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QUANTIFYING NON-RECURRING CONGESTION IMPACT ON SECONDARY INCIDENTS 
USING PROBE VEHICLE DATA 
 
Hyoshin Park, University of Maryland 
Ali Haghani, University of Maryland 
Masoud Hamedi, University of Maryland 
 
ABSTRACT 
 

As a significant cost and externality to economic efficiency, congestion is partly caused by traffic incidents. For more 
systematic, planned and coordinated incident management, quantifying a primary incident’s impact on secondary incidents is 
crucial and challenging. Many thresholds have been suggested in defining the secondary incidents, but there is no universal 
acceptance of a definition and corresponding set of measurement parameters. Static threshold methods cannot consider the 
actual representation of prevailing traffic conditions when the incidents took place. On the other hand, dynamic methods 
have disadvantages because necessary traffic detector data may not be available, and replication of the incidents using a 
simulation package can be time consuming. The novelty of this study rests in the attempt of a probe vehicle technique for 
capturing the dynamics of traffic evolution during the primary-crash incidents. Compared to the previous thresholds which 
have many errors, proposed speed contour map from Traffic Message Channel codes provides accurate feasible area for 
identification of secondary incidents. 

 
INTRODUCTION 
 
Quantification of Incident’s Impact 

Congestion is a significant cost and externality to economic efficiency. Viable studies estimate that total U.S. 
congestion costs range from $14 billion to $200 billion annually. Fifty-five percent of total delay experienced by motorists is 
caused by roadway incidents in urban area population groups (TTI, 2011); and secondary crashes are estimated to cause 18% 
of all fatalities on freeways (TIM, 2010). Every minute that an incident remains partly cleared during peak congestion causes 
many more minutes of travel delay. Mitigating non-recurring congestion will return a strengthening economy.  

Rubbernecking, physical impedance in the travel lanes, and other incident-related obstructions reduce capacity and 
impede flow. The resulting speed reduction and queue formation foment additional incidents, referred to as secondary 
incidents. Incident characteristics, incident duration, traffic conditions, and secondary incident occurrence are related to one 
another in a close way (Figure 1). Indeed, the longer an incident scene is in place caused by its characteristics, the greater the 
likelihood for secondary incidents. Moreover, the total time for an incident to be cleared can be increased by the occurrence 
of secondary incidents, and the travelers may experience ever-increasing congestion. 

 

Figure 1. Relationship between Secondary Incident Occurrences and Contributing Factors 
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Incident management with systematic, planned, and coordinated resources provide tools to enhance performance of 
response team to reduce the duration and impact of incidents and improve the safety of motorists. To maximize the 
effectiveness of these operational strategies, accurate and dynamically predicted incident duration, length of queue, and 
chances of secondary incident occurrence can aid to real time information for travelers (e.g., variable message signs update, 
cell phone text messages alert). Traffic operators can assess the need to implement detour operations and any other control 
strategies to mitigate congestion. Furthermore, the benefits of the incident management program are identified by measuring 
the reduction of incident’s negative impacts. Transportation safety, however, does not seem ready to embrace this critical 
issue. Given the wide variety of causes and impacts of non-recurring congestion, it is especially difficult to quantify discrete, 
random, and complex incident nature in a system level. In addition, poor quality of incident data encumbers the accurate 
identification, generalization and prediction of the impact of incidents. 

 
Identification of Secondary Incidents Using Advanced Traffic Data  

We cannot exaggerate the importance of using a reasonable threshold in defining the secondary incidents, because it has 
an influence on the accuracy of the result and validity of the proposed theoretical frame. The most frequent method used to 
identify the secondary incidents is the static method (i.e., proximity in time and space). However, this condition is not 
sufficient, as it does not consider the actual representation of prevailing traffic conditions when the incident took place. In 
addition, this method is more likely to produce biased results as it depends on the values of chosen thresholds. On the 
contrary, several dynamic methods were proposed based on simulation or inductive loop detector data. However, using a 
deterministic queuing method in real-time is inappropriate because exact identification of traffic arrival rate and capacity 
reduction is difficult, and quality of raw data from inductive loop detector maybe unsatisfactory.  

