  Multiple modes & mail 1,681,048 13 522,360 3  

  Pipeline 552,231 4 1,100,224 7  

  Other and unknown 257,486 2 268,798 2  
 

Table 2: Tonnage and value distribution across modes for the FAF
3
dataset.

 

  
4.2. O-D distance calculations 
 

As of version 3:3 (released in July 2012), the Freight Analysis Framework dataset  Oak Ridge  National Laboratory (2010) 
also includes estimated ton-mileage for origin-destination-commodity-mode (123 123 12 3) tuples that contain non-zero 
freight flows. For these tuples we estimated the average distance travelled by freight for a given mode as 

 

 
 
For validation we compared these estimates with estimates using a network model of the road and rail infrastructure 

impedances  Southworth and Peterson (2000). As the network model reported distances at the U.S. county level, we matched 
the counties to FAF

3
 zones using county administrative and geographic information from the U.S. Census Bureau. To estimate 

air distances we used average great circle distance calculations between airports within FAF
3
 zones. We split our distance 

calculations into those OD-pairs that do not include legs in Alaska, and those that do. This was motivated because of the 
particular geographical situation of Alaska, which is separated from the other 48 contiguous states in the U.S. We compare 
the two estimates in Figure  3. Note the good agreement between the two methods (correlation coefficient > 0:9 for all 
modes). Thus we used the network model estimates of average distances for those FAF

3
 regions for which no freight flows 

were reported (structural zeros). 

 

 

(7) 
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Figure 1:  Cumulative tonnage breakdown by mode as function of distance (thousand miles). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Commodity-based analysis:  modal shares dependence with distance (0-5000 miles). 
 
 
 
 
 

 

 

 

 

 

 



 

Page 110 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Distance calculations using a map model Southworth and Peterson (2000) and comparison with effective distance 
derived from ton-mileage figures Oak Ridge National Laboratory (2010). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 4:  Air freight attribute estimates: unit cost (left) and speed (right). 
 

 
4.3. Air freight attributes 
 

Unit cost. We use the Air Transportation Authority Form 41 (Schedule P-1.2) for 2007  RITA (2011) available online at the 
Research and Innovative Technology Administration (RITA) website 

1
. This database contains quarterly financial statements for 

large operators (those with operating revenues of at least $20 million), including operating revenue and expenses, income tax, 
depreciation and amortization costs etc. We use carrier operating revenue as a proxy for the costs incurred on the demand 
side for transporting freight. Aggregate revenue data (over each quarter of 2007) are reported for around 30 major carriers 
that transport freight, for several types of aircraft the carriers operate. We then matched the revenues data with data on 
freight tonnage transported as reported in Schedule B2.1 of  RITA (2011) by airline and airframe type. The calculations are 
summarized in Figure 4 (left panel). While there is much variance that is not explained by distance, the general declining trend 
with distance is clearly observable. According to the discussion in Section  2.2, we fit a functional form similar to Equation  6 to 
the unit cost data (t-test results are summarized in Table A.5, left): 

 

(8) 
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Haul speed. The Air Transportation Authority Form 41 (Schedule T-100)  RITA (2011) contains quarterly operations data 
for airlines operating in the U.S. We have used the aggregated (quarterly totals) data tables for domestic carriers containing 
details on non-stop flight routes (reported on a per-airport basis), including carrier, U.S. origin and destination airport, amount 
of freight and number of passengers, number of departures performed, number of ramp-to-ramp hours. We computed 
average haul speed for those segments and air carriers that carried freight (excluding passenger flights). For the purpose of 
regression analysis we matched each airport to its corresponding FAF

3
 zone. The results are summarized in Figure  4 (right 

panel), where each point represents an O-D segment with nonzero freight activity. As before, we t a functional form similar to 
Equation  6 to the aircraft speed data (results are summarized in Table  A.5, left): 
 

 
 
4.4.  Rail freight attributes 
 

Unit cost. The most comprehensive public dataset that details railway operations cost is the Surface Transportation Board 
Carload Waybill Survey  RAILINC (2010), the newest version of which is for 2007.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
Figure 5: Unit marginal cost functional form estimate. Left: Rail unit cost data estimated from the 2007 Carload Waybill Survey 
(public sample); Right: Truck unit cost data from the Motor Carrier Annual Report (see text). 
 
