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The Introduction of Dynamic Features in a
Random-Utility-Based Multiregional Input-Output
Model of Trade, Production, and Location Choice

by Tian Huang and Kara M. Kockelman

This study introduces dynamic features into the random-utility-based multiregional input-output
(RUBMRIO) model. The RUBMRIO model predicts interzonal trade and travel patterns, as well
as business and household location choices, using consumption and production process data. It
equilibrates production and trade, labor markets, and transportation networks simultaneously.
Multinomial logit models predict the origins of productive inputs, including commute behaviors (for
the input of labor).

With household locations and expenditures/incomes relatively well-known for the very near
future, one can predict current trade patterns by making household consumption, as well as (foreign
and domestic) export demands, exogenous to the model, resulting in short-term predictions. The
long-run equilibrium, wherein household locations and consumption patterns are endogenous, will
differ from this short-term solution.

INTRODUCTION

Traffic conditions and transportation system investment decisions can and do impact land use
decisions. And, of course, land development patterns drive much of travel demand. To this end,
integrated transportation-land use models are valuable tools for planning and policymaking. Much
effort has been devoted to developing such models, primarily for purposes of prediction. At the
disaggregate level, Von Thiinen’s (1966) isolated state model was extended by Wingo (1961)
and Alonso (1964), who both incorporated budget constraints. De la Barra (1995) incorporated
elastic demand and land use intensities. In all these models, an equilibrium pattern is generated
from the utility maximizing behavior of individuals under highly idealized settings (including a flat,
featureless monocentric region).

Taking an aggregate and more practical perspective, Wilson’s (1970) entropy-maximizing
methods have been used to model spatial interactions. Putman’s (1983 and 1995) Disaggregate
Residential Allocation Model (DRAM) and Employment Allocation Model (EMPAL) are the well-
known successors to Lowry’s (1964) model. These are the most widely used spatial allocation
models in the U.S. today.

Input-output (I0) theory also is widely used for describing inter-industry productive relationships.
When coupled with random utility theory for the distribution of productive input, a spatial IO model
emerges. MEPLAN (Echenique 1985; Hunt and Echenique 1993; Hunt and Simmonds 1993;
Abraham and Hunt 1999), TRANUS (de la Barra 1995), PECAS (Hunt and Abraham 2003), and
RUBMRIO (Kockelman et al. 2005; and Ruiz-Juri and Kockelman 2004 and 2006) are based on
this theory. MEPLAN, TRANUS, and PECAS represent dynamics by allowing the travel costs
associated with freight and person flows to affect land use decisions in the next iteration of the
model, along with network system changes (e.g., roadway expansions) and exogenous economic
shocks (e.g., increases in export demands).

Other spatial 10 applications also exist. Kim et al. (2002a) developed such a model for
estimating interregional commodity flows and transportation network flows to evaluate the indirect
impacts of an unexpected event (an earthquake) on nine Midwest states. Canning and Wang (2005)
tested an IO program for interregional, inter-industry transactions across four regions and 10 sectors
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using a global database documented in McDougall et al. (1998). Rey and Dev (1997) introduced a
series of specifications for extra-regional linking of econometric and 10 methods, thus extending
multiregional IO models (which, traditionally, have fixed inter-zonal flow shares). Ham et al. (2005)
estimated interregional, multimodal commodity shipments via an equivalent optimization adding
interregional and modal dispersion functions to their system’s objective function.

Also promising are computable general equilibrium (CGE) models (e.g. Buckley 1992;
Brocker 1998; Logfren and Robinson 1999; Kim et al. 2002b; and Kim and Hewings 2003). CGE
models address three major limitations of IO models: they do not assume the fixed coefficients for
productive relationships, they recognize price-expenditure interdependencies, and they allow for
supply-side effects (rather than being solely demand driven). However, their intense data demands,
including relative price information, are onerous if not impossible to adequately address, and
system equilibration (for solution of factor and commodity markets) is complex and not necessarily
convergent. Furthermore, most CGE models consider only a single region’s trade and production
decisions. Multiregional CGE models do exist; for example, Kim and Hewings (2003) developed a
CGE model for four sectors and five metropolitan areas in Korea, and Logfren and Robinson (1999)
simulated a four-region economy with five commodity-producing activities. Li and He (2005)
extended a two-region CGE model into a three-region model for China to simulate interregional
trade patterns and environmental impacts. However, major multi-regional examples remain rare, in
large part due to data limitations (on prices and technology, as well as trade flows).