In recent years, the vehicle probe industry is emerging as a viable means to monitor network-wide traffic flow, delivering 
both speed and travel time information. This is a new opportunity to use real-time estimation of queue length to identify 
feasible area for secondary incident. An adjusted boxplot is used to separate the non-recurrent congestion from recurrent 
congestion that is present on the road at the time and place of an identified accident. With the speed contour output from 
probe vehicle data, the analysis of the secondary incidents becomes a geometrical exercise of determining of the extent of the 
feasible region. The secondary incidents and primary incidents are examined using the time-space evolution of disturbance 
boundaries while considering only the impact of isolated incidents.  

 
SECONDARY INCIDENT FILTERING 
 
Impact Area for Secondary Incidents  

The identification of an incident as secondary to a primary incident is described in Figure 2. First, from the reported 
incident characteristics and traffic conditions, incident duration can be predicted. Upstream of the incident, a queue has 
formed from the time the primary incident “P” occurred until the service rate exceeds the queue arrival rate. This entire 
timeline is defined as temporal impact area, and spatial impact area changes over time according to the evolution of traffic 
flow. Then, incident “S” within this impact area is classified as a secondary incident. Queue dissipation covers the time the 
incident is cleared to the time that normal flow returns. 

 

 

Figure 2. Incident Timeline and Feasible Area 
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Static and Dynamic Feasible Area  
Several methods are available in the literature to indicate the existence of a feasible area for secondary incidents 

occurrence, most of which focused on temporal and spatial thresholds related to primary incidents. For example, Raud (1997) 
defined any incident within static thresholds of 1 mile and 15 minutes as a secondary incident. Similar static feasible areas 
were also discussed by Karlaftis et al., 1999; Moore et al., 2004; Hirunyanitiwattana and Mattingly, 2006; Zhan et al., 2008, 
Khattak et al., 2009. Most studies used Annual Average Daliy Traffic as aggregated traffic related information. 

On the other hand, Haghani et al. (2006) initiated the study for dynamic thresholds, which is identified from the 
shockwave that arises as a consequence of the incident in the simulation model. A set of preselected time intervals are 
employed in seeking the impact area during a specific time interval for each incident. Mathematically represented impact area 
requires smaller time interval for greater accuracy of the estimation method. Chou and Miller-Hooks (2010) also considered 
the dynamics associated with traffic state by using simulation-based secondary incident filtering method (SBSIF). Regression 
implementation of SBSIF has a significantly reduced misclassification rate as compared with static methods. Replication of the 
incidents using a simulation package can be time consuming. 

Sun and Chilukuri (2010) presented a methodology in order to improve upon the existing method of static thresholds by 
formulating dynamic boundaries. An incident progression curve was used to indicate that dynamic and static methodology 
can differ by more than 30%. However, the third order polynomial equation were identically applied to all incidents, 
regardless of traffic volume. In addition, archived incident data might have limited queuing information.  

Zhan et al. (2009) and Vlahogianni et al. (2010) defined the spatio-temporal boundary for each secondary crash based on 
maximum queue length and the queue duration induced by the crash. The similar approach has been studied by using 
deterministic queue model to estimate associated delays (Zhang and Khattak, 2010, 2011; Khattak et al., 2012). If a spillback is 
observed, the queue length is estimated by a deterministic D/D/1 model with estimated arrival and departure flow rates 
based on Highway Capacity Manual methodologies. However, it is inappropriate to use a deterministic queuing approach for 
real-time application in non-recurring congestion, since it assumes exact identification of arrival rate and capacity reduction 
(Fu and Rilett, 1997).  