 

All major (operating more than 4; 500 carload annually) U.S. rail carriers are required to submit answers to the survey, 
which makes this dataset the most comprehensive public source on the topic. However only a subsample of this dataset is 
available on line because it contains commercially-sensitive information; to use the complete data special permission must be 
obtained. We have only used the publicly-available data. The survey contains rich disaggregate information on shipments, 
including length of haul, revenue from shipment, shipment origin and destination, commodity class transported, number of 
legs in shipment etc. We estimated the unit cost ($/ton-mile) across the shipments in the sample and present the calculations 
in Figure  5. A summary of the t is given in Table  A.5 in the Appendix.  

Haul speed. Literature reports very little variation in operational characteristics of rail engines, e.g., Gucwa and Schafer 
(2011). As such we used the verge speed value of 19.3 mph for all the rail freight activity in the U.S. (in 2007) available from 
the American Association of Railroads Railroad Facts 2007 RAILINC (2008) 

 

(9) 
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4.5. Road freight attributes 
 

Unit cost. To estimate unit cost for road transportation we used the TranStats Motor Carrier Annual Report database 
TranStats (2007). This dataset is the result of a mandatory survey filled by large (with more than $ 3 million in revenues) 
motorized operators that contains information on operating revenue and expenditure, fuel used, type of operation, type of 
goods carried, miles traveled. The most recent data reported is for 2003; we thus applied the appropriate inflation factor (to 
2007 values) to all dollar figures. We used schedules S200 (operating income) and S300 (operational statistics) to estimate 
unit cost (in $/ton-mile) from information on total revenues, ton-mileage, tonnage, and number of shipments. For each carrier 
we estimated typical freight haul distance from the ton-mileage and tonnage information reported. The results are presented 
in Figure  6 (left panel). Again we observe the declining unit cost with distance, and fit the appropriate functional form  (6) 

 

 
 
and report the obtained values for a and b in Table  A.6 (right panel).    
 

 
 

 

 

 

 

 

 

 

 

 
 
 

Figure 6:  Road freight transportation speed estimates (left:  U.S. without legs in Alaska; right:  Alaska). 

 
Haul speed. To understand the distance dependence of road transportation, we used road segment typical speed values 

obtained from a state-of-the-art online map model API (Google Maps). We queried the API scriptically for road travel 
distances for several cities within and between the 123 FAF

3
 zones, in a similar fashion as  Wang and Xu (2011). The resulting 

speed profiles are illustrated in Figure  6, where each red dot corresponds to an origin-destination FAF3 zone excluding zones 
in Alaska (middle panel) and only including Alaska pairs (left). As expected, the average speed increases with distance, and 
levels off at about 60 mph, which is the legal limit on most highways in the U.S. For the two cases (Alaska, non-Alaska) we fit 
the familiar functional form with distance 

 

 
 

and summarize the results in Table  A.6. 

 
5.  MODELING MODAL MARKET SHARES 
 

In this section we present an application of the dataset assembled as described in Section  4 to estimating a discrete-
choice model (multinomial logit) as introduced above in Section  3. We calculated typical quantities of interest in the freight 
transportation context (attribute coefficients, elasticities, value-of-time) both overall and on a per-commodity basis. We 
compared results obtained using several estimation methodologies (Ordinary Least-Squares and Feasible Generalized Least-
Squares). 
 