Recognizing constraints on data availability and the importance of inter-regional trading, this
paper relies on spatial 10 techniques to explain economic interactions. In order to recognize the
dynamics of change, in land use, trade, and production, this study builds on the work of Ruiz-Juri
and Kockelman (2004) and Kockelman et al. (2005), which developed a Random-Utility-Based
Multiregional Input-Output (RUBMRIO) model of Texas trade. Their RUBMRIO model describes
the production and trade patterns across Texas’ 254 counties. Production is driven by Texas’ 18
foreign exports and 49 other U.S. states, and trade flows are converted to vehicle trips, in order to
capture the impact of network congestion on trade and production decisions. These earlier model
versions are designed to reflect only a long-term, equilibrium solution, where trade and production
of all inputs, outputs and other resources (e.g., labor, materials and final goods) are in balance, and
all effective prices market clearing. In this paper, the RUBMRIO model is extended to characterize
near-term production and trade patterns based on current settlement and earnings patterns, and to
introduce dynamic features which forecast the evolution of a region’s trade patterns — from a state
of short-term disequilibrium to longer-run scenarios.

By specifying household moves as a dynamic feature of RUBMRIO, and by making household
demands exogenous in near-term model applications, the new version of RUBMRIO tempers the
equilibrium-based predictions, producing estimates that should prove closer to reality. Since long-
term equilibrium will never be reached (thanks to system shocks, in terms of export demand levels,
for example), this new dynamic model offers an evolutionary path which is valuable for both near-
and long-term planning and policymaking.

The RUBMRIO model allows detailed evaluation of complex transportation networks and
economic system interactions, across firms, households, regions, and travel modes. It provides
behaviorally founded estimates of system wide and local impacts, and aspires to facilitate more
reliable transportation investment decisions, land use strategies, and trade and transport policies.

THE ORIGINAL RUBMRIO MODEL

The RUBMRIO model was developed to predict trade patterns, as well as business and household
locations, using production and consumption data. It derives from IO-type productive dependencies
across economic and social sectors, using nested logit models for inputs and transportation mode
choice. Driven by final export demands, the model relies on a production process characterized by
fixed technical coefficients derived from [Mpact analysis for PLANning (IMPLAN) data of industry
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expenditures across input types. The choice of input origins is determined using random utility
theory, by estimating the utility of purchasing commodity m from every possible provider zone j via
the set of available transportation modes .

Recognizing that air and water modes carry only 3.3% and 2.5% of Texas’ $589 billion of
traded commodities (according to the 2002 Commodity Flow Survey [BTS 2005]) and that these two
modes generally require some surface transport (to and from their appropriate ports), the version of
the RUBMRIO model used here does not predict such mode use. Moreover, since 10% of Texas’
commodity trade (and 23% of its shipped tons) is carried via pipeline (in the form of mined gas and
gasoline) [BTS 2005], RUBMRIO assigns only 55% of mining sector flows to the modeled road
and railway networks.