Vlahogianni et al. (2012) improved secondary incident detection methodology by capturing the propagation of wide 
moving jam generated at the upstream and the downstream to calculate the changing queue length. As criticized by Schönhof 
and Helbing (2009), a congestion caused by accident might not classify the pronounced stop-and-go waves as ‘‘wide moving 
jams.” Hence, secondary incident with the characteristic spatial structure of a ‘‘general pattern” (‘‘synchronized flow”, ‘‘pinch 
region” with jam formation, and a region of ‘‘wide moving jams”) cannot be perfectly explained by their models. Table 1 
summarizes existing secondary incident identification method.  

 
Table 1. Existing Secondary Incident Identification Method 

Static method Dynamic method 

Raud (1997) 1 mi, 15 min Haghani et al. (2006) 
Simulation-based method employing 
shockwaves 

Karlaftis et al. (1999) 
1 mi, Clearance 
time + 15min 

Chou and Miller-Hooks (2010) 
Simulation-based filtering method 
(SBSIF). 

Moore et al. (2004) 2 mi, 2 hr Sun and Chilukuri (2010) Incident progression curve 

Hirunyanitiwattana and 
Mattingly (2006) 

2 mi, 60 min Vlahogianni et al. (2010)      
Observed maximum queue length and 
the queue duration 

Zhan et al. (2008) 2 mi, 15 min 
Zhang and Khattak (2010, 2011),  

Khattak et al. (2012) 
Deterministic queue estimation  

Khattak et al. (2009) 
1 mi, Clearance 
time + 15min 

Vlahogianni et al. (2012)      
ASDA model automatically tracks the 
propagation of moving traffic jams 
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METHODOLOGY  
 
Impact of Non-Recurrent Congestion 

As discussed, deterministic queue model approach may have over- or under- estimated the actual delay of primary-
secondary incident events. This approach assumes that precise identification of capacity reductions can be available. 
However, accurate measurement of incident capacity reduction is not straightforward. Still, many researchers primary rely on 
simulation analysis (e.g., CORSIM, VISSIM) that have the ability to replicate rubbernecking by proportionally increasing the 
distances at which the vehicles are following one another (Haghani et al., 2006). Deterministic queuing model may be 
adequate for after-incident evaluation, for which information on the traffic volume and incident situation is readily available. 
Moreover, unsatisfactory quality of raw data from inductive loop detector can decrease accuracy of incident detection rate. 

On the contrary, methodology of this study is based on real-time traffic conditions for one-minute interval from each 
TMC segment. Here, we need to define whether each TMC segment is under the non-recurrent congestion or not. However, 
separation of the non-recurrent congestion from recurrent congestion is a hard task because there is no correct answer. It is 
more challenging than discriminating congestion from non-congestion.  

 
 

 
Figure 3. A Tool for Real Time Estimation of Queue 

As shown in Figure 3, queue estimation tool is currently used in real time at the CATT Lab. Traffic conditions can be 
determined by comparing the current reported speed to the reference speed for each segment of road. Reference speed 
values are calculated based upon the 85th-percentile of the observed speeds on that segment for all time periods, which 
establishes a reliable proxy for the speed of traffic at free-flow for that segment. TMC segments represent bottleneck or 
congestion in which the actual travel speed drops below 60% of the reference speed longer than 5 minutes. Once the travel 
speed returns to a value greater than 60% of the reference speed for 10 minutes, TMC segment is no more in congestion.  

Another tool was discussed by Chung and Recker (2012). Distance of a data point from the mean in standard deviation 
units was used to separate any particular crash speed from the distribution of crash-free speeds. They applied constant 
threshold empirically found by using the relationship between randomly selected accident samples and their associated traffic 
data. The determinant threshold value discriminates two regions: congested regions affected by a crash and uncongested 
regions. 

However each accident data may have different thresholds and following difficulties in successfully representing the 
nature of accidents, compared to non-accident cases. We need a robust method to consider accident impact with the 
measurement of each distribution. This paper proposes a method that can be applied to all distributions, even without finite 
moments. 