(10) 

(11) 
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5.1. Caveats of the data and the model 
 

The economic forces giving rise to the demand for freight transportation in the U.S. are highly complex, and we have only 
crudely modeled them here. For example, the model formulation as in (4) does not account for the fact that many flows on 
certain modes and commodities do not exist between all origin-destination pairs (i.e., are structurally zero). As an example, 
clearly there is no coal being transported by air from Texas to Hawaii. This phenomenon is clearly not only related to the 
combination of attributes (unit cost, speed, distance, unit value) as described above in Section 4); it rather arises because of 
geographical and infrastructure constraints, exogenous market forces, and specific sectoral input-output relationships 
interacting with spatially-distributed supply and demand, for instance. Granular data that allow identification of such effects 
requires a considerable effort to obtain and integrate. The structural zeros issue may be alleviated by either i) explicitly 
modeling the absence of flows (e.g., by correlating it with sectoral input/output, employment, and population patterns over 
the U.S. geography), or ii) by aggregation of finer-grained O/D flows into larger, coarser geographical regions (to reduce 
variance and increase homogeneity in economic conditions). As our emphasis was not on developing a detailed freight 
demand model, here we have adopted the latter approach. The effect of aggregation is visible in Figure  7, where the (log-

scale) distributions of model inputs are illustrated. Note that for the  geographical region O/D pairs (right panel) the 

distributions are much less skewed than for the  FAF
3
 (left panel). 

 
 
5.2. Model estimation results 

We first estimated the discrete-choice model with the utility specification  (3) using Ordinary Least Squares, and report 
the results in Table  3. The reference alternative in Equation  (4) necessary for identification of estimates was trucking. As 
suggested by the OLS residuals dependence with left-hand-side covariates illustrated in Figure  8, there is heteroskedasticity in 
the data in particular on the unit value and unit cost variables, which is also indicated by a Breusch-Pagan test  Greene (2002) 
(95% confidence level). To alleviate this issue and increase estimation efficiency, we recomputed both the coefficient 
estimates and the standard errors using a Feasible Generalized Least Squares approach. These estimates are also shown in 

Table  3. All estimates were done on a  O/D dataset (Figure  7, left panel). All the coefficients have the expected signs 
(negative for unit cost, distance, time, and capital tied up in transit). The negative coefficients on the alternative-specific 
constants for air and rail are relatively large and negative, which indicates that a good part of the heterogeneity in the data is 
not explained by the studied freight attributes alone. Moreover, controlling for all factors, air and rail are less desirable than 
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truck, as shown by the relatively large alternative-specific constants on those modes. This result is intuitive given the door-to-
door operation characteristics inherent to road transportation.  Note that coefficient estimates are statistically significant at 
least at the 0.01 level. 

 
 

A comparison with literature estimates is not that immediate because of the large heterogeneity in data type and model 
specification employed in various studies. We found relatively little work on national-level econometric studies that 
investigate the effects of unit marginal cost and measures of infrastructure availability such as haul time over the entire U.S. 
geography. Our interest here was to compare signs and relative magnitudes within-studies; cross-study analysis is not 
straightforward because of the wide variation in model setup and data: different types (aggregate, disaggregate), countries 
(U.S., Europe, Latin America, etc.), units system (metric, imperial), different currencies (U.S., SEK etc.) and so on. In general, 
much of the heterogeneity is not explained by used attributes alone, as indicated by the large relative magnitudes of the 
alternative-specific constants. This observation is consistent with our own modeling results. A significant number of the 
studies we surveyed did not report any value for the ratio of explained variance R

2
, but for those that did this quantity varied 

greatly in magnitude. Note that the quantity depends on the estimation methodology - typically the OLS R
2
 values will be 

higher (0:6 0:8) than the pseudo-R
2
 (or McFadden's  Ben-Akiva and Lerman (1985)), which typically are on the order of 0:2 0:4  

Ben-Akiva  et al. (2008). Our result (R
2
 = 0:79) is thus typical of these kind of models and specifications. 