Currently, RUBMRIO utility functions are a function of transport distance, and linear functions
of logsum (expected minimum cost) terms emerging from input acquisition decisions. Essentially,
producers must decide how much of each input to purchase from each origin, based on relative
transport costs and sales prices. Such decisions impact their own production costs and resulting sales
prices. Purchase-weighted logsums of productive inputs serve as input sales prices, in utility-consistent
units. Kockelman et al. (2005) calibrated the origin choice models using the 1997 Commodity Flow
Survey (CFS) data (BTS 2000), which do not offer travel cost information. Zhao and Kockelman
(2004) applied fixed-point theory (i.e., the notion that a solution to F(x) = x exists, under certain
conditions) to examine existence and uniqueness conditions for RUBMRIO’s model solutions.
Under weak assumptions on output sales prices and spatial purchase probabilities, the solution
prices and commodity flows were shown to be unique. Ruiz-Juri and Kockelman (2004) extended
the base application by incorporating domestic demands from all other U.S. states (including the
District of Columbia), wage relationships, and land use constraints. The model converts monetary
trade flows into vehicle trips (by transforming monetary flows into tons and tons into trucks [using
Vehicle Inventory and Use Survey data]), thus allowing for congestion feedbacks.

As shown in Figure 1, the model’s original, long-run formulation is driven by final demand
for exports, both foreign and domestic, by commodity type. Transport costs or distances, and
network capacity and performance assumptions are also key inputs. By simply assuming initial
commodity sales prices, the model runs iteratively to equilibrate trade and network traffic flows. In
this way, exogenous final demands seek expected-cost-minimizing distributions of suppliers (across
production zones). Intermediate production then is generated to meet these final demands (i.e.,
the sum of commodity purchases by regions outside the state of Texas), and distributed according
to trade utilities. Average input prices (in units of utility) are purchase-weighted logsums, which
generate (output) sales prices, via recognition of technical coefficients (the production process). The
newly computed output prices feedback, into origin-choice utility functions, thus launching a new
trade iteration.

Given information on (average) labor demand (per unit of industry output), the equilibrated
production levels for each sector imply levels of demanded labor. These labor linkages result in work
trips via Ruiz-Juri and Kockelman’s (2006) multinomial logit model of origin choice. By converting
monetary trade flows into vehicle flows, and applying deterministic user equilibrium to assign traffic
flows to highway networks, the model recognizes congestion feedbacks via a distance updating
factor. This factor is the ratio of congested (shortest—path) travel time to free-flow (shortest—path)
travel time. This allows for a second, outer feedback loop, for a new iteration of trade and traffic,
using the updated distance values, which serve as a proxy for travel times and cost.

The existing RUBMRIO model takes a long-term, equilibrium view of inter-regional interactions,
and the household sector (see Table 1 for sector descriptions) is endogenous to the model. In Ruiz-
Juri and Kockelman’s (2004) implementation, state-level population was given and distributed
based on wages that equilibrate labor supply and demand at the county level. In the short term,
however, household locations and expenditures/incomes are relatively well-known, and one may
better predict trade patterns by making household consumption, as well as (foreign and domestic)
export demands, exogenous to the model. By dynamic adjustment of household consumption (as
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Figure 1: Original RUBMRIO Model Structure
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Note:
i,j are indices for zones/counties;
k, s index export zones and states, respectively;

m, n index economic sectors;

U ;" is the utility of acquiring commaodity m in zone i and transporting it to zone J;

X; is total monetary value of commodity m produced in county i;

Y is the value of commodity m demanded by export zone k;

Z" is the value of commodity m demanded by state s;

X l;" is the total monetary flow of commodity m from county i to county j;

Y is the flow of commodity m from county i to export zone £;

VA is the flow of commodity m from county i to state s;

c” is the total monetary value of commodity m consumed in county J;

is the weighted average cost of input m in zone j;

pf is the overall manufacture cost and thus ultimate sales price;

A}"" are the technical coefficients with import considerations (see Kockelman et al. 2005);
A(;"]f’ are the technical coefficients without import considerations (see Kockelman et al. 2005);
d i raitway d j highway A€ railway and highway distances between counties;

L, Bo" s Bhigiway » Braimay are the logit model parameters; and

initial values of p" and X ;7 are typically set to zero.
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a function of county-level supply-demand imbalances), the model provides a prediction of each
region’s evolutionary path. This is the approach taken here.

SPECIFICATION OF THE DYNAMIC RUBMRIO MODEL

This section specifies a short-term RUBMRIO model for prediction of current trade patterns, as well
as a transition mechanism from the short-term to the long-term model.