 
An Adjusted Boxplot Method 

The boxplot is one of the most frequently used graphical tools for visualizing the distribution of continuous data (Tukey, 

1977). It can be constructed by putting a line at the height of the sample median , drawing a box from the first quartile  

to the third quartile . The length of this box equals the inter-quartile range, , as a robust measure of the 
scale. All points outside the interval in Equation 1 can be classified as potential crash cases. 
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[  − 1.5 IQR;  + 1.5 IQR]  

 

However, observations outside the fence are not necessary real crash-cases that behave differently from the majority of 
the data. At thick tailed symmetric distributions, many regular observations will exceed the outlier cutoff values defined in 
Equation 1, whereas data from thin tailed distributions will hardly exceed the fence (Hoaglin et al. 1983). We use the 
medcouple (MC) to measure the skewness of a univariate sample from a continuous distribution F, 

 

 

 

for all , kernel function h is defined as 

 

  

Medcouple always lies between −1 and 1. A distribution that is skewed to the right has a positive medcouple, whereas 
the MC becomes negative at a left skewed distribution. As shown in Hubert and Vandervieren, 2008, exponential model in the 
definition of our adjusted boxplot to define the boundaries of the interval. 

 

                                         [  −  IQR;  +   IQR]  

 

Additionally, we require that   =   = 1.5 in order to obtain the standard boxplot at symmetric distributions. 

Note that by using different functions and  in Equation 5, we allow the fence to be asymmetric around the box, so that 
adjustment for skewness is indeed possible. 

 

                                                 = , =   

 

As studied by Chung and Recker (2012), we can define speed at section i at time , and consider if   

−  IQR: under crash impact area;  −  IQR: crash-free area. A continuous region affected by 

crashes can be described and used for identifying secondary crashes.  

 
CASE STUDY  
 
Vehicle Probe Technology Based Data  

In previous studies, loop detectors were used to collect flow rate or speed data. It is important to point out 
that the results of these methods depend almost entirely on loop detectors performance. However, traffic data 
from loop detectors often contain invalid data (e.g., missing value, negative value, and non-zero speed with zero 
count) due to malfunctioning detectors, communication failures, and other reasons. Discarding values outside of 
the expected ranges potentially can lead to over-fitting, which diminishes the effectiveness of the model 
(Washington et al., 2003).  

Estimating traffic state from loop detectors has another challenge for accurately representing the traffic 
conditions on other parts of the road link. The travel speed from loop detector can be estimated using 
conventional method such as g-factor method. However the g-value, related to the average effective vehicle 
length, may not be constant (Hall and Persaud, 1989; Pushkar et al., 1994). The percentage of long vehicles may 
vary significantly during different time periods and introduce huge errors in some situations (Lao et al., 2012). 

Moreover, high installation and maintenance cost of fixed-point sensors drives transportation management 
authorities to consider both outsourcing traffic monitoring and developing new method of detection.  
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Recently, vehicle probe technology is increasingly becoming more attractive for real-time system state estimation, and it 
is a common practice for data providers to report data on Traffic Message Channel (TMC) codes. INRIX reports average speed 
as a normalized measure of travel time on each TMC segment, along with a score in one-minute interval. Hamedi and Haghani 
(2012) concluded that the INRIX travel time and speed data on the freeway segments generally satisfies the requirements of 
applications for real-time travel time display.  

The novelty of this study rests in the attempt of explaining the dynamics of traffic evolution during the primary-crash 
incident using vehicle probe technology, which covers the I-695 corridor from MD-150/Eastern Blvd/Exit 38 end to the MD-
151/North Point Blvd/Exit 40. INRIX provides data on all of these segments. Data from the Vehicle Probe Project comes 
primarily from the vehicles operating as anonymous probes. Meaningful travel time information for each TMC segment is 
achieved after data processing: aggregation, filtering, and smoothing. Then INRIX assigns a quality indicator to each travel 
time record based on real-time GPS tracks (score 30), archival data (score 10) or a combination of both (score 20); only 
qualities satisfying a score more than 20 are used for this study. Table 2 shows the list of TMC segments that are covered in I-
695 corridor including beginning and endpoint as well as length of each TMC segment. 