Table  4 presents calculations of the value-of-time (VOT) of freight transportation for the U.S. in 2007. We estimate value 
of time as 

 

 
   

where  and  are the regression coefficients for unit marginal cost and typical time, respectively. 
 
The VOTs obtained via OLS and FGLS were of similar magnitude. Since some studies in the literature reported VOT in 

$/ton-hour, we repeated the model estimation with unit cost expressed in $/ton instead of $/ton-mile (not shown here for 
space reasons). A back-of-the-envelope calculation multiplying the result expressed in $/ton-mile-hour with the average 
tonnage flow reveals a similar result. Our result (using both OLS and FGLS) of about $ 13/ton-hour falls within the range of 
values reported in the literature for other countries, as presented in Table  4. 

 
6.  DISCUSSION 
 

The main goal with this exercise was to illustrate the integration and use of public data in per-forming analysis relevant to 
transportation and energy policy at a U.S.-level, and to identify certain points where the availability of additional data could 
make a positive difference. We surveyed a large body of literature on econometric analyses of freight transportation in 
different countries and regions, using different types of data, etc. We first presented our work on integrating many publicly-

(12) 
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available datasets related to freight transportation in the U.S. We arrived at a database containing information on key 
attributes of demand for freight - cost, time (speed), and distances - that we used to estimate a simple discrete-choice model 
of modal shares. We then calculated the Value-of-Time for freight ( $13/ton-hour) and found that it is broadly in agreement 
with values reported in the literature. However that both reflects the appropriateness of this approach as well as the large 
variance of estimates across different markets and geographies present in the literature. Based on our experience with the 
process, we can readily identify several shortcomings: 

 
Data availability. Collecting transportation data, and freight data in particular, is expensive, as identified by other 

previous studies Ben-Akiva and Lerman (1985); Ben-Akiva et al. (2008). Moreover, freight companies and professional 
associations that we contacted to request specific data on logistics and financial operations for our research were generally 
reluctant to provide that information. This is quite understandable, since that information usually has high value for 
competitive advantage and commercial reasons. Absent granular information at the level of individual shipments, one needs 
to rely on aggregates that mask away important trends. This is not the case for all industries though; for example there is 
much richer air transportation data available publicly than surface transportation data (trucking or rail). One reason behind 
this is that air travel is more severely regulated (for safety reasons) than other modes; moreover trends in that industry are 
that some type of freight (e.g., mail or packages) is generally transported alongside passengers on commercial flights, for 
which airlines are required to report a wealth of data, including departure and arrival times, tonnage carried, delays, fuel used 
etc. Working with major industry players in other sectors of transportation (railway and motor carrier operators) to make 
more data available for research would spur much interest and innovation, as it is the case with recent initiative in the air  
transportation industry (e.g., the GE flight challenge

5
). This is particularly the case in light of the recent increasing trends of e-

commerce and the afferent business it produces for freight operators who need to manage carefully and flexibly their 
operations.  

Data heterogeneity and integration. As expected, the data we used in our estimations varied greatly in scope, method of 
acquisition, quantity, granularity, etc. The freight flow data (the FAF

3
 database  Oak Ridge National Laboratory (2010)) was 

itself the product of an extensive modeling e ort, pulling together data from a variety of sources. Data on costs and operations 
was either disaggregate in nature (e.g., individual cargo loads for the Carload Waybill Survey  RAILINC (2010)) or aggregate 
over the whole country (e.g., the average speed figure for rail  RAILINC (2008)). To circumvent in part the large degree of 
heterogeneity in the different inputs to our discrete-choice analysis, we adopted the model  (6) of an inverse-relationship with 
distance of the studied quantity as described in Section  3. As it is clear from the discussion there, this relationship captures a 
general trend, but even with the addition of fixed effects in the regression models much of the variance in the data remains 
unexplained. One simple way of dealing with the heterogeneity that we adopted was aggregation (see discussion in Section  5 
and Figures  7 in the Appendix) was aggregation. However, the better approach is to attempt to model this variability explicitly 
in terms of additional covariates on the state of the economy or infrastructure. Clearly that would require additional data 
collection and duration efforts.  