Short-Term vs. Long-Term Model Structures

The long-term model used here is the equilibrium state for inter-county and inter-sectoral interactions
— including an endogenous household/labor sector. In reality, household locations and household
expenditures are relatively fixed in the near term, which leads to what we refer to as the “short-
term” model structure. As noted in Figure 2, final demand is assumed to be foreign and domestic
exports in the long-run applications of the RUBMRIO model, and foreign and domestric exports
plus household consumption in the short run. Essentially, in the short run households in every zone
(i.e., every Texas county, for the application in question) can be regarded as residing in a port with
an export demand for commodities. Any disequilibria of the supply and demand for labor in the
zones motivate households to move, resulting in a corresponding change of household expenditures,
thus moving the short-term prediction to a longer-term perspective. The basic structure of the model
is unchanged, but short-term and long-term labor supply solutions are clearly distinguished, and
form the basis for the transition mechanism. Figure 2 illustrates the connected procedures, and
perspectives.

Thus, in this short-term model, household demands are exogenous to the model, and essentially
added to the final demand which drives Texas’s economy. Correspondingly, the household sector is
removed from the IO table of productive sectors. As with any transaction in this spatial IO model, a
zone’s households’ purchases may come from any of the other zones. Purchases are assigned using
the random utility principles defined in Egs. 1 and 2, using parameters estimated by Ruiz-Juri and
Kockelman (2004). Eq. 3 illustrates the new, short-term production function that incorporates a
fourth term (/,}), in order to account for household demands.

(1) Ul =8" -d,

ij ,highway

e SXDURY)
@ Hj =H} <
Z exp(Uh;')

G =X+ zr Y HY
7 k s J

In Eq. 1, Hj is the (systematic) utility of zone j’s households when purchasing goods from
sector m in zone i, the 0”,s are logit model parameters calibrated using Austin Travel Survey (ATS)
data for home-based non-work trips (Ruiz-Juri and Kockelman 2004), and dy highvay is the road-
network distance between zones 7 and j. In Eq. 2, H is zone j’s (total) household demand for
commodity m, and /}; is zone-j household purchases of commodity m from zone i. In Eq. 3, x;"
the production of commodlty m in zone i, X are interzonal flows of commodity m from zone i to
zone j, Yy are flows of commodity m from producmg zone i to foreign export zone k, and Z are
domestic export flows from zones i to states s.

The 2002 IMPLAN data (Minnesota IMPLAN Group 2002) provide information on household
expenditures by sector at the county level. Table 1 bridges the CFS commodity codes, NAICS and
IMPLAN codes adopted here. Table 2 summarizes the household expenditures profile. The $418
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Figure 2: Dynamic RUBMRIO Model Structure
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billion annual expenditures by Texas households represent nearly 63% of the total final demand that
drives the state economy in the short-term model. Household demands need to be met, and these
clearly should be a major factor in near-term trade predictions.
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Table 1: Description of Economic Sectors in the RUBMRIO Model

Sector Description IMPLAN NAICS SCTG
1 Agrlcjulture, Forestry, Fishing and 1~18 1 13425
Hunting
2 Mining 19~29 21 10~18
3 Construction 33~45 23 --
4 Food Manufacturing 46~84 311 2,5~9
5 Chemicals Manufacturing 147~171 325 19~24
6 Primary Metals Manufacturing 203~223 331 32
7 Fabricated Metals Manufacturing | 224~256 332 33
8 Machinery Manufacturing 257~301 333 34
9 Electronic and Electric Equipment | 302~343 334,335 35,38
10 | Transportation Equipment 344~361 336 36, 37
1 Other Durable & Non-Durable 85~111, 112~146, 312~316, 339, | 26~31,
Manufacturing 362~373,374~389 | 321~324,337 | 39~43
Transportation, Communications 391~397, 398~400,
12 & Utilities 413~424, 30~32 48,49,51,22 |
13 | Wholesale trade 390 42 --
14 | Retail trade 401~408, 409~412 | 44,45 --
15 FIRE (Finance, Insurance & Real 425-436 52.53 B
Estate)
54~56,
16 | Services 437~509 61~62, --
71~72, 81,92
17 | Households
18 Government