 
 
 

 
 

Figure 4. Collision Incidents on I-695 
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Table 2. List of TMC Segments on I-695  

TMC Start Lat Start Long End Lat End Long Length(mi) 

110P04555 39.2063 -76.5913 39.2066 -76.6119 1.11 

110P04520 39.2968 -76.7426 39.3130 -76.7445 1.12 

110-04523 39.3820 -76.7376 39.3780 -76.7440 0.45 

110-04520 39.3122 -76.7447 39.3118 -76.7447 0.03 

110-04519 39.2994 -76.7432 39.2894 -76.7414 0.70 

110+04527 39.3922 -76.7071 39.3959 -76.6877 1.08 

110N04535 39.4017 -76.5629 39.4019 -76.5683 0.30 

110P04512 39.2363 -76.6677 39.2391 -76.6685 0.20 

110+04542 39.3346 -76.4904 39.3344 -76.4902 0.02 

110P04514 39.2460 -76.6749 39.2561 -76.6914 1.15 

110P04532 39.4131 -76.6040 39.4136 -76.5958 0.44 

110P04549 39.2336 -76.5043 39.2320 -76.5071 0.18 

110-04558 39.2044 -76.6392 39.2025 -76.6347 0.28 

⁞  ⁞  ⁞ ⁞ 

110+04519 39.2818 -76.7308 39.2841 -76.7351 0.28 

110+04560 39.2067 -76.6424 39.2099 -76.6482 0.38 

110+04531 39.4151 -76.6252 39.4129 -76.6160 0.53 

110+04541 39.3446 -76.4949 39.3379 -76.4937 0.47 

110P04523 39.3650 -76.7473 39.3780 -76.7438 0.94 

110N04537 39.3867 -76.5265 39.3899 -76.5339 0.45 

110+04546 39.2835 -76.4897 39.2802 -76.4783 0.65 

110P04518 39.2768 -76.7253 39.2818 -76.7308 0.47 

110+04528 39.3980 -76.6840 39.4066 -76.6691 1.01 

110N04549 39.2319 -76.5071 39.2336 -76.5042 0.19 

110-04526 39.3954 -76.6944 39.3928 -76.7065 0.68 

110+04529 39.4146 -76.6602 39.4207 -76.6449 0.96 

110-04536 39.3899 -76.5339 39.3946 -76.5447 0.67 

 

The incident data along this I-695 corridor are investigated. In total, 5524 incidents (e.g., disabled vehicle, weather event, 
road maintenance, collision incidents, vehicle on fire, debris) from May 2011 to October 2011 are collected. 614 collisions 
(e.g., fatality, personal injury, and property damage) and vehicles on fire incidents are regarded as candidates for primary-
secondary incident pair. Based on incident location, traffic data from TMC codes are used to present traffic state of each 
segment. The archived incident and probe vehicle database are provided by Center for Advanced Transportation Technology 
Laboratory (CATT Lab) at the University of Maryland. Figure 4 illustrates the number of collision incidents for each road 
sections on I-695.  

 
Accurate Impact Area for Secondary Incidents 

When the speeds of vehicles return to normal after an incident, the queue has dissipated. The length of queue could be 
tracked based on the vehicles or interpreted from traffic speed contour plots. Based on configuration of crash impact for each 
segment, one can develop a daily speed contour map for the entire section of I-695 corridor (September 1, 2011, Thursday), 
as shown in Figure 5. For better representation, each cell was aggregated to one hour averaged traffic speed for TMC 
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segments. Shaded cell represent temporal-spatial area under non-recurrent congestion. Some segments of freeway corridor 
experience traffic congestion during morning and afternoon peak hours, and also due to incidents.  

Vehicles upstream of an incident event, near the I-695 outer loop at I-795 / Exit 19 (TMC 110N4523) 1:25 PM, should be 
in a slow-moving queue. It is because of following vehicles suffer from congestion with traffic condition rapidly decelerating 
from normal driving speed or free-flow speed to stop-and-go traffic. When they pass the incident, they should speed up to 
normal driving speed or even free-flow speed. There are two additional incidents in southbound direction, and one incident in 
the opposite direction (northbound) within this temporal-spatial congestion area, and they have possibilities to be regarded 
as secondary incidents. 