In conclusion, we argue for more research in the creation and maintenance of standard databases that allow more 
transparency of analysis, by integrating granular data from multiple sources related to freight transportation. We believe that 
such tools will move the field of freight transportation econometrics into a possibly transformational phase, as it has been the 
case for other fields of inquiry that have experienced increased data availability over the last years. 
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Appendix  A.  Additional tables and   figures      

           

  

Variable Air Speed Air Cost 

      

    

Variable Rail Cost Rail Speed 

 

   

529.12 -1.7492 

   

1 a*** 
 

1 a*** 
6e-04 

19.6000 

 

(0.49) (0.1248) 
  

    
(0.0024) 

 
   

-218481.22 2195.3269 
     

2 b*** 
   

1.4052 
  

(901.98) (16.5529) 
 

2 b*** 
  

    
(0.0681) 

  
   

-462.91 
      

3 c*** 
  

3 c*** 
   

(1.68) 
     

     
4 Adj.R2 0.20 

  
 

4 Adj.R2 0.92 0.22 

   

       
 

 
 
Table A.5:  Right:  Air model estimation; Left:  Rail model estimation. 

 
  Truck Truck   

 Variable Speed Speed Truck Cost  

  (non-AK) (AK)   

1 a*** 
63.5972 56.9069 0.0185  

(0.0224) (0.3276) (0.0069) 
 

   

  
-5279.4518 

- 
62.2338 

 

2 b*** 17461.1557  

  (52.5421) (1366.9314) (1.2886)  

3 c*** 
-393.7559 993.3408 -6.2121  

(5.1125) (68.048) (0.3423) 
 

   

4 Adj.R2 0.64 0.86 0.11  
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Table A.6:  Truck Model Estimation. 

   

 
H Textiles/Leather (30); Furniture (39); Misc. Mfg. Prods. (40); Manufactures Mixed Freight (43)   

I Base Metals (32); Articles-Base Metals (33); Machinery (34) Metals and Machinery 

J Electronics (35); Precision Instruments (38) Electronics 

K Motorized Vehicles (36); Transport Equipment (37) Motor Vehicles 

L Waste/Scrap (41) Waste 

Class SCTG Commodities Included (SCTG code) Class Description  

A Animals and Fish (1); Animal Feed (4); Meat/Seafood (5) Animals   

B Cereal Grains (2); Other Agr.  Products (3) Grains   

C 
Milled Grain Products (6); Other Foodstu  s (7); Alcoholic Bever- Tobacco, Alcohol,  

ages (8); Tobacco Products (9) Other 
  

   

 Building Stone (10);  Natural Sands (11);  Gravel (12);  Nonmetal-    

D 
lic Minerals (13); Metallic Ores (14); Basic Chemicals (20); Phar- Materials and Chemi-  

maceuticals  (21);  Fertilizers  (22);  Chemical  Products  (23);  Plas- cals 
  

   

 tic/Rubber (24); Nonmetallic Mineral Products (31)    

E Coal  (15);  Crude  Petrolleum  (16);  Gasoline  (17);  Fuel  Oils  (18); Coal and Fuel  
 Coal -n.e.c.  (19)    

F Logs (26); Wood Products (26) Wood   

G Newspaper/Print (27); Paper Articles (28); Printed Products (29) Paper   
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Figure 7: Input freight attributes (log-densities). Left:  FAF
3
 Origin-Destination pairs;  

Right: Origin-Destination U.S. geographical regions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: OLS analysis. Left: OLS residuals vs Inputs for air and rail. Heteroskedasticity arises  
primarily because of non-uniform variance in unit cost and speed. Right: OLS residuals after heteroskedasticity correction. 

 
 
 
 
 