Note: This table provides the corresponding sector code in different data sources which were used
in this study. IMPLAN stands for IMpact analysis for PLANning, NAICS stands for North America
Industry Classification System, and SCTG stands for Standard Classification of Transported
Goods.
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Transitioning from Short- to Long-Term: Model Dynamics

By assumption, the main distinction between the short- and long-term models is treatment of the
household sector. Household migration in response to trade pressures and demand/supply imbalances
thus provides the mechanism for transitioning from short- to long-term. Many factors determine a
county’s attractiveness for population migrations, including environment and topography, wages
and educational opportunities, risk of natural hazards and access to artistic and cultural institutions.
While no model can control for all such factors explicitly, this work currently allows households to
move in proportion to the long-run/equilibrium and short-run labor supply-demand imbalances.

Figure 2 illustrates the dynamic RUBMRIO model structure, which assumes that the labor
force (and associated household members) moves toward zones of excess demand (for workers),
increasing production and easing the local labor market imbalance (at least temporarily). Eq. 4
describes the change in labor supply, and Eq. 5 illustrates the proportionality assumed between labor
and households.

4) LabSupply', = LabSupply’™ + K -(LabDemand ; — LabSupply'™)
PPLY ppLY j j

LabSupply",
(5) Hj = H}’ ‘pryil
pply;

Here, LabSupply’" and LabSupplyj represent the number of workers supplied in zone j at time
points 7~/ and ¢, respectively; is long-run equilibrium number of workers demanded by industries
in zone j at time ¢#-/; and K represents change in labor as a fraction of the current excess supply (or
excess demand). Thus, K reflects the speed of evolution in worker and household locations toward
the long-term equilibrium state. Based on intuition regarding flexibility in population movements,
K was set equal to 0.05 per one-year LabDemand; interval in these applications of the dynamic
RUBMRIO model. If imbalances are significant, predicted growth rates can be dramatic (e.g., over
+100%, as well as approaching -100%). Nevertheless, it is useful to note that during the 1990-2000
period only four of Texas’ 254 counties experienced an annualized population increase over 5%. A
K factor of 0.05 is an important assumption, and future model extensions will focus on calibrating
this parameter more rigorously.

InEq.5, H ;"] and H ; are total household demands across all sectors in zone i at time point #-1
and ¢, as in Eq. 2. These are assumed to be proportional to worker numbers (i.e., labor supply).
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Table 2: Foreign, Domestic and Household Demands (in Billions of 2002$)

Sector Name Foreign Domestic Household
Exports Demand Demand

Agriculture, Forestry, Fishing and Hunting 3.010 0.931 0.299
Mining 7.182 1.034 1.719
Construction 0 0 0
Food Manufacturing 3.781 8.758 8.807
Chemicals Manufacturing 18.39 30.45 1.586
Primary Metals Manufacturing 0 5.026 negligible
Fabricated Metals Manufacturing 6.055 7.986 negligible
Machinery Manufacturing 37.95 27.90 0.502
Electronic and Electric Equipment 11.84 6.685 0.292
Transportation Equipment 12.00 1.421 0.074
Other Durable & Non-Durable Manufacturing 21.10 34.27 6.451
Transportation , Communications & Utilities 0 0 32.23
Wholesale trade 0 0 34.49
Retail trade 0 0 116.0
FIRE (Finance, Insurance & Real Estate) 0 0 91.68
Services 0 0 117.0
Households 0 0 0
Government 0 0 7.016
Total 121.3 124.5 418.1

Note: Foreign export levels are based on Ruiz-Juri’s (2004) trend-line estimates, computed using
data provided by the Texas Business and Industry Data Center, while domestic demand is calculated
from the 2002 Commodity Flow Survey, and household demands come from Texas’s 2002 IMPLAN
data.