As shown above, speed information from probe vehicle data can capture the impact of an incident based on incident’s 
characteristics and prevailing traffic conditions. Figure 6 shows micro-detail feasible area expressed by queue length from 
TMS segment information and dynamic changes of congestion pattern. To facilitate illustration of secondary incident 
phenomena, 1-minute interval of speed contour plots from onset of incident to queue dissipation are investigated. To clear 
the primary incident, in which a truck is on its side carrying diesel fuel resulting in a two-vehicle collision with injury, two lanes 
are blocked for whole clearance and 13 operation units are dispatched (including police, fire, emergency medical personnel, 
Coordinated Highways Action Response Team units, tow services, public affairs, and flatbed). Incident’s characteristics 
indicate different rubbernecking phenomenon which perpetuates in the impact area with different intensities depending on 
the cross and longitudinal location with respect to the incident. Especially, in this larger scale event, multiple secondary 
incidents have higher likelihood to occur and their clearance takes longer time.  

Speed reduction from the primary incident (incident “1” ID: 25001beda3bf015f) may have an impact on the possibility of 
secondary incident occurrence (incident “2” ID: d3ffbed1aadf015f) at I-695 Perring parkway, 3:41 PM. This may make the 
period of congestion even longer and cause an additional secondary incident event (incident “3” ID: 510018b2b8130160) at I-
695 Loch Raven blvd., 7:22 PM. Moreover, incident influences not only on the incident direction but also on the opposite 
direction. Incident 4 (event ID: 2000daabba250160) can be defined as a secondary incident in the opposite direction. Then, 
when drivers pass the incident, they should speed up to normal driving speed. Traffic flow conditions will return to normal 
after 7:37PM. Therefore, incident “5” (event ID: 6f00f848a5cf015f) is not identified as a secondary incident.  

 

 

 
 

 

Figure 6. Secondary Incident Classification by Proposed Methods (1min intervals) 
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Figure 5. Traffic Speed Contour for September 1, 2011 (Southbound) 
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 Compared to static threshold methods in previous studies, the probe-based filtering method has superiority. Including 
the methods proposed by Raud (1997), Hirunyanitiwattana and Mattingly (2006) and Zhan et al. (2008), only the proposed 
method can capture incidents “2” and “3” as secondary incidents. Moreover, incident “4” in the opposite direction only can 
be identified method proposed by this study and Moore et al. (2004). In this way, among 614 collision incidents on I-695, 112 
(18%) are classified as primary-secondary pair based on archived incident and probe vehicle data.  

 
CONCLUSIONS AND RECOMMENDATIONS  

 
Modern data collection technologies enabled us to look into critical factors for incident duration and establish a 

deliberate incident management plan. In this study, probe vehicle technique is used to capture the dynamics of traffic 
evolution during the primary-crash incident. Compared to static threshold method in previous studies, probe-based filtering 
method has better result in identifying secondary incidents. Once there is a universal acceptance of a definition and 
corresponding set of parameters of secondary incidents, jurisdictions can be applied to compare incident reports. Data used 
in previous studies are not reasonable because necessary traffic detector data may not be available and replication of the 
incidents using a simulation package can be time consuming. The novelty of this study rests in the attempt to use INRIX speed 
data on the identification of secondary incidents of freeway segments, which generally satisfies the requirements of 
applications for real-time travel time display. However, proposed methodology cannot be applied to freeway segments which 
probe vehicle data are not available. Recently, vehicle probe technology is increasingly becoming more attractive for real-time 
system state estimation, and it is a common practice for data-providers to report data on TMC codes. Especially in State of 
Maryland, freeway corridors (e.g., I-495, I-95, I-295, I-83, and I-270) are providing probe vehicle data. Including more incident 
data on improved road segment as well as more time period will help developing robust model. Accurate and understandable 
information provided by the tool may help emergency operator to make a better decision, and maximize the effectiveness of 
incident management.  
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