A Comparison of Model Dynamics

As spatial input-output models, MEPLAN and TRANUS model economic interactions and trade
flows in a manner similar to RUBMRIO. Their dynamics are rather different, however. Three key
things affect TRANUS and MEPLAN dynamics: changes to the transportation network (e.g., added
capacity and pricing), changes in the location and levels of (exogenous) basic production (by a
region’s job- and income-generating industries whose demand is primarily external to the region),
and land constraints (reflected through pricing signals). In MEPLAN, the “exogenous” production
of basic goods is located via a separate model, based on Cobb-Douglas-like cost calculations and
tempered by inertial terms (so that new levels are proportional to prior levels). The land use model
keeps track of floor space availability and developable land constraints (Abraham and Hunt 1999).
TRANUS is very similar in the sense that interactions rise to meet demand, while congesting the
network and affecting contemporaneous accessibility measures. Transport system improvements
may then be undertaken that affect accessibility measures in the following time steps (Donnelly et
al. 1999).
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Other techniques also may be useful for achieving robust dynamics. For example, a combination
of average wage and land rent information could produce measures of zonal attractiveness for new
entrants.

Incorporation of Domestic Import Traffic Flows

According to CFS 2002 data, Texas imports $215.8 billion of commodities annually. Those import
purchases are considered in the production process via an import parameter in the technical
coefficients table, based on 2002 IMPLAN leakage values (which constitute purchases of inputs
outside the region of study). However, their impacts on the transportation network need to be
addressed explicitly. Each state s is assumed to sell each commodity m to every Texas county at the
same price, which leads to the assumption that import levels solely depend on transportation costs
between the origin (state) and destination (county). Therefore, import purchases are based on Eq. 6’s
utility specification, and generated trips are obtained using Eqgs. 7 and 8 sequentially.

(6) Ul;" = )\‘m log[exp(B(;',lhighway + B/::lghway ’ dsj,highway) + eXp(ﬁrmailway ' dsj,railway )]
exp(Ui™)
Jm=q" Elj
() =5 Sexpuin)
J

(8) ITrips; = " prop} e - 1y - TCF" - PCE

In Eq. 6, Ui; is the import utility of acquiring commodity m in U.S. state s and transporting it
to producing zone j. The f’s and A’s are logit model parameters calibrated using CFS 1997 data
(Kockelman et al. 2005), and dsj’hl.ghway and dsj,milway are the road- and railway-network distances
between state s and zone /, respectively. In Eq. 7, ™is state s” (total) export to Texas for commodity
m, and [ :/" is zone j’s purchase of commodity m from state s. In Eq. 8, IT. RIPS is the total vehicle
trips generated from transporting commodities from state s to zone j, prop;; .., is the proportion
of import flows of commodity m transported by highway from state s to producing zone j, TCF™
is the truck conversion factor for commodity m (Ruiz-Juri and Kockelman 2004), which converts
annual monetary flows into daily truck flows (via dollar-per-ton and ton-per-truck assumptions), and
PCE is the truck-to-car equivalency factor (assumed to be two vehicles per truck).

Data Sources

Distances between Texas’ 254 county zones and all U.S. states, over both highway and railway
networks, were estimated using TransCAD. The two networks are based on Caliper Corporation
(2002) national railway network and the FHWA (2005) National Highway Planning Network.
Foreign exports were derived from Texas Business and Industry Data Center (2004), and domestic
demands were from the CFS 2002 data (BTS 2005). IMPLAN (Minnesota IMPLAN Group 2002)
household and population values for Texas counties were used for the short-term population profile,
and Texas Water Development Board (2006) state level population projections for 2010 and 2020
were applied for calibrating the new county population for short-term model application in 2010
and 2020. The state’s population additions in 2010 and 2020 are allocated according to the long-
term, equilibrium labor demand shares across counties. Due to the small number of data periods
available and the limited accuracy for long-range projection, Texas’ future foreign export demands
are estimated based on trends derived from the 1997 and 2002 annual export data. Similarly, Texas’
future domestic demands are estimated based on trends derived from the 1997 and 2002 CFS data
by applying an exponential five-year growth rate to move the data forward from 2002 to 2010 and
then 2020. Of course, the 1997-2000 period was a high-growth period, which capitalized on the
North American Free Trade Agreement. Thus, actual rates of growth in export demand through 2020
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may be quite a bit lower. Texas’ future import data (not including foreign imports) are estimated in
a similar way, based on the trends derived from CFS 1993, 1997, and 2002 data.

MODEL APPLICATION
Description of Scenarios

This study applies a dynamic version of the RUBMRIO model to anticipate changes in Texas trade
patterns over the next 20 years. The base year for the application is 2002, based on Texas Business
and Industry Data Center and IMPLAN demand data (for foreign and domestic exports, as well as
county population and household expenditures). The equilibrium version of the RUBMRIO model
was used to simulate the long-term optimal state of trade patterns and population distribution. When
compared to current population numbers, these equilibrium estimates indicate locations of worker
imbalance, thus providing the levels of dynamic adjustment (in workers and households, by county)
for the subsequent time point. The model runs in one-year time steps for 18 years, until 2020.

Application Results

This section describes and compares the model outcomes of the three time points, in terms of
production and population levels, and their associated trade flows.

In the 2002 scenario, Texas’ economy is driven by $121 billion in foreign exports, $124 billion
in domestic demands, and $418 billion in household expenditures. The short-term model generates
$1,238 billion of total trade flows (of which over 33% are value-added), while the long-term model
generates $1,366 billion total trade flows. The positive $127 billion difference in the total trade flows
is expected, considering that the long-term equilibrium tracks toward a more uniform distribution of
household and firm location and production choices, spatially — due to use of logit model probabilities.
In reality, of course, locations (and trade) may remain reasonably concentrated, since development
decisions are reasonably discrete, even at the county level. Table 3 shows RUBMRIO predictions
of truck trip generation by industry for the short and long terms, and these can be compared (by
industry) to values implied by Texas Vehicle Inventory and Use Survey data (2002). These suggest
that the mining, chemical manufacturing, other manufacturing, and agriculture sectors generated
most of the truck trips, and short-term predictions are consistent with these survey data.

Texas’ 254 counties can be grouped into five super-regions (Figure 3): north, west, northwest,
east, and south. Figure 4 illustrates the trade patterns among these regions. The short-term model
predicts that nearly 70% of total trades are intra-regional trades (Figure 4A), with trade flows
declining with distance between regions (as expected).

Figure 4’s comparison of equilibrium and dynamic disequilibrium predictions is quite dramatic.
The long-term equilibrium approach predicts a relatively even distribution of trade (Figure 4B), with
total intra-regional trades accounting for less than 22% of total trade flow values, and each region
actively trading with all others. Essentially, the decision to model household demand endogenously
or exogenously plays a major role in prediction. Households constitute a major consumption force
in any economy, and their current, clustered locations strongly shape the future.

As time marches forward, current population and trade patterns are predicted to shift in
response to market forces. During the 2002-2020 period, Texas’ northwestern region is predicted to
experience relatively rapid (short-term) growth, at an annual rate of 2.37%. The northern and eastern
regions are predicted to continue their moderate growth (Figure 5A) at annual rates of 0.2% and
0.14%, respectively. The corresponding populations in these five regions are shown in Figure 5B.
From 2002 to 2020, the northwest region is predicted to gain 2.8 million in population; the rapid
population increase in the northwest region plays a major role in its trade growth. Since the long-
term model does not take into account the effect of current population clusters and the northwest
region is in a better location to trade with domestic markets, the northwest region’s economy grows
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Figure 3: Texas’ Five County Groups

relatively fast, which attracts more population and results in the increase of household demand. The
trade and population interaction causes the striking performance of the northwest region. The south
region maintains the same population level and thus the same trade level. Population shifts (Figure
6) toward a long-term equilibrium in the 18-year time horizon modeled here tend to mirror the shifts
in trading.

Since trade utilities are a function of transport distances and input prices, with commodity
prices generated endogenously by the model, transport distance or cost is the fundamental factor
affecting trade patterns in these models. Of course, productive technologies (in the form of somewhat
distinction IO tables for the five regions) and export demands are also key. And, in the near term,
as discussed above, meeting household demand is paramount, as this dominates final demand. In
the longer term, the rates of growth in export demand ultimately tip the balance toward domestic
trade (50% of the total demand expected in 2020), and labor and households are expected to shift
to locations with greater demand for labor. In terms of producing exports, the northwestern and
northern regions dominate trade with other U.S. states, and 16 of Texas’ 31 major ports. The western
and southern regions enjoy greater market shares in supplying foreign exports.
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Table 3: Distribution of Truck Trips Generated in Texas, by Industry (2002)
Short-Term Long-Term

Sector Name VIUS RUBMRIO RUBMRIO
Agriculture, Forestry, Fishing and Hunting 11.17% 6.36% 6.88%
Mining 34.36% 37.13% 34.63%
Food Manufacturing 7.44% 7.37% 7.83%
Chemicals Manufacturing 15.27% 16.04% 18.46%
Primary Metals Manufacturing 0.87% 2.91% 3.86%
Fabricated Metals Manufacturing 0.49% 2.64% 2.81%
Machinery Manufacturing 1.61% 1.60% 1.49%
Electronic and Electric Equipment 1.20% 0.45% 0.98%
Transportation Equipment 0.19% 0.36% 0.48%
Other Durable & Non-Durable Manufacturing 27.39% 25.15% 22.59%

Note: VIUS (Vehicle Inventory and Use Survey) data were computed using the 2002 Texas Vehicle
Inventory and Use Survey.

CONCLUSIONS

This paper introduces and applies a dynamic RUBMRIO model for Texas’ 254 counties, with
production, population, and trade patterns driven by foreign, domestic, and household demand. By
removing the household sector from the spatial 10 tables, and assuming stickiness in migration,
the model recognizes the strong evolutionary impacts that existing populations have on the state’s
future.

In addition, Texas’ domestic imports are now recognized, via inbound goods movements,
making predicted traffic patterns more realistic. All traffic assignment for congestion feedback is
now accomplished using Microsoft Visual C++ codes, bypassing external assignment routines,
speeding the overall model run times.

The dynamic RUBMRIO model described here can be further enhanced by introducing a
size term for input origin, thus reinforcing the attractiveness of such centers (and their associated
agglomeration economies) to recognize the supply power of existing centers of population and
production. By recognizing the power of path dependence and historic advantage, such a specification
would slow the system’s evolution to any long-run “equilibrium” trade pattern, but may be far
more realistic for prediction. A more formal calibration of population migration, in the presence
of supply-demand imbalances and regional attraction factors, including market wages, also would
be valuable. Finally, translation of trade distances to generalized cost values will permit roadway-
pricing applications of the model. It is unfortunate that the CFS data do not offer information on such
key variables. However, data from other sources (e.g., Reebie’s TRANSEARCH estimates of trade)
may fill this void, allowing reasonable parametric modifications to the current model coefficients.

In summary, the dynamic features of this model of spatial interaction and location choice offer
valuable predictions of future trade patterns and assessment of regional transportation conditions.
Such specifications should prove a powerful tool for policymakers, transportation planners, and
developers, particularly for network level policies, including the coming Trans Texas Corridors
(e.g., TTC69 and TTC35), as well as tolling and trade policies. It is clear that long-run equilibrium
solutions can differ dramatically from their short-term, current-population constrained versions. It
is critical to get the dynamics of trade patterns right — over time and space.
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Figure 4: Short-term and Long-term (Equilibrium) RUBMRIO Model Predictions
of Trade Patterns (2002)
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Figure 5: Model Predictions of Trade Patterns for 2002-2020
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Figure 6: Model Predictions of Population Distribution for 2010 and 2020
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